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Abstract

Background: The three-dimensional structure of a protein can be described as a graph where nodes represent
residues and the strength of non-covalent interactions between them are edges. These protein contact networks can
be separated into long and short-range interactions networks depending on the positions of amino acids in primary
structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while
short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical
properties and the linear arrangement of amino acids of the primary structure of a protein determines its three
dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London
van der Waals interactions of amino acids at different length scales. We further subdivided those networks in
hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall
topology and organization of a protein.

Results: The largest connected component (LCC) of long (LRN)-, short (SRN)- and all-range (ARN) networks within
proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino
acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and
all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity.
Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours
with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of
transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The
presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at higher
interaction strength between amino acids, give extra stability to the tertiary structure of the thermophiles. All the
subnetworks at different length scales (ARNs, LRNs and SRNs) show assortativity mixing property of their participating
amino acids. While there exists a significant higher percentage of hydrophobic subclusters over others in ARNs and
LRNs; we do not find the assortative mixing behaviour of any the subclusters in SRNs. The clustering coefficient of
hydrophobic subclusters in long-range network is the highest among types of subnetworks. There exist highly
cliquish hydrophobic nodes followed by charged nodes in LRNs and ARNs; on the other hand, we observe the highest
dominance of charged residues cliques in short-range networks. Studies on the perimeter of the cliques also show
higher occurrences of hydrophobic and charged residues’ cliques.

Conclusions: The simple framework of protein contact networks and their subnetworks based on London van der
Waals force is able to capture several known properties of protein structure as well as can unravel several new features.
The thermophiles do not only have the higher number of long-range interactions; they also have larger cluster of
connected residues at higher interaction strengths among amino acids, than their mesophilic counterparts. It can
reestablish the significant role of long-range hydrophobic clusters in protein folding and stabilization; at the same
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time, it shed light on the higher communication ability of hydrophobic subnetworks over the others. The results give
an indication of the controlling role of hydrophobic subclusters in determining protein’s folding rate. The occurrences
of higher perimeters of hydrophobic and charged cliques imply the role of charged residues as well as hydrophobic
residues in stabilizing the distant part of primary structure of a protein through London van der Waals interaction.
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Background
Proteins are important biomolecules having a large num-
ber of structural and functional diversities [1]. It is
believed that these 3D structural, and hence functional,
diversities of proteins are imprinted in the primary struc-
ture of proteins. While the primary structure of a protein
is a linear arrangement of different amino acids con-
nected with their nearest neighbours through peptide
bonds in 1D space, the 3D structure can be considered
as a complex system emerged through the interactions
of its constituent amino acids. The interactions among
the amino acids within a protein can be presented as
an amino acid network (often called as protein con-
tact network) in which amino acids represent the nodes
and the interactions (mainly non-bonded, non-covalent)
among them represent the undirected edges. This rep-
resentation provides a powerful framework to uncover
the general organized principle of protein contact net-
work and also to understand the sequence structure
function relationship of this complex biomolecule [2-5].
Analysis of different topological parameters of protein
contact networks help researchers to understand the var-
ious important aspects of a protein including its struc-
tural flexibility, key residues stabilizing its 3D structure,
folding nucleus, important functional residues, mixing
behavior of the amino acids, hierarchy of the structure,
etc [6-12]. A web-server AminoNet has recently been
launched to construct, visualize and calculate the topo-
logical parameters of amino acid network within a protein
[13].
Researchers have also studied the role of inter-residue

interactions at different length scales of primary struc-
ture in protein folding and stability [14-20]. Long-range
interactions are said to play a distinct role in determining
the tertiary structure of a protein, as opposed to short-
range interactions, which could largely contribute to the
secondary structure formations [14,15]. Bagler and Sinha
have concluded that assortative mixing (where, the nodes
with high degree have tendency to be connected with
other high degree nodes) of long-range networks may
assist in speeding up of the folding process [21]. They
have also observed that the average clustering coefficients
of long-range scales show a good negative correlation
with the rate of folding of proteins. It should be clearly
noted that while the long and short-range interactions are
determined by the positions of amino acids in primary

structure, the contact networks are determined by the
positions of amino acids’ in 3D space.
When a protein folds in its native conformation, its

native 3D structure is determined by the physico-chemical
nature of its constituent amino acids. The dominance of
hydrophobic residues in protein folding is already shown
in [22-24]. The role of long-range hydrophobic clusters
in folding of (α/β)8 barrel proteins [17] and in the fold-
ing transition state of two-state proteins is also reported
in [19]. Poupon and Mornon have shown a striking corre-
spondence between the conserved hydrophobic positions
of a protein and the intermediates formed during its initial
stages of folding constituting the folding nucleus [25]. We
too have performed a comparative topological study of the
hydrophobic, hydrophilic and charged residues contact
networks and have shown that hydrophobic residues are
mostly responsible for the overall topological features of a
protein [12]. Very recently, we have studied how the topo-
logical parameters of amino acids within a protein contact
network depend on the their physico chemical properties
[26].
However, the topology of protein contact subnetworks

based on physico chemical properties of amino acids and
at the same time, at different length scale has not been
studied extensively. In our present study, we have con-
structed and analyzed protein contact networks at two
different length scales, long-range and short- range, for
a large number of proteins covering all classes and folds.
These long and short-range amino acids contact networks
have been further divided into subnetworks of hydropho-
bic, hydrophilic and charged residues.
Here, we have studied the transition of largest cluster

sizes; the mixing behaviour of nodes; overall cliquishness
as well as preference of specific types of cliques (sub-
graph where every pair of vertices are connected by an
edge) over others in different subnetworks. We observe
that the transition behaviours of long-range networks
and short-range networks are different and the former
have higher similarity with all-range networks. Compar-
ison of the homologs of mesophilic and thermophilic
proteins show that there exist a difference in their long-
range networks. While the mixing behaviour of amino
acids within all-range contact network is reflected in
their long- and short-range subnetworks, the hydropho-
bic subnetworks have a major significant contribution in
determining the overall mixing property of long-range
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networks. We also demonstrate the higher occurrence of
hydrophobic residues’ cliques in all- and long-range net-
works. On the other hand, cliques of charged residues
are over-represented in short-range networks. There also
exist higher perimeter of charged residues cliques with
three vertices (in addition to hydrophobic cliques), which
in turn, indicate to the importance of charged residues
in bringing and stabilizing the distant part of primary
structure in 3D space.

