
Neuwald et al. BMC Bioinformatics 2012, 13:144
http://www.biomedcentral.com/1471-2105/13/144
METHODOLOGY ARTICLE Open Access
Automated hierarchical classification of
protein domain subfamilies based on
functionally-divergent residue signatures
Andrew F Neuwald1*, Christopher J Lanczycki2 and Aron Marchler-Bauer2
Abstract

Background: The NCBI Conserved Domain Database (CDD) consists of a collection of multiple sequence
alignments of protein domains that are at various stages of being manually curated into evolutionary hierarchies
based on conserved and divergent sequence and structural features. These domain models are annotated to
provide insights into the relationships between sequence, structure and function via web-based BLAST searches.

Results: Here we automate the generation of conserved domain (CD) hierarchies using a combination of heuristic
and Markov chain Monte Carlo (MCMC) sampling procedures and starting from a (typically very large) multiple
sequence alignment. This procedure relies on statistical criteria to define each hierarchy based on the conserved
and divergent sequence patterns associated with protein functional-specialization. At the same time this facilitates
the sequence and structural annotation of residues that are functionally important. These statistical criteria also
provide a means to objectively assess the quality of CD hierarchies, a non-trivial task considering that the protein
subgroups are often very distantly related—a situation in which standard phylogenetic methods can be unreliable.
Our aim here is to automatically generate (typically sub-optimal) hierarchies that, based on statistical criteria and
visual comparisons, are comparable to manually curated hierarchies; this serves as the first step toward the ultimate
goal of obtaining optimal hierarchical classifications. A plot of runtimes for the most time-intensive (non-
parallelizable) part of the algorithm indicates a nearly linear time complexity so that, even for the extremely large
Rossmann fold protein class, results were obtained in about a day.

Conclusions: This approach automates the rapid creation of protein domain hierarchies and thus will eliminate one
of the most time consuming aspects of conserved domain database curation. At the same time, it also facilitates
protein domain annotation by identifying those pattern residues that most distinguish each protein domain
subgroup from other related subgroups.
Background
In order to provide rapid and sensitive annotation for
protein sequences, including direct links to structural
and functional information, the National Center for Bio-
technology Information (NCBI) initiated the Conserved
Domain Database (CDD) [1] —a collection of position-
specific scoring matrices (PSSMs) (essentially HMM
profiles [2]) that are derived from protein multiple se-
quence alignments. As a result, web-based BLAST
* Correspondence: aneuwald@som.umaryland.edu
1Institute for Genome Sciences and Department of Biochemistry & Molecular
Biology, University of Maryland School of Medicine, BioPark II, Room 617, 801
West Baltimore St, Baltimore MD 21201, USA
Full list of author information is available at the end of the article

© 2012 Neuwald et al.; licensee BioMed Centr
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
searches now include a search of the CDD, which allows
users to visualize multiple sequence alignments and (via
the NCBI Cn3D viewer [3]) structures of proteins shar-
ing significant homology to the query and, within those
alignments, key catalytic and ligand-binding residues.
Thus BLAST searches linked to the CDD provide add-
itional clues to the function and underlying mechanism
of the query protein and are thereby often more inform-
ative, faster and more sensitive than searching against
millions of individual protein sequences.
The CDD is comprised of domain models either

manually curated at the NCBI or imported from other
alignment collections such as PFam [4], SMART [5], and
TIGRFAM [6]. A central and unique feature of the CDD
al Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:aneuwald@som.umaryland.edu
http://creativecommons.org/licenses/by/2.0

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 2 of 21
http://www.biomedcentral.com/1471-2105/13/144
is that related domains are organized into hierarchies
when evidence exists to support that tree as a represen-
tation of the molecular evolution of the protein class. A
significant bottleneck in the CDD pipeline is the cur-
ation of these hierarchies and the manual annotation of
the corresponding profiles for functionally important
residues (as gleaned from the biochemical literature). In
order to begin automating this process, here we describe
statistically-rigorous procedures for automated creation
of conserved domain (CD) hierarchies and for annota-
tion of the corresponding profile alignments. These pro-
cedures do automatically, based on objective, empirical
criteria, what the CDD resource group and similar
groups currently do manually, based on classifications
that have been established in the published literature, on
phylogenetic and structural analysis and, to some degree,
on subjective judgments. Our focus here is to obtain
heuristically an initial (presumably sub-optimal) CD
hierarchy starting from a typically very large multiple se-
quence alignment for an entire protein class whose do-
main boundaries remain fixed. To do this we utilize
procedures that obtain both subgroup assignments for
aligned sequences and corresponding discriminating pat-
terns associated with protein functional-divergence.
The automated annotation of functionally critical resi-

dues is an important outcome of these proposed proce-
dures: Just as a large enzyme class conserves residues
directly involved in catalysis, protein subgroups conserve
residues likely involved in subgroup-specific biochemical
properties and mechanisms. Our procedures use statis-
tical criteria to glean this biochemical information from
patterns of divergent residues among related sequences
in a manner similar to the use, by classical geneticists, of
statistical criteria to glean information from patterns of
divergent traits among related individuals. (To ensure
that pattern residues are functionally important, we
focus on residues that are conserved across distinct
phyla and thus for more than a billion years of evolu-
tionary time). By mapping various categories of pattern
residues to corresponding PSSMs, BLAST searches
against these improved CD profiles can reveal those resi-
dues most likely responsible for the specific biochemical
and biophysical properties of a query protein. This can
accelerate the pace of biological discovery by enabling
researchers to obtain valuable clues regarding as-yet-
unidentified protein properties through routine web-
based BLAST searches.
Other methods that may be similarly described as

addressing the protein subfamily classification problem
find sequence clusters either based on pairwise similarity
[7-11] or by cutting phylogenetic trees [12-16]. (Phylogen-
etic trees are, of course, likewise constructed based on se-
quence and profile similarity scores). Here we take a
different approach, namely the hierarchical classification
of a protein (domain) class based on functionally-
divergent residue signatures. Unlike our approach, many
existing methods, though not all (e.g., [15]), generally
focus on the narrower problem of identifying orthologs or
on the broader problem of clustering a database into unre-
lated protein classes rather than on constructing a hier-
archy of domain profiles for a specific protein class. An
approach, which is, in certain respects, similar to the one
described here (along with some substantial differences),
is the statistical coupling analysis method of Lockless and
Ranganathan [17] for detecting sets of correlated residues
in protein sequences [18].
Because our approach identifies residues associated

with protein functional divergence, it is also related to
"functional subtype" prediction (FSP) methods [19-33],
but is distinct inasmuch as these related methods typic-
ally predict specific residue functions (such as catalytic
activity or substrate specificity) that are sufficiently
well-understood to allow benchmarking [34,35]. In-
stead, our approach lets the data itself reveal its most
statistically striking properties without making assump-
tions about the types of residues to be identified. It is
further distinguished from each of these related meth-
ods in at least several of the following respects: (i) It
does not require that the input alignment be partitioned
into divergent subsets beforehand; this is unlike many
[20-27], though not all [28-31] FSP methods. (ii) It has a
rigorous statistical basis. (Though at least two other
methods are Bayesian based [36,37]). (iii) It is designed
for very large input alignments. (iv) For optimization it
relies on Bayesian sampling, which has a solid scientific
basis [38]. (We are aware of only one other method [37]
with a MCMC sampling component). (v) It separates
out unrelated and aberrant sequences automatically. (vi)
It can identify multiple categories of co-conserved resi-
dues within a given protein. (vii) It addresses concur-
rently the problems of protein subfamily classification
and of identifying residues associated with protein func-
tional divergence. And (viii) it can accomplish all of this
automatically starting from a single multiple sequence
alignment.