Methods
Construction of amino acid networks
Primary structure of a protein is a linear arrangement of
twenty different types of amino acids in one-dimensional
space where any amino acid is connected with its near-
est neighbours through peptide bonds. But when a protein
folds in its native conformation, distant amino acids in the
one-dimensional chain may also come close to each other
in 3D space, and hence, different non-covalent interac-
tions are possible among them depending on their orien-
tations in 3D space. Considering the amino acids as nodes
and the London van der Waals’ interactions (which sat-
isfy the condition given below) among them as edges, we
construct protein contact network (PCN).

Interaction strengthbetween amino acids
Strength of interaction between two amino acid side
chains is evaluated as a percentage given in [4] by:

Iij = nij√
Ni × Nj

× 100 (1)

where, nij is the number of distinct interacting pairs of
side-chain atoms between the residues i and j, which come
within a distance of 5A◦ (the higher cutoff for attractive
London–van der Waals forces [27]) in the 3D space. Ni
and Nj are the normalization factors for the residues i and
j, respectively. We have determined the normalization fac-
torsNi for all 20 residue types using the method described
in [3] and given below.

Ni =
p∑

j=1

MAXM(TYPE(ik))
p

(2)

The number of interaction pairs including main-
chain and side-chain made by residue type i with all
its surrounding residues in a protein k is evaluated.
MAXM(TYPE(ik)) is considered by the maximum num-
ber of interactions make by residue i in protein k. In our
case, k varies from 1 to 495 (the size of our data set).
The normalization factors take into account the differ-
ences in the sizes of the side chains of the different residue
types and their propensity to make the maximum num-
ber of contacts with other amino acid residues in protein
structures [3].

Existence of edge between amino acid nodes
An important feature of such a graph is the definition
of edges based on the normalized strength of interaction
between the amino acid residues in proteins. Once Iij is
evaluated for all pairs of amino acid residues, a cutoff value
(Imin) is chosen. Any pair of amino acid residues (i and
j) with an interaction strength of Iij, are connected by an
edge if Iij > Imin. This cutoff (Imin) is varied from 0%
(> 0% is referred as 0%) to 10%. Thereafter, PCNs are con-
structed for all the proteins present in our data set at these
varying cutoffs. As the interaction cutoff increases from
0% to 10%, the number of edges in the PCNs decreases;
because, at higher cutoff, the number of nodes making
the higher number of interactions is less. Very few num-
bers of amino acids sustain interactions at 10% cutoff. It
should be mentioned that the definition of amino acid
interaction is purely based on the number of distance-
based London van derWaals’ contacts between two amino
acid residues.

PDB structures used
A total of 3,087 non-redundant proteins were retrieved
from the protein data bank [28] that fulfill the following
criteria: 1) Maximum percentage identity: 30, 2) Resolu-
tion: ≤ 3.0, 3) Maximum R-value: 0.3, 4) Sequence length:
300-10,000, 5) CA only entries: excluded, 6) Non X-ray
entries: excluded and 7) CULLPDB by chain. We should
mention that proteins with less than 300 amino acids
are avoided in this study to get subclusters (from dif-
ferent subnetworks) of reasonable size. Subclusters with
less than 30 amino acids are not enough for study of
topological parameters.
A set of 3,087 proteins meet up the above mentioned

criteria. From this set, we removed all those proteins
for which the atomic coordinates of any amino acid are
missing. The protein contact networks that we generate
are totally based on atomic distances of the amino acids,
so missing amino acids or atomic coordinates may give
erroneous values of different network parameters (degree,
clustering coefficient, etc). Finally, we obtained a set of
495 proteins (PDB codes listed in Additional file 1) for our
analysis.

Long-range, short-range and all-range protein contact
subnetworks
We have constructed the long-range interaction network
(LRN), short-range interaction network (SRN) and all-
range interaction network (ARN). If any amino acid i has
an interaction with any other amino acid j, whether this
would be a part of the LRN or SRN depends on the dis-
tance x = |i − j| between the ith and jth amino acids in
the primary structure. If x > 10, LRN is produced, while if
x ≤ 10, a SRN is produced [5,12,26]. It is clear that x > 0
will provide ARN.
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Hydrophobic, hydrophilic and charged residues subnetworks
It is also known that each of the 20 amino acids within
a protein has different side chain and different physico-
chemical properties. Based on it, the 20 amino acid
residues are grouped into three major classes: hydropho-
bic (F, M, W, I, V, L, P, A), hydrophilic (N, C, Q, G, S,
T, Y), and charged (R, D, E, H, K)[12]. We have gener-
ated hydrophobic networks (BN) where the hydrophobic
residues are considered as nodes and link between them is
established if their interaction strength exceeds a partic-
ular threshold (as defined earlier). Hydrophilic networks
(IN), charged networks (CN) and all amino acid networks
(AN) are constructed similarly. We should once again
mention that the BNs, INs and CNs generated here are
based only on the Van derWalls forces. The networks thus
formed have more than one subnetwork, with the number
of nodes varying over a wider range.

Network parameters
Each of the networks is represented as an adjacency
matrix. Any element of the adjacency matrix (A), connect-
ing the ith and jth nodes, is given as: aij = 1, if i �= j and
nodes i and j are connected by an edge, the value is 0 if
i �= j and nodes i and j are not connected or if i = j.

Mixing behaviour of nodes
To study the tendency for nodes in networks to be con-
nected to other nodes that are like (or unlike) them, we
have calculated the Pearson correlation coefficient (r) of
the degrees at either ends of an edge. Its value has been
calculated using the expression suggested by Newman
[29] and is given as

r = M−1 ∑
i jiki−[M−1 ∑

i 0.5(ji + ki)]2

M−1 ∑
i 0.5(j2i + k2i )−[M−1 ∑

i 0.5(ji + ki)]2
(3)

Here ji and ki are the degrees of the vertices at the ends
of the ith edge, with i = 1, .....M. The networks having
positive and negative r values are assortative and disassor-
tative, respectively. In addition, the value of this parameter
(r) gives a quantitative estimation of the mixing behaviour
of nodes in a network.