Problem definition and solution strategy
Here we address the following biological and algorithmic
problem: We are given as input a (typically very large)
multiple sequence alignment corresponding to a particu-
lar protein class. Our objective is to partition this align-
ment into a tree of sub-alignments, termed a CD
hierarchy, each subtree of which corresponds to a sub-
alignment of sequences sharing a certain pattern that
most distinguishes them from those sequences asso-
ciated with the parent node of the subtree and with any
other subtrees attached to that parent node. We inter-
pret these distinguishing residue signatures as associated

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 3 of 21
http://www.biomedcentral.com/1471-2105/13/144
with functional divergence of the protein class. As men-
tioned above, our focus is on obtaining an initial, sub-
optimal hierarchy that is comparable to current CDD
curated hierarchies and that can serve as a starting point
for further optimization using either manual or auto-
mated methods. Here we describe statistically-based
heuristic procedures that, in conjunction with Bayesian
sampling, can obtain such an initial hierarchy from a
multiple sequence alignment.

Bayesian sampling over contrast alignment models
Our approach relies on Bayesian Markov chain Monte
Carlo (MCMC) sampling [39], which starts with an arbi-
trary model having a certain (conditional) probability
that it (as opposed to other models) could have gener-
ated the input sequence alignment data. Then, in succes-
sive iterative steps, a number of alternative values for a
given parameter of the current model are evaluated
(while other parameters are held constant). A value for
this parameter is then sampled proportional to its prob-
ability. This iterative process continues until conver-
gence on the most likely models. Here we optimize in
this way contrast alignment models, each of which con-
sists of a pattern and a set of labels assigning each se-
quence to either a foreground partition or a background
partition corresponding to sequences that either gener-
ally conserve or fail to conserve the pattern, respectively.
A schematic representation of a contrast alignment and
the corresponding probability distribution are described
in Figure 1. To sample alternative contrast alignment
models we use a MCMC sampling strategy [39], termed
Bayesian Partitioning with Pattern Selection (BPPS)
[40,41]. (MCMC sampling is required because, a priori,
we know neither which sequences belong to the fore-
ground, nor which positions are pattern positions, nor
which residues are conserved at each pattern position.)
The sampler converges on a model where the pattern
best distinguishes the foreground from the background
sequences.

Multiple category functional divergence models
More recently, a multiple category (mc)BPPS sampler
was developed [42] with a view to optimally assigning
aligned sequences to various nodes within a predefined
protein domain hierarchy based on functionally-
divergent residue signatures. Thus the mcBPPS sampler
aims to precisely define both the sequences belonging to
each subgroup and the patterns most distinctive of each
subgroup within a specific protein class. However, be-
cause the mcBPPS sampler does not define the hierarchy
of contrast alignments, it requires that the user provide
(as input) both a functional divergence (FD)-table (for-
mally termed a “hyperpartition”) and seed sequences for
each divergent subgroup. (Seed sequences serve as
Bayesian priors or—if viewed as a missing data problem
[43]—as labeled sequences that are required to remain
in their pre-assigned subgroups during sampling and
that thus help define each subgroup. The remaining (un-
labeled) sequences are assigned to subgroups through
Bayesian inference).
Each row of a FD-table corresponds to a distinct func-

tionally divergent subgroup of the input sequences and
each column corresponds to a distinct contrast align-
ment whose foreground and background partitions are
specified by the symbols in the table. Such a table is
shown in Figure 2, which also illustrates the correspond-
ence between a tree representing the hierarchical rela-
tionships between functionally divergent subgroups and
the FD-table and between a column in the table and the
contrast alignment; these are shown above and below
the table, respectively. Given the relationships specified
by the FD-table, the mcBPPS sampler stochastically reas-
signs aligned sequences to alternative subgroups and al-
ternative patterns to each foreground partition until
convergence on an optimal (or nearly optimal) set of
contrast alignments. Modeling the functional divergence
of an entire protein class in this way is substantially
more powerful than using a single contrast alignment
because: (i) In principle, it can optimally model every
(functionally) divergent subgroup within an entire
protein class concurrently. (ii) It sets up a stringent
competition between functionally-divergent categories
for pattern residues, thereby defining each pattern and
partition much more precisely. (iii) It eliminates prob-
lematic sequences, which would otherwise tend to ob-
scure analyses, by modeling them explicitly. Problematic
sequences include, for example, related proteins that
have further functionally diverged to become outliers,
pseudogene products and other non-functional proteins,
and unrelated or erroneous sequences. And (iv), by de-
fining multiple categories of pattern residues within indi-
vidual proteins it can reveal, in the light of available
structural information, functionally important residue
interactions. (For a mathematical description, evaluation
and application of the mcBPPS sampler, see [42,44]).
Here we describe and apply an automated multiple

category (amc)BPPS program that generates its own FD-
table and seed sequences automatically and therefore
merely requires a multiple sequence alignment as input.
The number and nature of the partitions and the pat-
terns is completely determined by the program. When
used in conjunction with procedures for viewing struc-
tural interactions involving pattern residues, the
amcBPPS sampler automates and enhances the creation
and annotation of CDD hierarchical alignments. And,
when linked into web-based BLAST searches, this
can make previously inaccessible molecular information
widely available.

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 4 of 21
http://www.biomedcentral.com/1471-2105/13/144
Results and discussion
In this section, we lay out the basic amcBPPS algorithm,
illustrate an implementation of the algorithm as applied
to P-loop GTPases, compare its performance against
various manually-curated CD hierarchies, further evalu-
ate its performance using both delete-half jackknifing
and simulations, and apply it to several large protein
Figure 1 (See legend on next page.)
classes for which existing hierarchies or alignments are
currently unavailable.

Algorithm
The amcBPPS algorithm aims to identify the hierarchical
relationships between functionally-divergent subgroups
within an entire protein domain class based on the

(See figure on previous page.)
Figure 1 Schematic drawing of a contrast alignment and the corresponding probability model. Aligned sequences are assigned to either
a ‘foreground’ or a ‘background’ partition (orange and gray horizontal bars, respectively). Partitioning is based on the conservation of foreground
residues (blue vertical bars) that diverge from (or contrast with) the background residues at those positions (white vertical bars). Red vertical bar
heights quantify the selective pressure imposed on divergent residue positions. Below this is given the logarithm of the corresponding
probability distribution for the possible sequence partitions and corresponding discriminating patterns which together serve as the random
variables over which sampling occurs. X is an n × k matrix representing a multiple alignment of n sequences and k columns; xi j is a 20-
dimensional vector of all 0’s except for a lone ‘1’ indicating the observed residue type; R is a vector indicating which rows (i.e., sequences) belong
to the foreground (Ri=1) or background (Ri = 0) partitions; C is a vector indicating which columns do (Cj =1) or do not (Cj =0) differentiate the
foreground from the background; Θ is an array of vectors representing the amino acid compositions at each column position for each partition;
⋅; ⋅h idenotes the inner product of two vectors; and θαj � 1� αð Þθj þ αδAj models the foreground composition at pattern positions where

θj � θj;1; . . . ; θj;20
� �T

is the background amino acid frequency vector for column j, the parameter α specifies the expected background
‘contamination’ at pattern positions in the foreground, and δAj is a vector that specifies the pattern residues at position j. At non-
pattern positions, the vector θj corresponds to the overall (foreground and background) composition. The third through sixth terms in
the equation correspond to the logarithm of the product of the prior probabilities with p(α) and p(Θ) defined by the beta and
product Dirichlet distributions, respectively, and with p(R) and p(C) defined by independent Bernoulli distributions; prior definitions are
as shown (in parentheses). The log-likelihood ratio (LLR) is computed by subtracting from the log-probability for the observed contrast
alignment the log-probability for a ‘null’ contrast alignment, in which all of the sequences are assigned to the background partition.

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 5 of 21
http://www.biomedcentral.com/1471-2105/13/144
differentiating patterns present in that class. It does this
by defining: (i) the number of sequence sets, (ii) the
members of each set, (iii) the hierarchical relationships
between sets and (iv) the corresponding functionally di-
vergent patterns. This is accomplished in three steps.
Steps 1 and 2 constitute the novel aspect of the program
by providing input to the mcBPPS sampler in Step 3;
these first two steps also speed up convergence in Step 3
by providing a better starting point for the mcBPPS sam-
pler (the algorithmic details of which are described in
[40,42]). Conceptual aspects of the algorithm corre-
sponding to Steps 1 and 2 are illustrated in Figure 3
(algorithmic details are provided as pseudocode within
Methods). These first two steps are performed heuristic-
ally and thus constitute an informed guess on how to
best model the protein class (based on the same statis-
tical criteria used in Step 3). The sampler then improves
upon this model by optimizing sequence and pattern
assignments within this hierarchy. The hierarchy
returned by the amcBPPS program may be edited (and
thus further refined) and then optimized again by the
mcBPPS program. Such editing may, for example, further
subcategorize previously identified or miscellaneous
subgroups.