Clustering coefficients
The clustering coefficient (C) is a measure of local cohe-
siveness. (Ci) of a node i is the ratio between the total
number of links actually connecting its nearest neighbors
and the total number of possible links between the near-
est neighbors of node i. In other words,(Ci) enumerates
the number of loops of length three maintained by a node
i and its interconnected neighbors. It is given by

Ci = 2ei
ki(ki − 1)

(4)

Here ei is the total number of edges actually connecting
the ith node’s nearest neighbors and ki is the number of
neighboring nodes of node i.

Largest Connected Component
After the adjacency matrices are constructed at different
cutoffs of varying strengths of interaction, they are sub-
sequently subjected to depth first search method [30] to
identify their distinct clusters and cluster forming nodes.
The giant cluster (defined here as “Largest Connected
Component” or LCC) is the largest group of connected
nodes in a network that are reachable to each other
directly or indirectly. The size of the LCC in a network
(in terms of the number of amino acid residues) depends
on the connection (edges) among amino acid nodes and
the existence of edge depends on the interaction strength
cut-off. Thus, the size of LCC becomes a function of Imin
cut-off.
We have determined the largest connected components

and their sizes from adjacency matrices formed at vary-
ing cutoffs of strengths of interaction. The sizes of largest
cluster are normalized with respect to the total number of
residues in the protein, so that it is no more dependent on
the size of the protein.

Results and discussion
We have constructed and analyzed hydrophobic (BN),
hydrophilic (IN), charged (CN) and all (AN) residues’
London van der Waals contact networks at three dif-
ferent length scales [long-range interaction networks
(LRNs), short-range interaction networks (SRNs) and
all-range interaction networks (ARNs)] for each of the
495 proteins at different interaction strength (Imin) cutoffs
(see Methods).
Earlier studies showed that the Largest Connected

Component (LCC) is a very important parameter in net-
work analysis, it provides information on the nature and
connectivity of the network [4,31]. The normalized size of
LCC when plotted as a function of Imin value, undergoes
a transition for all proteins , irrespective of their sizes or
folds. The Imin value at which the size of LCC is half of
the size at Imin=0% is termed as Icritical [4,31]. It is also
reported that the values of Icritical fall within a narrow
range for proteins of all sizes and folds [4].
Here, we have first studied the nature of transition of

different subclusters (LRN, SRN, ARN and BN, IN, CN,
AN). We have plotted the normalized size of the LCC as
a function of Imin (from Imin = 0% to 10%) for different
subnetworks (Figure 1 and Additional file 2).

Transitions of largest clusters’ sizes depend on length scale
of the networks
Results indicate that the nature of transition in ARN-AN is
closer to LRN-AN than SRN-AN (Figure 1). As expected,
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Figure 1 Transition profile of different subnetworks. The normalized size of largest connected component (LCC) is plotted as a function of Imin

for different subnetworks in a representative protein (PDB code: 1A0C). The subnetworks are - All-range all-residue network (ARN-AN), Long-range
all-residue network (LRN-AN), Short-range all-residue network (SRN-AN), All-range hydrophobic-residue network (ARN-BN), All-range
hydrophilic-residue network (ARN-IN), All-range charged-residue network (ARN-CN), Long-range hydrophobic-residue network (LRN-BN) and
Short-range hydrophobic-residue network (SRN-BN).

in ARN-ANs, the largest cluster include all of the residues
in the protein at Imin = 0%. The transitions take place
within a narrow range (2% - 5.5%), with Icritical varying
from nearly 3% to 4.5% in approximately 90% proteins
(Figure 1). However, in LRN-ANs, the transition begins
from a slight lower cutoff, and the process of transition in
LCC is faster than ARN-ANs but slower than SRN-ANs.
In LRN-ANs, the Icritical values vary from 1.5% to 3% in
approximately 88% proteins. On the other hand, the tran-
sitions in SRN-ANs are very steep; and in approximately
86% proteins, the values of Icritical vary from 1% to 1.5%. In
SRNs, the clusters are highly connected at lower Imin cut-
offs, infact, the average cluster size of SRN-ANs (almost
same as ARN-ANs) is higher than LRN-ANs at Imin = 0%
(Table 1).
Thus, the above results clearly indicate -(i) sharp tran-

sition of SRNs in comparison to LRN and ARNs, (ii)
early transition of SRNs, and (iii) more similar transition
of LRNs and ARNs. The steep transition in SRN-ANs is
attributed to the fact that it has a chain like structure at
Imin=0% (Additional File 3), and as Imin increases, the loss
of a specific contact in this chain-like cluster has a high
probability to break the chain, thus quickly generating a
larger number of clusters. On the other hand, the early
onset of transition in SRN-ANs (Figure 1) is attributed
to the fact that they have a significant lower strength of
interaction (Iij) than LRN-ANs (2.56 and 2.86, respec-
tively, with p < 0.05). However, we should mention that
the average degree of SRN-ANs is higher than LRN-ANs
at Imin=0% (4.03 and 3.93, respectively).

On the other hand, the LRN and ARN at Imin=0% do
not have chain like structures (Additional File 3) and thus
they are more resistant to the elimination of edges as
Imin increases. This is also one of the reasons why the
transitions of LRN and ARN are more similar. Further-
more, in ARN-ANs, at lower Imin cutoff, when all of the
residues are connected in a single large cluster, both the
long- and short-range interactions are involved in it. But
as we increase the cutoff, the contribution from short-
range interactions decreasesmore rapidly than long-range
interactions. And thereafter (at higher Imin cut off), the
residues in the protein network are mainly connected by
the long-range interactions. So, these explain the similar
transition nature of LCC in ARN-ANs and LRN-ANs.
It is also well established that the long-range interac-

tions (interactions among amino acids distantly placed in
primary structure) stabilizes the tertiary structural inte-
gration of a protein. Thus, the similar transition behaviour
of LRN and ARN is also expected. The similarity in transi-
tion profile of long-range and all-range network’s LCC in
proteins suggest that long-range interactions are guiding
the overall topology and stability of the tertiary structure
of a protein. At the same time, we want to give empha-
sis on another point described below. The interaction
strength gives a clear measure of how the amino acids are
connected and tightly bound within a protein, which in
turn is related to the packing and stability of a protein. The
tertiary structure is mainly stabilized through interactions
among amino acids placed at long distant in the primary
structure. Thus, the existence of comparative larger size
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Table 1 Average cluster size, average Pearson correlation coefficient (〈r〉) and average clustering coefficients (〈C〉) of
hydrophobic (BN), hydrophilic (IN), charged (CN), and all-amino-acids (AN) networks at different length scales viz. the
long-range (LRN), short-range (SRN) and all-range (ARN) interaction networks are listed for Imin = 0