Identifying simple subgroups (Step 1)
Step 1 of the amcBPPS algorithm (represented by the
arrows labeled ‘a’ and ‘b’ in Figure 3) first generates a
forest of simple (rooted and branchless) trees, the leaves
of which correspond both to functionally-divergent sub-
groups within the protein domain class and to sub-
alignments of the input alignment. This is accomplished
by obtaining seed sequences and using them to create
these trees, as follows: (i) All closely-related sequences
(by default, those sharing ≥ 95% identity) from the same
phylum are clustered into a common set (that are thus
disjoint from other such sets). (ii) All pairs of moderately
related sequences (by default, those sharing ≥ 40% iden-
tity) from distinct phyla are stored on a heap (also called
a priority queue) using their pairwise scores as the key.
(iii) Iteratively remove the top-scoring cross-phylum pair
from the heap and merge their two disjoint sets into one
set. (Merging is done using an efficient algorithm
described by Tarjan [45]). (iv) Once a disjoint set con-
tains sequences from a pre-defined minimum number of
distinct phyla (four, by default), the sequences of highest
rank from each phylum are used to seed a new subgroup;
the disjoint set is then labeled to avoid picking this sub-
group repeatedly. (v) Keep generating subgroups in this
way until a pre-defined number of seed sequence sets are
obtained (typically 1–10), at which point a simple FD-
table is constructed where each subgroup node is a direct
descendent of the root node. (For the correspondence
between a FD-table and the nodes of a tree, see Figure 2).
And (vi) repeat substeps iii-v until all sequence pairs have
been removed from the heap. To ensure that the sub-
groups are sufficiently diverse, we require that each seed
set consensus sequence share less than a specified level
of sequence identity with other seed set consensus
sequences (< 40% identity, by default). Taken together,
these sub-steps favor the identification of the most con-
served and phylogenetically diverse subgroups.
For each of these FD-tables (and the corresponding

seed sequences) the mcBPPS sampler assigns each of the
multiply aligned input sequences to a subgroup (as spe-
cified by the rows in the table) and determines the
differentiating conserved pattern for each contrast align-
ment (as specified by the columns in the table). To en-
sure that subgroups at different levels of the hierarchy
are identified, the algorithm performs multiple runs

Figure 2 A multiple category model optimized by the mcBPPS
sampler. (top) A tree representing the hierarchical relationships
between functionally-divergent protein subgroups. Color code:
internal nodes, blue; leaf nodes, red. Each subtree within the tree (i.
e., each node and its descendents) corresponds to a set of
sequences that generally conserve a pattern that sequences in the
rest of the tree generally lack. For example, node 5 could represent
a subfamily whose family, superfamily and class are represented by
the subtrees rooted at nodes 4, 2 and 1, respectively. (middle) The
corresponding functional divergence (FD-)table. A tree is converted
into a FD-table, as follows: The subtree rooted at each node of the
tree corresponds to the foreground (‘+’ rows) for that column in the
table, whereas the rest of the subtree rooted at the parent of that
node corresponds to the background (‘-‘rows). (A set of randomly-
generated sequences serves as the background for the root node.)
Each internal node in the tree corresponds to a miscellaneous
category—that is to sequences sharing a common pattern with, but
lacking patterns specific to each of its descendent subtrees.
(bottom) Contrast alignment corresponding to column 4 of the
table. Each subgroup corresponding to a row with a ‘+’ or a ‘-
‘symbol in that column is assigned to the foreground or
background, respectively; subgroups with an ‘o’ symbol are omitted
from that contrast alignment.

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 6 of 21
http://www.biomedcentral.com/1471-2105/13/144
using various numbers of leaf nodes and various prior
probability settings for P(R), P(α) and P(C) (which are
defined in Figure 1). Convergence on protein subfamilies
is favored by specifying a high number of leaf nodes (by
default 10), by lowering the (Bernoulli distributed) prior
probability for assigning a sequence to a leaf node, P(R),
(where by default, rl= 0.01), by setting the (beta distribu-
ted) prior probability, P(α), to favor a lower degree of
background contamination by assigning more pseudo-
observations to pattern matching residues and fewer
pseudo-observations to contaminating residues (by de-
fault, a0= 9 and b0= 1) and by raising the (beta distribu-
ted) prior probability that a column corresponds to a
pattern position, P(C) (by default, ρj= 0.01). The ration-
ale for choosing these settings is that, for subfamilies,
membership is more exclusive, sequences are more
highly conserved and, consequently, conserved patterns
more extensive. (Note, however, that, in the absence of
such a rationale, non-informative priors are used by de-
fault (e.g., uniform beta and Dirichlet distributions) in
order to maximize the influence of the data on model
optimization.) Convergence on a super-family is favored
by specifying a single subgroup and by altering these
prior parameter settings accordingly (where by default,
rl= 0.2, a0= 1, b0= 1 and, ρj= 0.0001). Default settings
are based on applications to actual protein sequences,
though it should be noted that the influence of these
prior settings is minor. Hence these priors primarily
function as tuning parameters to help gently guide the
sampler into finding a variety of functionally divergent
subgroups. To avoid finding the same subgroup repeat-
edly, sequences assigned to a subgroup in a previous run

Figure 3 The amcBPPS procedural substeps used to obtain a hierarchy from a multiple alignment. Starting from a multiple sequence
alignment for a particular protein domain, the amcBPPS program applies the following substeps (‘a’ to ‘e’) to create a domain hierarchy. Note that
substep (a) corresponds to Step 1 of the amcBPPS algorithm whereas the other substeps correspond to Step 2. (a) Use heuristic procedures to
create distinct FD-tables, corresponding to a forest of simple (rooted, branchless) trees; each leaf of a given tree corresponds to a distinct
subgroup within the protein class. (The mcBPPS sampler is used to optimally assign sequences to each leaf node; different prior probability
settings can be used to favor convergence on subfamilies, families or superfamilies.) (b) Select leaf nodes from the forest corresponding to more
or less distinct, functionally divergent subgroups; this is done by combining each set of nearly identical nodes into a single set. Define a root
node (labeled R in the figure) corresponding to the universal sequence set. Larger superfamily nodes (labeled with red integers) also are created
from related leaf nodes. The haze around nodes indicate the partially-overlapping nature (i.e., fuzziness) of the corresponding sequence sets. (c)
Generate a directed acyclic graph (DAG) representing superset-to-subset relationships between nodes and with arcs weighted by (the negative
of) the corresponding log-likelihood ratios (LLRs) associated with the BPPS statistical model. For clarity, nodes and arcs directly connected to the
root are shown in orange whereas other (non-root) nodes are uniquely colored. (d) Obtain from the DAG a shortest path spanning tree using a
breadth-first scanning algorithm [45]. Because the arcs are weighted using LLRs, this procedures returns a maximum likelihood tree associated
with the DAG. (e) Prune nodes that both are directly attached to the root and significantly overlap with other nodes and thus correspond to ill-
defined sequence sets. For the remaining nodes, remove the overlap between their corresponding sequence sets (see text for details) and prune
from the tree those nodes that lack a minimum number of sequences (30 by default). This typically yields a reduced hierarchy (as shown), which
is converted into a FD-table (as illustrated in Figure 2) for optimization by the mcBPPS sampler.

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 7 of 21
http://www.biomedcentral.com/1471-2105/13/144
are prohibited from being used as seeds in subsequent
runs. Subfamilies can also be identified recursively; that
is, by rerunning the program on a single subgroup in
order to find subgroups within subgroups (though this
approach is not used here). The pseudocode for this step
of the amcBPPS algorithm is given in Methods.

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 8 of 21
http://www.biomedcentral.com/1471-2105/13/144
Defining a hierarchy for the protein class (Step 2)
Once individual subgroup sets are identified in Step 1
(see arrow labeled ‘b’ in Figure 3), the program hier-
archically arranges these into a more complex tree,
from which a FD-table is obtained. It does this using
efficient bitwise set operations [46], standard network
algorithms [45] and pattern-based statistical criteria,
namely the contrast alignment log-likelihood ratio
(LLR) used by the mcBPPS sampler [40,42] (the basic
component of which is given in Figure 1). These
hierarchically-arranged subgroup sets are ‘fuzzy’ due to
the uncertainty associated with set membership (being
based, as it is, on imperfectly conserved discriminating
patterns). Thus Step 2 of the algorithm (which corre-
sponds to the arrows labeled ‘c’ through ‘e’ in Figure 3)
determines which of the input sets (from Step 1): (i)
are the same set; (ii) are distinct sets; or (iii) are
supersets of another set or sets. Step 2 is subdivided
into three sub-steps: (2a) merge each collection of sub-
group sets deemed to be identical into a single set;
(2b) cluster related subgroup sets into common super-
sets; and (2c) create a tree representation of the sub-
group hierarchy, which is done using a breadth-first
scanning algorithm [47] to find a shortest path tree
[45]. Step 2c also refines the tree to eliminate inappro-
priate overlap between sets while also eliminating
nodes from the tree that, as a result of this refinement
process, are no longer statistically significant. The
pseudocode for Step 2 is given in Methods. From this
tree a FD-table is then generated as input to Step 3.
The mcBPPS sampler (Step 3) and further refinements
The output from Step 2 provides a starting point for
mcBPPS sampling, which optimizes the patterns and
partitions corresponding to the FD-table. The basic stat-
istical and algorithmic aspects of the mcBPPS sampler
were previously described [42]. To further expand a CD
hierarchy the output files obtained from an initial
amcBPPS analysis can also be used to recursively
analyze, in the same way, several of the larger subgroups.
To do this, the output alignment file for a major sub-
group is used as an input file for the amcBPPS program.
Likewise, a CD hierarchy can also be refined by editing
the FD-table manually and then applying the mcBPPS
sampler, as was previously described [42]. To speed up
analysis of a given subtree, such manually edited FD-
tables (guided by the tables obtained automatically) may
be designed to expand subgroups within that subtree,
while modeling the other branches of the hierarchy only
at the highest levels (e.g., by modeling other subtrees off
the main root as single nodes). In keeping with the auto-
mated theme of this article, however, we will not de-
scribe in detail nor apply these approaches here.
Implementation and testing
The amcBPPS algorithm was implemented in C++
(executables are available from the corresponding au-
thor), applied to various protein classes and the out-
put compared to manually-curated CDD alignment
hierarchies (when available). A wide range of CDD
hierarchies—from preliminary to well-developed
releases (as well as some out-of-date versions)—were
examined in this way. Input multiple alignments were
obtained by using the NCBI hierarchy of CD align-
ments as input to the MAPGAPS program [48],
which detected and aligned related protein sequences
within the NCBI nr, env_nr and translated EST pro-
tein databases. To obtain input alignments corre-
sponding to large protein classes for which CDD
hierarchies are not yet available we used alternative
procedures, as described in Methods.
Illustrative example: P-loop GTPases. To familiarize

the reader we begin by illustrating our approach with an
analysis of P-loop GTPases. Using an input alignment of
198,624 P-loop GTPases, the amcBPPS program
returned the FD-table shown in Figure 4. (To make
Figure 4 more readable, this was performed using par-
ameter settings that favor a smaller hierarchy than was
found for Table 1). It also returns a corresponding set of
contrast alignments, which highlight the pattern residues
identified by the sampler; one such alignment is shown
in (Additional File 1: Figure S1). Note that the sampler
will reject heuristically proposed subgroups whose exist-
ence is not supported by the data (such as Set23 in row
26 of Figure 4). Further subdivision of the hierarchy in
Figure 4 may be accomplished by recursively applying
the amcBPPS sampler to a previously-identified sub-
group. (Additional File 1: Figure S2) illustrates this for
the Ras-like GTPases by showing an expanded subtree
corresponding to the column 18 foreground partition in
Figure 4. By applying the amcBPPS sampler recursively
in this way, a very extensive hierarchy may be obtained.

Criteria for comparing hierarchies
To assess how well the amcBPPS program performs
relative to curated CD hierarchies, we compared its out-
put against 30 manually curated CDD hierarchies
(Table 1). Before considering this analysis, however, we
first need to discuss the criteria used to evaluate and
compare hierarchies.

Lack of gold standards
CDD hierarchies have been carefully constructed by ex-
pert curators and therefore come the closest to a bench-
mark set for evaluating the amcBPPS sampler. However,
as this study reveals, certain aspects of CDD hierarchies
lack statistical support or are incomplete or incorrect for
various reasons: For example, CDD hierarchies are

Figure 4 FD-table for P-loop GTPases. The number of sequences in each subgroup are given in parentheses. Major subtrees are color coded.

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 9 of 21
http://www.biomedcentral.com/1471-2105/13/144
typically at different stages in an ongoing refinement
process, and, for protein domain classes consisting of
tens or hundreds of thousands of sequences, the number
of possible hierarchies to consider is astronomical, which
makes optimization through manual curation extremely
difficult. Furthermore, due to the stochastic nature of
and the inability to directly observe evolutionary diver-
gence, it is impossible to eliminate the inherent un-
certainties associated with protein classification. Hence,
for the present study our aim is merely to replicate the
current manual curation process by generating hierarch-
ies of comparable quality automatically, thereby dramat-
ically speeding up the current labor-intensive curation
process.

Comparison criteria for this analysis
Despite the absence of a gold standard, the statistical
criteria used by the amcBPPS program provide a way to
compare two hierarchies for the same conserved do-
main. It does this by determining objectively whether
or not (and, if so, to what degree) the sequences in
each protein subgroup have diverged from the evolu-
tionarily related subgroups indicated by a specific hier-
archy. This measure is expressed as a log-likelihood
ratio (LLR), where non-positive values indicate a lack of
statistical support for a functionally divergent event
within the hierarchy. Such a comparison is performed
as follows: We are given two heuristic methods for
obtaining a (presumably suboptimal) hierarchy: one
manual and one automatic. To compare the two meth-
ods, we first use each hierarchy (along with a corre-
sponding multiple sequence alignment) as input to the
mcBPPS sampler, which then optimizes the patterns
and sequence partitions associated with that hierarchy
and returns an optimized log-likelihood ratio (LLR). Be-
cause this optimizes the automatically-generated and
manually-curated hierarchies in the same way based on
the same statistical criteria, the only difference is that
the hierarchies and seed alignments were obtained ei-
ther automatically or through manual curation. Thus,
by comparing their optimized LLR scores, we can ob-
tain a measure of the relative performance of the two

Table 1 Comparison of curated and automatically-generated domain hierarchies

CDD Protein superfamily number length Manually curated Automatically generated

Ident. seqs{ nodes* LLR† nodes* LLR† time}

cd00030 C2 23,452 102 106 (103) 236574 78(73) 223857 19.4

cd00138 PLDc_SF 16,765 119 105 (102) 241766 36(34) 192876 10.0

cd00142 PI3Kc_like 2,409 219 22 34129 16 34563 4.5

cd00159 RhoGAP 4,815 169 39(38) 55604 32 53540 7.97

cd00173 SH2 5,917 79 111 (101) 49274 39 40075 3.5

cd00180 Protein kinases 104,912 215 280(260) 1378273 107(104) 1536991 241.0

cd00229 SG NH_hydrolase 14,635 187 30 180667 29 183822 14.95

cd00306 S8/S53 peptidase 10,960 241 36 161685 45(44) 173693 30.90

cd00368 Molybdopterin-Binding 9,540 374 26 177569 44 209704 39.3

cd00397 DNA_BRE_C 25,824 164 27 (26) 187382 39(37) 211739 16.9

cd00761 Glycosyltransferase A (GT-A) 66,260 156 71 (70) 944727 123(110) 1048396 193.8