Length scale Type Avg cluster size 〈r〉 〈C〉
LRN BN 101.59± 53.66 0.13± 0.10 0.24± 0.05

IN 44.16± 13.03 -0.04± 0.19 0.14± 0.06

AN 350.5± 134.77 0.17± 0.07 0.16± 0.03

SRN BN 38.55± 11.10 -0.11± 0.17 0.29± 0.08

AN 430.93± 145.06 0.21± 0.06 0.35± 0.03

ARN BN 156.59± 70.75 0.27± 0.08 0.39± 0.03

IN 68.38± 41.33 0.15± 0.15 0.29± 0.06

CN 47.42± 18.34 0.14± 0.16 0.27± 0.07

AN 436.28± 141.01 0.30± 0.04 0.35± 0.01

LCC in LRNs at higher Imin suggests that a protein may
need larger amount of possible non-covalent interactions
(in addition to others) in bringing and holding together
distant part of the primary structure of a protein in 3D
space.
The difference in transition profiles of LRN and SRN

clearly also indicate that the cooperativities of their tran-
sitions are different. One may be interested to compare
the cooperativity indexes of those transitions. The shape
of the LCC size versus Imin curve can be expressed in the
terms of the ratio of the Imin cutoff at which the transi-
tions begins and the Imin cutoff at which the clusters just
break down into many small sub-clusters (for example,
points A and B as marked in SRN-AN of Figure 1). This
ratio is called the cooperativity index (CI) [32]. Higher CI
value suggests more cooperativity. Without any numeri-
cal calculation, just from the nature of transition profiles,
it is very much clear that the CI values for SRN-ANs
are comparatively very high than those of LRN-ANs and
ARN-ANs. When we calculate it in a representative pro-
tein 1A0C, SRN-AN show the highest average CI value
(0.53), which is approximately 1.5 times of CI values of
LRNs (0.35) and ARNs (0.31). We want to mention that
a more rigorous general method is needed to define the
point A and B of Figure 1.

Transition of hydrophobic subcluster is similar to that of all
amino acids network
We have also studied how the sizes of the largest clusters
vary in the ARN-BNs, ARN-INs and ARN-CNs. Here, we
find that ARN-BNs have a transition nature more inclined
towards the ARN-ANs (Figure 1). The transition takes
place in exactly the same range of ARN-ANs; Icritical varies
from 2.5% to 4.5%. On the contrary, ARN-INs and ARN-
CNs don’t show any single state transition throughout
(Figure 1). Interestingly, when comparing LRN-BNs and

SRN-BNs, the nature of transition in LRN-BNs are more
closer to ARN-ANs (Icritical ∼ 3) than SRN-BNs which do
not show a clear phenomenon of single state transition
(Figure 1).
The above results clearly indicate the predominant

role of hydrophobic subclusters in shaping the transition
behaviour of long-range and all range all amino acids
network.

Thermophilic andmesophilic show differences in their
long-range transition
We have also studied the variation of LCC in 12 pairs
of mesophilic and their corresponding thermophilic pro-
teins (PDB IDs are taken from [4]). Comparing the size of
LCC of mesophilic and thermophilic proteins at different
Imin, Brinda et al have observed the larger size of LCC in
thermophilics and this gives possible explanation for their
higher stability [4].
Here, we have studied the transition of LCC for SRNs,

LRNs and ARNs separately (Figure 2). While the nature
of transitions of LCC’s sizes are same in SRNs for
thermophiles and mesophiles, there exist a clear differ-
ence in LRNs. The Icritical values for SRNs lies between
1-1.5 in both thermophiles and mesophiles. But, in LRNs,
the values of Icritical (lies between 3.5-4) for thermophiles
are higher than those of mesophiles (Icritical lies between
3-3.5). The presence of larger size of interconnected long-
range interactions in thermophiles than mesophiles, even
at higher Imin cut-off, give extra stability to the tertiary
structure of the thermophiles.
Brinda et al [4] showed that at higher Imin the size

of LCC of ARN in thermophilic is higher than that of
mesophilic and thus providing extra stability to the ther-
mophilic protein. They have not studied the transition
of long and short -range networks separately. However,
Gromiha [33] clearly predicted that the residues occurring
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Figure 2 Difference in transition profiles of thermophilic andmesophilic proteins at different length scales. The normalized size of largest
connected component (LCC) is plotted as a function of Imin in thermophilic (PDB code: 1XYZ) and mesophilic (PDB code: 2EXO) protein at
long-range and short-range network.

in the range of 31-34 residues apart in the sequence con-
tribute significant long-range contacts to the stability of
thermophilic proteins. They also showed that the ther-
mophiles have more residue pairs than mesophilics. Here,
our results confirm the previous observations; in addi-
tion, it shows that the thermophiles do not have only
the higher number of residue pairs in long-range interac-
tions, they have also larger cluster of connected residues
at higher Imin than their mesophilic counterparts. This
observation also indicates that there exist higher inter-
action strengths among the amino acid nodes of these
thermophilic long-range clusters.

Mixing behaviour of the amino acid nodes
Next, we shall discuss the mixing behavior of nodes in dif-
ferent subclusters and try to find whether an amino acid
with higher number of connections have tendency to be
connected with another amino acid with higher degree
or not. This, in turn, will give also an idea whether the
probability of connections of any amino acid with other is
random or it has any preference. In our earlier work, we
showed assortative mixing behaviour of the hydrophobic
residues in overall protein structure [12]. Here, we extend
those studies in different subnetworks to get an idea of
their individual nature and also their relative contribution
in fixing the mixing behaviour of amino acids in overall
protein.
To understand this mixing behaviour, we have calcu-

lated Pearson correlation coefficient (r) of the networks
(for details see Methods). Depending on the mixing
behavior of nodes, a network is either of two types –

assortative ( +r value) or disassortative ( -r value). A net-
work is said to be assortative, if the high-degree nodes in
the network tend to be connected with other high-degree
nodes and disassortative when the high-degree nodes tend
to connect to other low-degree nodes.