cd00768 Class II aaRS-like core 37,160 211 17 674454 31 833691 54.3

cd00838 MPP_superfamily 33,753 131 61 402297 55(54) 399553 65.1

cd00900 PH-like 22,593 99 81 211812 99(98) 274945 52.3

cd01067 Globin_like 9,933 117 4 (1) 11133 26 (25) 73808 4.3

cd01391 Periplasmic_Binding_Protein_1 36,330 269 142(140) 619713 68(65) 580753 169.1

cd01494 AAT_I (Pyrodoxal-PO4-binding) 114,781 170 16 1086328 92(84) 2027660 249.67

cd01635 Glycosyltransferase GTB 44,366 229 45 723443 95(93) 881414 232.7

cd02156 Class I aaRS-like core √ 53,605 105 34 522962 61(57) 698273 41.4

cd02883 Nudix_Hydrolase 32,046 123 55 (54) 321636 61(60) 367819 43.2

cd03128 GAT-1 (mcBPPS vs pmcBPPS) 46,514 92 34(32) 319515 64(62) 388621 42.2

cd03440 hot_dog 30,162 100 22(18) 141990 70 (69) 345298 39.1

cd03873 Zinc peptidases 24,455 237 81 596408 69(66) 590521 43.9

cd05466 Periplasmic_Binding_Protein_2 45,287 197 76(73) 523941 49(41) 411445 31.7

cd06587 Glo_EDI_BRP_like 36,165 112 60 (58) 335848 94(91) 479522 54.8

cd06663 Biotinyl-lipoyl 25,013 73 4 53038 25(18) 66571 4.53

cd06846 Adenylation_DNA_ligase_like 3,833 182 14 43276 20 48,475 4.8

cd08555 PI-PLCc_GDPD_SF 8,707 179 74 (73) 143201 37(32) 123075 6.9

cd08772 GH43_62_32_68 (β propellers) 6,760 286 28 111336 51(50) 176701 30.0

cl09931 Rossmann fold proteins 424,764 93 361 (347) 4110907 145(130) 4029120 757.2

Average 44,057 167.7 66.4 486696 56.9 556884 83.6
{ After removing identical sequences and sequences that fail to align with at least 75% of the domain.
* Numbers in parentheses indicate the nodes retained after insignificant nodes were removed by the mcBPPS program.
† The log-likelihood ratio in nats.
} The time (in minutes) is for Steps 2 and 3 of the algorithm only; Step 1 can be parallelized to run in less than 10% of the time shown.

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 10 of 21
http://www.biomedcentral.com/1471-2105/13/144
methods. In addition, we also determine the degree of
overlap between the two hierarchies as a qualitative indica-
tion of the similarity of the two hierarchies. The results of
such comparisons are summarized in Table 1 and Figure 5.

Evaluation of the amcBPPS program
To evaluate the amcBPPS program over a wide variety
of input, we chose the 30 conserved domains given in
Table 1. These domains vary in the numbers of mem-
bers detected in the protein databases (from a few
thousands to hundreds of thousands of sequences as
indicated in column 3), in the lengths of their con-
served core (from 73 to 374 residues; column 4), and
in the size (column 5) and complexity (Figure 5) of
their curated hierarchies.

Comparisons with manually curated CDD hierarchies
Based on the LLR statistic the automatically-generated
hierarchies (column 8) are comparable to the corre-
sponding manually-curated hierarchies (column 6) and

Figure 5 Comparison of curated and automatically-generated hierarchies. Hierarchies are shown as circular trees.

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 11 of 21
http://www.biomedcentral.com/1471-2105/13/144

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 12 of 21
http://www.biomedcentral.com/1471-2105/13/144
are, in fact, slightly better on average (556,884 nats versus
486,696 nats for the curated hierarchies). Manual and
amcBPPS hierarchies (Figure 5) were also compared
qualitatively by determining the degree to which the
sequence sets corresponding to the nodes in one
hierarchy overlap with those of the other hierarchy; in
Additional File 1: Figure S3 illustrates such a comparison
for the PI3Kc_like domain hierarchy (cd00142). This pro-
vides a detailed comparison of two hierarchies by com-
puting how the sequences at each level of one hierarchy
are assigned to each level of the other hierarchy and vice
versa. Such comparisons indicate that the differences be-
tween the curated and amcBPPS hierarchies are mainly
due to the following: (i) A node in one hierarchy being
modeled as a subtree in the other. (ii) Additional child
nodes being added to parent nodes in one hierarchy but
not the other. (iii) A subtree in one hierarchy being split
into unrelated subtrees (or nodes) in the other due to a
failure to join these to a common internal (parent) node.
And (iv) inherently ambiguous sequences that can’t be
clearly assigned to a specific node in the hierarchy; such
sequences may correspond to pseudogene products or
functionally defective members of a protein class that are
difficult to categorize because they harbor degenerate
subgroup patterns. Of course, the larger and more func-
tionally divergent hierarchies are more challenging.
Most of the differences between the manual and

automated hierarchies are due to fundamental differ-
ences between the two approaches (as revealed by exam-
ination of comparative analyses like the one shown in
Additional File 1: Figure S3). Curated hierarchies may
rely, in part, on information that is (currently) ignored
by the amcBPPS program, such as subfamily-conserved
inserts and 3D structures—though, on the other hand,
the amcBPPS program utilizes a far greater amount of
sequence data that is also up-to-date. In contrast, some
of the CDD heirarchies may be out-of-date or still in-
complete. The amcBPPS program also requires each
node to (initially) correspond to at least 30 sequences
(by default) in order to avoid statistical biases due to
small sample size. CDD curators, however, may con-
struct subgroups containing fewer sequences. Likewise,
the amcBPPS program selects seed sequences from at
least three or four distinct phyla in order to avoid sam-
pling biases introduced by orthologous sequences from
closely related organisms. Hence, it will fail to identify
subgroups that only occur in vertebrates, for instance.
(Of course, this restriction could be relaxed somewhat
by using less conservative, yet still valid criteria.) In
contrast, CDD curators may choose representative
sequences (which were used as seeds for the analyses in
Table 1) from more closely related taxa. Due to such
restrictions, an amcBPPS-generated hierarchy tends to
have fewer nodes (i.e., rows in the FD-table) because it
is prohibited from identifying certain CDD-defined sub-
groups. This also tends to lower the LLR, which (other
things being equal) increases with the number of nodes
in the hierarchy. (This increase occurs at a slower rate
as the number of nodes increases, however, inasmuch as
the most strikingly divergent subgroups are typically
modeled first.) Despite these differences, after taking
these considerations into account, we found the
amcBPPS hierarchies to be persuasively consistent with
the corresponding CDD hierarchies (Table 1). A per-
ceived “unfair” advantage of the amcBPPS algorithm
might be that it utilizes the same statistical model to
construct a hierarchy that is used to score that hierarchy,
whereas curators do not. However, subsequent (pattern-
partition) optimization of both hierarchies using the
mcBPPS sampler should counteract this advantage. That
is, assuming that the curated hierarchy is in fact superior
and that our statistical model is biologically meaningful,
then optimal partitioning of the sequences and optimal
pattern assignment by the sampler for both types of
hierarchies should result in a superior LLR score for the
curated hierarchy.
Unsurprisingly, our analysis also indicates that the hier-

archies obtained both manually and automatically are
typically suboptimal. For example, manual and amcBPPS
hierarchies for the S8/S53 peptidase domain (cd00306)
had LLRs of 161,685 and 173,693 nats, respectively,
whereas a hybrid hierarchy containing features of both of
these has a LLR of 177,727 nats. Figure 6 likewise illus-
trates the construction of a hybrid hierarchy for the class
I aaRS-like core domain (cd02156), which improves the
LLR from 522,962 (for the CDD hierarchy) to 652,987
nats. Examining LLR statistics can suggest other ways in
which to improve CDD hierarchies. For example, within
the Glo_EDI_BRP_like hierarchy (cd06587 in Table 1),
the mcBPPS sampler rejected an intermediate node
(cd07240) to which it had assigned a LLR of −433 nats.
An investigation to determine why this occurred revealed
that, based as well on the criteria used by the CDD cura-
tors, the cd07240 intermediate node is incompatible with
several of its leaf nodes, which are therefore better mod-
eled as direct descendents of the root node. For these
and other domains in Table 1, suggested improvements
in CDD hierarchies based on LLRs were corroborated
through manual inspection by the CDD resource group.