Different length scales networks (LRN, SRN and ARN) are
assortative
We have selected all the subclusters having at least 30
amino acid nodes [12,13]. At Imin = 0 %, the all range
(ARN), long-range (LRN) and short-range (SRN) inter-
action networks have positive (r)-values. The respective
averages are 0.30, 0.17 and 0.21 (Table 1). Thus, it is very
much clear that networks formed at different length scales
of primary structure have assortative mixings of amino
acid nodes. ARNs are composed of LRNs and SRNs. Thus,
mixing behaviour of amino acids in overall protein contact
network is contributed by both the LRN and SRN.

Mixing behaviour of amino acids depends on the type of
residues
At Imin = 0%, the 91% of LRN-BNs clusters show assor-
tative mixing; where average size of each cluster is 102
amino acid residues and the average value of (rbLRN ) is 0.13
(Table 1). Both LRN-BNs and LRN-ANs show high num-
ber of assortative subclusters even at higher Imin cutoffs.
On the other hand, most of the LRN-INs show disassor-
tative mixing behavior with only 39% of the INs showing
assortative mixing ((riLRN) ∼ -0.04), average size of the
clusters at Imin = 0% cutoff is 44 residues. The Mann-
Whitney U-test shows that the average assortativity value
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of LRN-INs is significantly less than that of LRN-BNs
(p-value = 3.553e-15). The LRN-CNs do not have any clus-
ter having 30 or more nodes. The higher assortativity (or
cluster size or clustering coefficients) of the BN subclus-
ters than their respective IN subclusters, is independent
of the number of hydrophobic or hydrophilic residues
present in a protein. In our data set, 49 proteins have more
number of hydrophilic residues than hydrophobics; even
then the hydrophobic networks have larger average clus-
ter size (BN∼ 146.79 and IN ∼ 118.18; p-value = 0.005)
and a significantly higher assortativity (rb ∼ 0.28 and
ri ∼ 0.18; p-value = 2.686e-06). The larger cluster sizes
or assortativity values of the BNs thus indicate that these
topological parameters depend on the physic-chemical
behavior of constituent amino acids networks within the
network.
Unlike LRNs, most of the SRN-BNs (almost 57%) show

disassortative mixing of nodes. Average size of SRN-AN
and SRN-BN clusters at 0% cutoff is about 431 and 39
amino acid residues, respectively.
ARNs are composed of LRN and SRNs, each of them

show assortative mixing behavior. Again, each of these
three networks has been classified into three different
subnetworks based on their physico-chemical properties.
In our earlier work (studied at Imin =0% only) we have
shown that the ARN-BNs exhibit assortative mixing prop-
erties. In addition, here, we observe that (i) the higher
percentage of hydrophobic residues’ mixing behavior is
of assortative type in LRN, and (ii) in SRN, the assor-
tativity is an emergent property which is not apparently
observed in its subclusters. Thus, the present result also
confirms that the mixing behavior which also imply the
connectivity pattern of the amino acid residues, depend
on the physic-chemical nature of amino acids. Further, the
propensity of an amino acid to be connected with other
amino acids also depends on the position of the inter-
acting amino acids in the primary structure. The mixing
behavior of amino acids in overall protein and in long-
range networks is more influenced by the hydrophobic
residues.

Importance of assortative networks in communicating
information
The allostery signals in proteins transmit from the per-
turbed effector site to the substrate site through pathways
and the experimental data suggests that the allosteric
pathways are highly populated with hydrophobic residues
in some of the allosteric proteins. For example, Ran-
ganathan and coworkers have predicted and confirmed
experimentally a set of energetically coupled residues
(which form the allosteric pathways for PDZ domain fam-
ily); most of the residues in these pathways are hydropho-
bic [34]. A hydrophobic groove is also reported in the
allosteric pathways of CREB binding protein CBP [35].

It is known that the information can be easily trans-
ferred through an assortative network as compared to a
disassortative network [29]. We observe that most of the
hydrophobic residues’ subnetworks in PCNs (LRNs and
ARNs) are assortative in nature. Thus, one can expect
that for any perturbation at the residue level, the neces-
sary communication to the distantly located site would
pass easily through the chain of hydrophobic residues.
We should mention that our contact network is based
only on London van der Waals interaction, we have not
considered other type of non-covalent interaction (like
electrostatic interaction between charged residues, or
hydrogen bonds). However, the result of our simple model
indicates that the necessary signal of perturbation can be
easily communicated through hydrophobic networks due
to their assortative mixing patterns.
Further, protein folding is a cooperative phenomenon,

and hence, communication amongst amino acids is essen-
tial, so that appropriate non-covalent interactions can take
place to form the stable native state structure [36]. Selvaraj
and Gromiha [17] have shown that the hydrophobic clus-
ters and network of long-range contacts pave the way for
the folding and stabilization of alpha/beta barrel proteins.
In another work [37], they have computed the hydropho-
bicity associated with each residue in the folded state and
compared the Phi values of each mutant residues for a set
of proteins and their results indicate the importance of
hydrophobic interactions in the transition state. Consider-
ing the long-range contacts within proteins, Gromiha et al
have introduced a parameter long-range Order (LRO)
which correlates significantly with protein folding rate
[38]. It is also reported that the assortativities in ARNs and
LRNs positively correlate to the rate of folding [21]. While
the previous studies indicate about the presence of long-
range hydrophobic network in the folding transition state
of proteins and positive correlation between long-range
network parameter (LRO, assortative mixing) and folding
rate of a protein, none has addressed the communica-
tion ability of information through the network. During
in vivo protein folding, it is also very necessary to com-
municate the information as quickly as possible. Here, we
show that the hydrophobic subclusters have the highest
assortative mixing behavior in LRN and ARNs; and thus
may indirectly indicate that the hydrophobic residues play
an important role in communicating necessary informa-
tion across the network in the folding process of a protein
and help in determining the topology of tertiary struc-
ture of a protein. We should mention that this indication
is just a hypothesis based on an indirect observation; the
real picture can be captured by studying a competitive
folding.
We next study the local cohesiveness of protein struc-

tures in terms of clustering coefficients and cliques
of k=3.
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Clustering coefficients of subnetworks and their effects in
protein folding and stability
Clustering coefficient is a measure of the cliquishness of
a network. The average values of clustering coefficients
(〈C〉) for long, short and all-range protein contact net-
works at Imin = 0% are listed in Table 1. The average
clustering coefficients of hydrophobic subclusters (〈Cb〉) is
the highest (even higher than that of all residues network)
in both ARNs and LRNs. In deed, in LRNs, the average
value of hydrophobic subclusters (〈Cb