Delete-half jackknife analyses
A bootstrap or jackknife [49] procedure can be used to
estimate confidence levels for evolutionary trees [50].
However, applying this approach to a CD hierarchy is
complicated by the potential run-to-run variability both
in the number of the leaf nodes and in the associated se-
quence sets. Thus existing evolutionary tree bootstrap
and jackknife procedures, which require that each of the

Figure 6 Improving a hierarchy by merging features of curated and amcBPPS hierarchies. Shown are hierarchies for cd02156 in Table 1. (A)
The original CDD hierarchy. (B) The automatically generated hierarchy. (C) A hybrid hierarchy created by incorporating features of both (A) and (B).

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 13 of 21
http://www.biomedcentral.com/1471-2105/13/144
sampled trees use the same set of leaf nodes, cannot be
used. Instead, we implemented a delete-half jackknife
procedure that—though unable to provide quantitative
confidence levels for specific features of a hierarchy—
can nevertheless provide a qualitative assessment of the
run-to-run variability of amcBPPS-generated hierarchies.
This involved running the amcBPPS program on each of
24 different input alignments (the domain identifiers of
which are given in Methods) after randomly removing
half of the sequences. Given ten such runs for each do-
main, we compared the consistency of the resultant hier-
archies from run to run as follows: For each pair of runs
(i.e., 45 pairs for each domain tested) we determined
how those input sequences shared by both hierarchies
(i.e., about one-fourth of the sequences in the input
alignment) were partitioned among the nodes of one
hierarchy relative to the other hierarchy. An example
output file is shown in (Additional File 1: Figure S4).
For these analyses we found that, among the leaf node

sets in one tree that share at least one sequence in com-
mon with a leaf node set in the other tree, on average
47% share precisely the same set of sequences (i.e.,
among those sequences present in both trees) and 74%
share more than 90% of their sequences in common.
Moreover, in most cases where an identical sequence set
is not found, the missing sequences were typically
assigned, not to unrelated leaf nodes, but either to a par-
ent node further up the tree or to the rejected sequence
set. Among the remaining cases, a node in one hierarchy
is either split into multiple nodes or (in the worst case)
split between nodes in the other hierarchy. At times a
hierarchy could end up omitting certain nodes due to
the delete-half jackknife procedure removing sequences
belonging to certain phyla resulting in insufficient phylo-
genetic diversity to seed the formation of a subgroup. Of
course the topologies (shapes) of the jackknife trees
found by the sampler also differ, which is a common
problem associated with evolutionary trees consisting of
large numbers of distantly related sequences. This is pre-
sumably due in large part to the amcBPPS algorithm
failing to find the optimal topology—an issue that, in the
future, we will address by sampling over alternative
topologies. Of course, both this future sampler and the
jackknife procedure applied here will be useful for iden-
tifying the most reliable features of a hierarchy. Taken
together, these results confirm the observation we made
in the previous section, namely that the amcBPPS
program generally finds a suboptimal hierarchy that,

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 14 of 21
http://www.biomedcentral.com/1471-2105/13/144
nevertheless, provides a good starting point both for
curation and further automation. Output from these
jackknife analyses are available at http://www.chain.
umaryland.edu/amcbpps/jackknife.txt.

Simulations
As an additional check, we implemented a procedure to
generate simulated sequences from profile HMMs where
each such profile corresponds to a node from one of the
24 domain hierarchies used in the jackknife analysis.
The rationale for doing this was to determine how well
the amcBPPS program identifies sequences correspond-
ing to predefined subgroups. Note that this procedure
captures sequence features of each subgroup, but not
how those subgroups are hierarchically arranged. For
each node of each hierarchy we generated the same
number of aligned sequences as were assigned to that
node in the original hierarchy. After running the
amcBPPS program on each of these simulated align-
ments, we determined the degree to which each set of
related simulated sequences were correctly modeled as
belonging to a single subgroup. An example output file
in (Additional File 1: Figure S5) illustrates how the
amcBPPS program correctly categorized nearly all of
these sequences given the structure of the inferred hier-
archy (on average 69% of the sampled simulated sets
correspond exactly to the HMM-generated sequence
sets). Output from simulations for the 24 domains is
available at http://www.chain.umaryland.edu/amcbpps/
simulate.txt.

Time complexity
The computationally most intensive routine in Step 1 of
the amcBPPS program is an all-versus-all pairwise com-
parison of pre-aligned sequences (with indels ignored).
This has a time complexity of O(k�m2) =O(n�m) where k
is the number of aligned columns, m is the number of
sequences and n = k�m is the effective size of the input
alignment. In addition, Step 1 involves a simpler version
of the Step 3 algorithm that, of course, exhibits the same
time complexity as Step 3 (see below) as well as other
operations that perform better than O(n�m) (e.g., heap
and disjoint set operations on m sequences) [45]. Hence
the time complexity for Step 1 is O(n�m).
The time complexity of Steps 2–3 is unclear based on

the underlying algorithm. Therefore, using a plot of the
run times for the amcBPPS analyses in Table 1 versus the
size of the input alignments, we estimate that the time
required for Steps 2–3 scales as O(n1.2) (see Figure 7A).
Assuming that the asymptotic time complexity for Steps
2–3 is indeed O(n1.2), which admittedly may not be the
case given our empirically-based approach, then whether
or not O(n1.2) is better than O(n�m) depends on the ratio
of k to m4. (Step 1 and Steps 2–3 are asymptotically
identical when n�m=n1.2 which implies that k=m4.) Step
1, which is O(n�m), performs asymptotically worse when k
<m4 and Steps 2–3, which is O(n1.2), is worse when k>
m4. Since for essentially all protein domains k<m4 the
time complexity of the amcBPPS program (i.e., Steps 1–3)
appears to be O(n�m). It is important to note, however,
that Step 1 (which incidentally is easily parallelized)
required less time than Steps 2–3 in our analyses—even
on the largest input alignments—suggesting that constant
factors rather than asymptotics are influencing program
performance.
Because the run times for Steps 2–3 are also likely to

depend on the size of the hierarchy generated by the pro-
gram in Step 2, Figure 7B plots the run times versus the
number of aligned residues times the number of nodes in
the hierarchy (i.e., rows in the FD-table). This yields a
slightly improved, essentially linear dependency. This
observed time complexity is largely due to Step 3 being
more or less independent of the number of nodes, which
is achieved by computing conditional posterior probabil-
ities (the most time consuming routine) for each column
of the FD-table only when considering the assignment of
a sequence to one of two possible new partitions rather
than to one of a typically much larger number of rows.
Thus the amcBPPS program can be applied to very large
multiple sequence alignments, which is important given
the current rapid increase in sequence data.

Analysis of protein domains lacking CD hierarchies
There are a significant number of protein domains for
which a CDD hierarchy has not yet been constructed. In
some (though not all) cases a single curated alignment is
available as a starting point. To test the performance of
the amcBPPS program in such cases, we chose 10
domains, for which curated alignments were available,
and two domains, for which we first constructed an
alignment using Bayesian multiple alignment methods
[51,52] (see Table 2). We then applied the MAPGAPS
program to these alignments to obtain much larger mul-
tiple alignments as input to the amcBPPS program. The
amcBPPS-generated hierarchies were then evaluated by
mapping each node’s sequence subgroup onto a phylo-
genetic tree constructed for all sequences in the hier-
archy. Such sequence alignment derived phylogenetic
trees are used by CDD curators, both to get started on
an initial subfamily classification and to iteratively refine
that initial hierarchy (often over a period of weeks or
months). This reveals that the amcBPPS-generated hier-
archies agree very well with how the CDD curators
would subgroup the sequences based on such a tree.
Additional File 1: Figure S6 shows part of such a se-
quence tree computed from the input sequences used
for RNA recognition motif domains (cd00590) with the
amcBPPS hierarchy mapped onto the tree using a color

http://www.chain.umaryland.edu/amcbpps/jackknife.txt
http://www.chain.umaryland.edu/amcbpps/jackknife.txt
http://www.chain.umaryland.edu/amcbpps/simulate.txt
http://www.chain.umaryland.edu/amcbpps/simulate.txt

Figure 7 Time complexity of Steps 2 and 3 of the amcBPPS program. (A) Plot of run times versus the number of aligned residues in the input
multiple alignment. Shown are data points from Table 1 and the corresponding linear regression trend line (r=0.95). Because this plot is shown using a
logarithmic scale for both axes, the observed time complexity O(n) of the program can be estimated from the slope of the trend line: Since time t = c nk, it
follows that logt= logc+ k logn on a log-log plot. The slope of the trend line is k=1.2 indicating an observed time complexity somewhat worse than
linear. (B) Plot of run times versus the number of aligned residues times the number of nodes in the hierarchy created in Step 2. This plot results in a
slightly better fit (r =0.98). The slope of the trend line is k=0.9 indicating an observed time complexity that is essentially linear.