LRN 〉) is almost 1.5
times and double to those of all amino acids subcluster
(〈Ca

LRN〉) and hydrophilic subclusters (〈Ci
LRN〉), respec-

tively ( p-value < 2.2e-16). No charged subcluster with
required number of nodes has been observed.
We know that the higher value of clustering coefficient

of a node i indicates the higher number of connections
among its neighbors (directly connecting nodes). The
higher values of 〈C〉 in LRN-BNs and ARN-BNs than
those of LRN-ANs and ARN-ANs, respectively, suggest
that hydrophobic residues with higher clustering values
interact in a more connected fashion, stitching different
secondary, super-secondary structures and stabilizing the
protein structure at the global level.
While the folding of a protein and attainment of the

native 3D structure is stabilized by the long-range inter-
actions [17], the clustering coefficients of LRNs show a
negative correlation with the rate of folding of the pro-
teins [21]. Understandably, more time is needed for more
number of mutual contacts of long-range residues (higher
clustering coefficients) for attaining the native state and
hence, slower is the rate of folding. Thus it is expected
that the higher values of clustering coefficients of a sub
network indicate a larger effect on the part of its nodes
(residues) in slowing down the rate of folding and helping
in local structural organization. Thus, the higher aver-
age clustering coefficients of hydrophobic residues suggest
higher contribution of hydrophobic residues in the folding
rate of a protein.

Occurrence of cliques
The clustering coefficient, 〈C〉 enumerates number of
loops of length three. These loops (cliques) of length
three can be generated by all possible combination of
hydrophobic (B), hydrophilic (I) and charged (C) residues
at the vertices of a triangle. Cliques are the subgraphs
where every pair of nodes have an edge. In the previous
section, we have only focused on BBB, III and CCC loops
while studying the BNs, INs and CNs separately. Here,
we have considered and calculated all the cliques that can
be formed from the possible combination of hydropho-
bic, hydrophilic and charged residues (BBB, BBI, BBC, BII,
BCC, BCI, CCC, III, CII, CCI).
The number of occurrences of all possible combina-

tion of cliques has been compared. For each protein,

we have normalized the number of occurrences of the
BBB or BCI (or others) cliques against the number of
hydrophobic/hydrophilic/charged residues present in the
protein. For example, a protein 1A2O has 173 hydropho-
bic residues and 939 BBB cliques, then we normalize the
number of BBB cliques by diving it (939) by the num-
ber of all possible cliques that can be formed from the
combination of 173 hydrophobic residues, and the new
normalized value is 0.0011. The clique type with highest
normalized clique occurrence value is identified for all the
proteins. The relative frequency distribution (in %) of the
clique types for ARN, LRN and SRN is shown in Addi-
tional file 4A. As quite expected, nearly 98% of proteins
show highest number of BBB cliques in LRN-ANs and
ARN-ANs,in while SRN-ANs, maximum number of pro-
teins either have highest number of CCC loops (40.20%)
or have highest occurrence of of BBB loops (33.73%).
With increase in Imin cutoff, the subnetworks show a
very interesting trait irrespective of length scale or type.
The percentage of charged residues cliques increase with
increase with Imin cutoff. The frequency of occurrence of
CCC loops is consistently followed by the CCI loops in all
subnetwork types (Additional file 4B). These observations
indicate that the charged residues loops (in addition to the
hydrophobic loops) within a protein play important role
in protein’s structural organization.
To quantify how much distantly placed amino acid

residues of primary structure form the vertices of a clique,
we have used the perimeter of the clique (Additional
file 5). The length of each side (edge between amino
acid nodes) of a clique is basically the corresponding side
(edge) forming amino acid’s distance in the primary struc-
ture. Higher perimeter of a clique implies more distantly
placed residues in primary structure have come closer and
making contacts in 3D space, thus playing an important
role in fixing the tertiary structures. For each protein, we
have calculated the average values of the perimeters for
each type of combination of the cliques in ARN-ANs and
LRN-ANs. Next, we identified the cliques with maximum
values of average perimeters, and counted the number of
times each clique type has the maximum average perime-
ter values. Next, we expressed the count of each clique
type in terms of relative percentage i.e. if the count of BBB
cliques having highest average perimeter value is 153 (out
of total 495 proteins), its relative percentage is 30.90%.
The relative percentage of each clique type is calculated
and shown in Figure 3. As expected, BBB residues cliques
cover maximum perimeters in 31% of proteins. Inter-
estingly, the perimeters of all charged residues’ cliques
(CCC) are maximum in approximately 21% of the pro-
teins. In 11% proteins, hydrophilic loops (III) appear to
cover maximum perimeter. Rest of the cliques which have
non-similar residues vertices (BCC, BCI, BBC etc), do not
show significant preference of any one over the others.
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Figure 3 The percentage of proteins for each clique type that covers maximumperimeter at 0% and 2% Imin cutoffs. The average values of
the perimeters for each clique type ARN-ANs and LRN-ANs are calculated. The number of times a clique type appears to have themaximum average
perimeter value is expressed in terms of relative percentage of proteins for each clique type. The sum of all relative values of different clique types at
each Imin cutoff is 100.

The occurrences and perimeters covered by cliques
makes two clear observations. The first one confirms the
well known information about the role of hydrophobic
residues in tertiary structure formation. But the novel
information which is coming out using the network anal-
ysis is that charged residue cliques have a higher strength
of interaction among themselves, and that even though
fewer in number, the charged cliques definitely bring the
distantly placed amino acid residues along a polypeptide
chain closer in the 3D space; thus helping in protein’s
structural organization.
Comparing the transition of largest cluster size of real

proteins with random model, Vishveshwara et al have
concluded that the bond percolation resembles with ran-
dom model (the probability of connection between two
amino acids depends only on a specific Imin); however
clique percolation cannot be achieved by random like
behaviour [39,40]. Thus, the presence of cliques and their
properties are not random; rather they are related to
the protein’s structural need. However, they have not
addressed whether there is any preference of clique of
specific amino acid residues. So far our knowledge, no
previous study has addressed to compare the perime-
ter of the cliques. The results based on the perimeters
of cliques clearly indicate the importance of charged
residues (in addition to hydrophobic) in forming triad
of distantly placed segments of primary structures in 3D
space.

Conclusions
The information regarding the tertiary structure of a pro-
tein is imprinted in the linear arrangement of its con-
stituent amino acids and the said structure has evolved
through interactions of amino acids in 3D space. Here,
we have analyzed a large number of protein structures
with a simple but powerful framework of protein contact
network. Our results show that the method can extract

several known properties of protein structure as well as
can unravel several new features. The existence of com-
paratively larger size of LRN-LCC at higher interaction
strength cut-off in thermophiles than mesophiles indicate
that the higher interaction strengths among the amino
acid nodes of these thermophilic long-range clusters pro-
vide extra stabilizing force to their tertiary structure. All
the different length scale protein contact subnetworks
have assortative mixing behavior of the amino acids.
While the assortativity of long-range is mainly governed
by their hydrophobic subclusters, the short-range assorta-
tivity is an emergent property not reflected in further sub-
networks. The assortativity of hydrophobic subclusters
in long-range and all-range network implies the quicker
communication ability of hydrophobic subclusters over
the others. We further observe the higher occurrences
of hydrophobic cliques with higher perimeters in ARNs
and LRNs. In SRNs, charged residues cliques have high-
est occurrences. In ARNs and LRNs, the percentage of
charged residues cliques goes up with increase in inter-
action strength cutoff. This reflects that charged residues
clusters (not just a pair of interaction), in addition to
hydrophobic ones, play significant role in stabilizing the
tertiary structure of proteins. Further, the assortativity
and higher clustering coefficients of hydrophobic long-
range and all range subclusters postulate a hypothesis that
the hydrophobic residues play the most important role in
protein folding; even it controls the folding rate. Finally,
we should clearly mention that our network construction
explicitly considers only the London van der Waals force
among the residues. This does not include electrostatic
interaction between charged residues or H-bonding, etc.
To get further insights, one should explicitly consider all
the non-covalent interactions among amino acids. How-
ever, it is interesting to note that the present simple frame-
work of protein contact subnetworks is able to capture
several important properties of proteins’ structures.
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Additional files

Additional file 1: PDB codes of the 495 proteins used in the study.

Additional file 2: Transition profiles of largest cluster in different
subnetworks are compared for 495 proteins. The size of largest connected
component is plotted as a function of Imin in different subnetworks for 495
proteins. The cluster sizes are normalized by the number of amino acid in
the protein. The different subnetworks are A) Long-range all residue
network (LRN-AN). B) Short-range all residue network (SRN-AN). C) All-range
all residue network (ARN-AN). D) All-range hydrophobic residue network
(ARN-BN). E) All-range hydrophilic residue network (ARN-IN). F) All-range
charged residue network (ARN-CN). G) Long-range hydrophobic residue
network (LRN-BN). H) Short-range hydrophobic residue network (SRN-BN).

Additional file 3: Different nature of cluster in ARN-AN, LRN-AN and
SRN-AN. The nature of cluster in SRN-AN is chain like while the cluster is
much more well connected and non-chain like in LRN-AN and ARN-AN.

Additional file 4: Relative highest frequency distribution in ARN, LRN and
SRN. A. The number of occurrences of possible combination of cliques are
normalized against the number of hydrophobic/hydrophilic/charged
residues present in the protein. The frequency distribution (in %) of the
clique types with highest normalized clique occurrence value is plotted for
ARN, LRN and SRN at 0% Imin cutoff. The sum of all relative values of different
clique types for each sub-network type is 100. B. The percentage of charged
residues cliques increase with the increase in Imin cutoff. This trend is
followed at all length-scales. The sum of all relative values of different clique
types at each Imin cutoff is 100. Some sub-network types are not shown in
the figure since they have a very less or no relative occurrence value.

Additional file 5: Illustrative figure explaining perimeters of cliques.
Higher perimeter of cliques means amino acids placed more distantly in
primary structure come close in 3D space. So these residues must be of
high importance in protein structure formation.

Abbreviations
PCN, Protein contact network; LRN, Long-range interaction network; SRN,
Short-range interaction network; ARN, All-range interaction network; BN,
Hydrophobic network; IN, Hydrophilic network; CN, Charged network; LCC,
Largest connected component; Imin , Interaction strength cutoff; Icritical , Critical
interaction strength; CI, Cooperativity index; r, Pearson correlation coefficient;
C , Clustering coefficient.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The authors acknowledge DIC of Calcutta University for computational
facilities and UGC RFSMS for funding the research. The work is also partially
supported by funds for Nanoscience and Technology, at University of Calcutta.
The authors thank the two anonymous reviewers for thoroughly reading the
paper and providing thoughtful comments.

Author’s contributions
SK designed the experiment, DS performed the whole study and both of them
prepared the manuscript. Both authors read and approved the final
manuscript.

Received: 29 December 2011 Accepted: 21 June 2012
Published: 21 June 2012

References
1. Branden C, Tooze J: Introduction to Protein Structure. New York: Garland

publishing incorporated; 1998.
2. BoIde C, KovaIcs IA, S SM, Palotai R, KorcsmaIros T, Csermely P: Network

analysis of protein dynamics. FEBS Lett 2007, 581:2776–2782.
3. Kannan N, Vishveshwara S: Identification of side-chain clusters in

protein structures by a graph spectral method. J Mol Biol 1999,
292:441–464.

4. Brinda KV, Vishveshwara S: A network representation of protein
structures: implications to protein stability. Biophys J 2005,
89:4159–4170.

5. Greene LH, Higman VA: Uncovering network systems within protein
structures. J Mol Biol 2003, 334:781–791.

6. Dokholyan NV, Li L, Ding F, Shakhnovich I: Topological determinants of
protein folding. Proc Natl Acad Sci USA 2002, 99:8637–8641.

7. del Sol A, Fujihashi H, Amoros D, Nussinov R: Residues crucial for
maintaining short paths in network communication mediate
signaling in proteins.Mol Syst Biol 2006, 2:2006.0019.

8. Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I,
Pietrokovski S: Network analysis of protein structures identifies
functional residues. J Mol Biol 2004, 344:1135–1146.

9. Vendruscolo M, Dokholyan NV, Paci E, Karplus M: Small-world view of
the amino acids that play a key role in protein folding. Phys Rev E
2002, 65:06191.

10. Kundu S: Amino acids network within protein. Physica A 2005,
346:104–109.

11. Aftabuddin M, Kundu S:Weighted and Unweighted network of amino
acids within protein. Physica A 2006, 39:895–904.

12. Aftabuddin M, Kundu S: Hydrophobic, hydrophilic, and charged
amino acid networks within protein. Biophys J 2007, 93:225–231.