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 15 of 21
http://www.biomedcentral.com/1471-2105/13/144
coding scheme. This confirms that the amcBPPS pro-
gram can substantially speed up the curation process
when starting from scratch.

Conclusions
Currently the construction and annotation of CD hier-
archies relies on the labor intensive process of manual
curation. This has created a bottleneck hindering the
Table 2 Protein domain hierarchies generated automatically
aligned sequences

identifier Protein superfamily name # seqs

Started from curated alignments:

cd00075 Histidine kinase-like ATPase c 87,258

cd00130 PAS 50,200

cd00174 SH3 13,890

cd00590 RRM 107,488

cd01427 HAD-like hydrolases 41,818

cd02440 AdoMet_MTases 150,872

cd04301 NAT-SF 43,486

cl02566 SET (pfam00856) 8,946

cl10444 P-loop GTPases{ 198,624

none AAA+ATPases{ 84,695

Started from unaligned sequences:

none α,β- hydrolase fold 50,811

none Helicases 86,287
{ For these non-CDD curated alignments were used as input.
} The time (in minutes) is for Steps 2 and 3 of the algorithm only.
Unaligned sequences were aligned using the multiple alignment procedures cited i
CDD [53] from achieving the goal of comprehensive
coverage of the protein domain universe. The incorpor-
ation of the amcBPPS program into the CDD curation
pipeline can help automate this process while also provid-
ing a statistical measure of the quality of CD hierarchies.
Likewise, the delete-half jackknife procedure applied here
can provide qualitative estimates of the reliability of
various features of a given hierarchy. And, because the
either from a single curated alignment or from non-

nodes amcBPPS LLR Run time}

95(62) 518062 119.27

117(115) 416375 103.95

44(35) 26971 3.83

63(56) 557782 63.75

85(73) 324699 59.77

112(99) 1417985 250.27

71 244420 23.30

21 54230 2.58

115 (109) 3826672 464.67

86(85) 1779227 173.73

109(104) 752259 139.82

117 (111) 1935380 342.10

n Methods to generate an input alignment for the amcBPPS program.

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 16 of 21
http://www.biomedcentral.com/1471-2105/13/144
amcBPPS program models protein domains based on
those residue signatures that most distinguish each func-
tionally divergent subgroup within a protein class from
other subgroups, it can also accelerate the annotation of
domain profiles. By linking these profiles to the Cn3D
viewer [3,54] structural features associated with likely
functionally critical residues can be identified within web-
based BLAST searches. In previous studies (e.g., [55-59])
we have mapped key residues identified using the mcBPPS
sampler to available crystal structures in this way, thereby
obtaining insights into biological functions and mechan-
isms. Such information also facilitates structural evalu-
ation of sequence alignments.
Of course, starting from the procedures described here,

the CDD pipeline can be further automated and improved
in various ways along similar lines. For example, we have
demonstrated that our Bayesian alignment methods can be
used to generate, for major protein classes (such as the
AAA+ATPases, α,β-hydrolase fold enzymes and helicases
in Table 2), large multiple alignments in the aligned block-
based format required by the CDD. These, in turn, can
serve as input alignments for generating protein domain
hierarchies. Moreover, these alignment procedures could be
refined to utilize information regarding pattern residue 3D
structural interactions to identify and correct misaligned
regions automatically (via iterative application of multiple
alignment and BPPS procedures). Likewise, protein domain
hierarchies generated by the amcBPPS program could be
further optimized by implementing sampling operations to
add or remove leaves and branches. More sophisticated
taxonomic schemes could be devised for distinguishing
conserved patterns due to functional constraints rather
than to recent common descent. Taken together, these
enhancements will accelerate the construction of an opti-
mal, comprehensive set of hierarchically arranged CD pro-
files. This will free up curators to focus less on the tedious
and labor intensive aspects of database construction and
more on biological interpretation, a task that computa-
tional and statistical procedures cannot perform.
Having such a comprehensive set of well annotated,

high quality CD profiles will summarize what is known
about each type of domain. Through application of the
MAPGAPS program, these CD hierarchies could be used
to obtain up-to-date, very large and highly accurate mul-
tiple sequence alignments of an entire protein class for
in-depth computational analyses. And by mapping vari-
ous categories of pattern residues to corresponding
structures, BLAST searches against these improved CD
profiles can reveal those residues most likely responsible
for the specific biochemical properties of a query pro-
tein. This can accelerate the pace of biological discovery
by enabling researchers to obtain valuable clues regard-
ing as-yet-unidentified protein biochemical and biophys-
ical properties.
Methods
Protein sequences were obtained from the NCBI nr and
env_nr databases and from translated EST sequences within
the NCBI est_others database (for which only open reading
frames of at least 100 residues in length were retained). The
phylum and kingdom to which each of these sequences
belonged were determined using the NCBI taxonomy data-
base dump. For those protein classes in Table 2 that lacked
an existing curated alignment, sequences were identified
through iterative PSI-BLAST [60] and PROBE [52] searches
and then multiply aligned using a Bayesian MCMC multiple
alignment method [51]. The MAPGAPS program [48] was
used to obtain accurate multiple alignments containing vast
numbers of sequences starting from a curated alignment.
The mcBPPS sampling procedure is described in [42]. Rou-
tines to generate contrast alignments are described in [41].

Evaluation procedures
The amcBPPS program was evaluated (see Table 1) as fol-
lows: First, an input multiple alignment for each domain
was obtained using the alignments corresponding to the
CDD hierarchies, as input to the MAPGAPS program [48];
this identified and aligned related sequences within the
protein databases. (MAPGAPS aligns the sequences com-
parable to the accuracy of the curated alignments, which
serve as templates.) The alignments obtained in this way
were then used as input to the amcBPPS program to gen-
erate domain hierarchies. Each of these alignments was
also used—along with the corresponding CDD seed align-
ments and FD-table (obtained from the tree, as shown in
Figure 2)—as input to the mcBPPS sampler; this generates
the same sort of hierarchy as is generated by the amcBPPS
program. We then compared, for each domain, the
consistency between the two output hierarchies—that is,
we check whether the curated and automatically-
generated FD-tables and seed alignments converged on
more or less the same sequence sets (as illustrated in of
Additional File 1: Figure S3). For the jackknife and simula-
tion procedures the following domains (listed in Table 1)
were used: cd00030, cd00138, cd00142, cd00159, cd00173,
cd00229, cd00306, cd00368, cd00397, cd00768, cd00838,
cd00900, cd01067, cd02156, cd02883, cd03128,cd03440,
cd03873, cd05466, cd06587, cd06663, cd06846, cd08555,
cd08772.

Pseudocode for Step 1
The following pseudocode, which focuses on Step 1, cor-
responds to the main amcBPPS function, after which
routines implementing Steps 2 and 3 are called. The out-
put from Step 1 is used to create (in Step 2) a FD-table
and a set of seed sequences for mcBPPS sampling (in
Step 3). Note that this Step 1 pseudocode creates single
category FD-tables, but it can be easily modified to
create multiple category FD-tables.