13. Aftabuddin M, Kundu S: AMINONET - a tool to construct and visualize
amino acid networks, and to calculate topological parameters. J
Appl Cryst 2010, 43:367–369.

14. Gromiha MM, Selvara S: Influence of medium and long-range
interactions in protein folding. Prep Biochem and biotechnol 1999,
29:339–351.

15. Anderson JS, Scheraga HA: Effect of Short- and Long-Range
Interactions on Protein Folding. J Protein Chem 1982, 1:281–304.

16. Go N, Taketomi H: Respective roles of short- and long-range
interactions in protein folding. Proc Natl Acad Sci USA 1978, 75:559–563.

17. Selvaraj S, Gromiha MM: Role of Hydrophobic Clusters and
Long-Range Contact Networks in the Folding of (α/β)8 Barrel
Proteins. Biophys J 2003, 84(3):1919–1925.

18. Ponnuswamy PK, Warme PK, Scheraga HA: Role of medium-range
interactions in proteins. Proc Natl Acad Sci USA 1973, 70:830–833.

19. Gromiha MM, Selvaraj S: Inter-residue Interactions in Protein Folding
and Stability. Prog Biophys Mol Biol 2004, 86:235–277.

20. Gromiha MM, Thangakani AM: Role of medium- and long-range
interactions to the stability of themutants of T4 lysozyme. Prep
Biochem Biotech 2001, 31:217–227.

21. Bagler G, Sinha S: Assortativemixing in Protein Contact Networks and
protein folding kinetics. Bioinformatics 2007, 23:1760–1767.

22. Dyson HJ, Wright PE, Scheraga HA: The role of hydrophobic
interactions in initiation and propagation of protein folding. Proc
Natl Acad Sci USA 2006, 103:13057–13061.

23. Zhou R, Silverman BD, Royyuru AK, Athma P: Spatial profiling of protein
hydrophobicity: native vs. decoy structures. Proteins 2003,
52:561–572.

24. Southhall NT, Dill KA, Haymet ADJ: A view of the hydrophobic effect. J
Phys Chem B 2002, 106:521–533.

25. Poupon A, Mornon JP: Predicting the protein folding nucleus from
sequences. FEBS Lett 1999, 452:283–289.

26. Sengupta D, Kundu S: Do topological parameters of amino acids
within protein contact networks depend on their physico-chemical
properties? Physica A 2012, 391:4266–4278.

27. Tinoco I, Sauer K, Wang JC: Physical Chemistry: Principles and Application in
Biological Sciences. New Jersey: Prentice-Hall Englewood Cliffs; 2001.

28. PDB Protein Data Bank. [http://www.rcsb.org].
29. Newman MEJ: Assortative mixing in networks. Phys Rev Lett 2002,

89:208701–208704.
30. Newman MEJ, Watts DJ, L BA: The Structure and Dynamics of Networks.

Princeton: Princeton Univ Press; 2006.
31. Ghosh A, Brinda KV, Vishveshwara S: Dynamics of lysozyme structure

network: probing the process of unfolding. Biophys J 2007,
92(7):2523–2535.

32. Segel IH: Biochemical Calculations. New York: John Wiley and Sons; 1997.
33. Gromiha MM: Important inter-residue contacts for enhancing the

thermal stability of thermophilic proteins. Biophys Chem 2001,
21:71–77.

34. Suel GM, Lockless SW, Wall MA, Ranganathan R: Evolutionarily
conserved networks of residues mediate allosteric communication
in proteins. Nat Struct Biol 2003, 10:59–69.

http://www.biomedcentral.com/content/supplementary/1471-2105-13-142-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-13-142-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-13-142-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-13-142-S4.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2105-13-142-S5.pdf
http://www.rcsb.org


Sengupta and Kundu BMC Bioinformatics 2012, 13:142 Page 12 of 12
http://www.biomedcentral.com/1471-2105/13/142

35. Bruschweiler S, Schanda P, Kloiber K, Brutscher B, Kontaxis G, Konrat R,
Tollinger M: Direct observation of the dynamic process underlying
allosteric signal transmission. J AmChem Soc 2009, 131:3063–3068.

36. Maity H, Maity M, Krishna MMG, Mayne L, Englander SW: Protein folding:
the stepwise assembly of foldon units. Proc Natl Acad Sci USA 2005,
102:4741–4746.

37. Selvaraj S, Gromiha MM: Importance of hydrophobic cluster
formation through long-range contacts in the folding transition
state of two-state proteins. Proteins 2004, 55:1023–1035.

38. Gromiha MM, Selvaraj S: Comparison between Long-range
Interactions and Contact Order in Determining the Folding Rate of
Two-state Proteins: Application of Long Range Order to Folding
Rate Prediction. J Mol Biol 2001, 310:27–32.

39. Brinda KV, Vishveshwara S, Vishveshwara S: Random network behaviour
of protein structures.Mol BioSyst 2010, 6:391–398.

40. Deb D, Vishveshwara S, Vishveshwara S: Understanding Protein
Structure from a Percolation Perspective. Biophysical Journal 2009,
97(6):1787–1794.

doi:10.1186/1471-2105-13-142
Cite this article as: Sengupta and Kundu: Role of long- and short-range
hydrophobic, hydrophilic and charged residues contact network in pro-
tein’s structural organization. BMC Bioinformatics 2012 13:142.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Construction of amino acid networks
	Interaction strength between amino acids
	Existence of edge between amino acid nodes
	PDB structures used
	Long-range, short-range and all-range protein contact subnetworks
	Hydrophobic, hydrophilic and charged residues subnetworks

	Network parameters
	Mixing behaviour of nodes
	Clustering coefficients
	Largest Connected Component


	Results and discussion
	Transitions of largest clusters' sizes depend on length scale of the networks
	Transition of hydrophobic subcluster is similar to that of all amino acids network
	Thermophilic and mesophilic show differences in their long-range transition

	Mixing behaviour of the amino acid nodes
	Different length scales networks (LRN, SRN and ARN) are assortative
	Mixing behaviour of amino acids depends on the type of residues
	Importance of assortative networks in communicating information

	Clustering coefficients of subnetworks and their effects in protein folding and stability
	Occurrence of cliques

	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5

	Abbreviations
	Competing interests
	Acknowledgements
	Author's contributions
	References