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 17 of 21
http://www.biomedcentral.com/1471-2105/13/144
function amcBPPS(SeqAln)//creates a CD hierarchical
alignment.
input: a multiple alignment of protein sequences (SeqAln).
output: a hierarchy (tree) and corresponding contrast
alignments (CHA).
//assign each sequence to its own disjoint set (see Tarjan
[45]).
for each sequence s 2 SeqAln do s.labeled := false; s.
rank := ∞; Set(s) := {s}; end for

dheap H;//Priority queue; for the data structure and
algorithm see [45].
for each sequence pair< s1, s2>do:

if the sequences are from the same phylum then
if sequences ≥ 95% identical then merge their
disjoint sets end if

else if sequences ≥ 40% identical then
key := PercentIdentity(s1, s2);//Using the pair-wise
sequence identity as the key. . .
Insert(key, < s1, s2 >, H);// store cross-phyla
sequence pairs on priority queue.

end if
end for
//Obtain an array of simple contrast alignments (CA)
for distinct subgroups.
r := 0; g := 0;
while< s1, s2 > := deleteMax(H) 6¼� do

r++; s1.rank := min(r, s1.rank); s2.rank := min(r, s2.rank);
if ¬ s1.labeled ⋀ ¬ s2.labeled ⋀ Set(s1) 6¼ Set(s2) then

Set(s1) := Set(s2) := Set(s1) \ Set(s2);//merge their sets.
if NumPhyla(Set(s1)) ≥ Nmin then//(by default,
Nmin = 4).

for each s 2 Set(s1) do s.labeled := true; end for
g++; Seed[g] := {};//Seed set for group g.
for each p 2 {p: p= s.phylum ^ s 2 Set(s1)} do:

//Add to seed set the lowest ranked seq. from
each phylum in merged set.
Seed[g] := Seed[g] \ {s’: s’.rank =min(s’.rank: s’
2 Set(s1)⋀ s’.phylum= p)};

end for
FD-tables[g] :=

þ
þ
�

�
þ
0

2
4

3
5; //column 2: subgroup g vs
other proteins in class.
//call mcBPPS sampler [42] to identify a
contrast alignment for subgroup g.
CHA[g] := mcBPPS(FD-tables[g], Seed[g], SeqAln);

end if
end if

end while
mc := CreateFullHierarchy (FD-tables,CHA, g);//Step 2:
create mcBPPS input.
return mcBPPS(mc. FD-table, mc.Seed, SeqAln)//Step
3: optimize CD hierarchy.
end function
Pseudocode for Step 2. Step 2 (i.e., the CreateFullHierar-
chy() routine) is subdivided into three sub-steps. For Step
2a, the MergeSimilarSets() function finds cliques of similar
sequence sets by applying the Bron-Kerbosch algorithm
[61] and then combines the sets within each clique:

function MergeSimilarSets(SqSets)
input: sequence sets (SqSets) from Step 2.
output: a reduced, non-redundant collection of sets
and associated patterns.
//obtain an undirected graph of similar sequence sets.
Create a node for each input set
for each pair of sets I, J within SqSets do

if the smaller set intersects with< 80% of the
larger set then continue;
Find pattern optimally discriminating sequences in
sets I and J from other sequences;
//The optimum pattern is defined based on the
mcBPPS statistical model.
if the two patterns intersect by< 33% or by< 5
pattern positions then continue;
LLRi,j := LLR with foreground = set I, background
= , ¬(set J \ set I) & set J pattern.
LLRj,i := LLR with foreground = set J, background
=, ¬(set J \ set I) & set I pattern.
if LLRi,j ≥ 80% of LLRj,i ⋀ LLRj,i ≥ 80% of LLRi,j

then AddEdge(I,J) end if
end for
Find the cliques in the graph using the Bron-
Kerbosch algorithm [61].
for each clique do

Create a consensus set of those sequences present
in ≥ 50% of the clique sets.
Compute pattern optimally discriminating
consensus set from other sequences.
Replace the sets belonging to the clique with the
consensus set and pattern.

end for
end function

By determining whether the sets substantially overlap, are
roughly equal in size, and have similar discriminating pat-
terns, the first two ‘if ’ statement within MergeSimilarSets()
merely prune the search by skipping over sets that are un-
likely to correspond to the same protein subgroup. (Note
that, if missed, sets corresponding to the same subgroup
are likely to be detected in subsequent steps). To determine
whether two different yet overlapping sets correspond to
the same functionally-divergent subgroup, the procedure
computes the BPPS log-likelihood using the pattern from
one set with the partition defined by the other set and vice
versa. If the patterns are more or less interchangeable be-
tween sets then an edge is added between the nodes corre-
sponding to these sets. Next the Bron-Kerbosch algorithm

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 18 of 21
http://www.biomedcentral.com/1471-2105/13/144
is used to identify set cliques, each of which is then
merged into a single (consensus) set. MergeSimilarSets()
is applied iteratively to the modified sets from the previous
iteration until it fails to identify and combine any add-
itional similar sets.
Step 2b combines subgroup sets into larger supersets

using the following FindSuperSets() function:

function FindSuperSets(SqSets)//Obtain supersets from
overlapping existing sets.

input: sequence sets (SqSets) from Step 2a.
for each Set do Assign it to a unique disjoint set
end for // (see Tarjan [45]).
for each pair of sets I, J do//find candidate supersets

if the intersection of the smaller set ≥ 66% of the
larger set then

Assign both sets to the same disjoint set;
endif

end for
for each Disjoint set ‘dset’ containing at least 2 subsets
do

Superset := the union of the subsets;
Superpattern := the pattern optimally
discriminating the Superset from ¬ Superset;
if Any subsets in dset fail to contribute their ‘fair
share’ to the superset LLR then

Remove these subsets from dset and repeat
from the start of this ‘for’ loop

else Save the superset and superpattern endif
end for
return: The saved supersets and superpatterns.

end function

FindSuperSets() first identifies collections of (possibly
minimally) overlapping sequence sets as possible candi-
dates for merging into supersets. Next, it combines into a
superset those sets that contribute their ‘fair share’ to the
optimum LLR for the proposed superset—where the ‘fair
share’ is defined as contributing at least 80% of the esti-
mated average contribution of each sequence to the LLR
times the number of sequences in the subset. (Based on
the statistical formulation [40,42], each sequence will
contribute equally, on average, to the log-likelihood. For
such calculations, however, the sequences are down-
weighted for redundancy, as previously described [40]).
Next the function CreateSuperSets() is called to create

additional supersets from the current sets that fail to
overlap or that overlap only moderately. As long as new
supersets are created, this function is called repeatedly
(this merges subsets into supersets that might otherwise
have been overlooked).

function CreateSuperSets(SqSets)//Create supersets by
combining (possibly distinct) sets.
input: sequence sets (SqSets).
output: new supersets.
for each set I do

SuperSet := set I; SuperPattern := �;
for each set J that at least slightly overlaps with
set I do

Set X := SuperSet \ set J;
Pattern X := the pattern optimally
discriminating set X from ¬ X;
if both SuperSet & set J contribute their ‘fair
share’ a significant LLR then
Superset := Set X; SuperPattern := pattern;
endif

end for
if set I ⊂ SuperSet then save the current Superset
endif

end for
end function

Step 2c uses the sets obtained in the previous
steps to construct a tree hierarchy, from which a
FD-table is then obtained—, along with correspond-
ing seed alignments and initial partitions—as follows:

function CreateTree(SqSets)//obtain an optimized tree.
input: sequence sets (SqSets) and corresponding
patterns from steps 1–2 above.
output: a FD-table + corresponding starting
subgroup sets, patterns, and seed alignments
wdiGrph := RtnDiGraph(SqSets);//returns a weighted
directed graph of set relationships
Tree := ShortestPathTree(wdiGrph);//as defined by
Tarjan [45]
Tree := RefineTree(Tree);//eliminates insignificant
nodes and overlap between sets.
FD-Table := TreeToFDtable(Tree);
sma := CreateSeedAlignments(Tree); //
characteristic, cross-phyla seqs for each set.

end function

where the RtnDiGraph() functions is defined as:

function RtnDiGraph (SqSets)
input: sequence sets (SqSets) from Steps 2a and 2b.
output: a weighted directed acyclic graph
representing the set relationships.

Create a weighted directed graph where each set is a
node
for each pair of sets I, J do//find pairs of sets where
set I ⊂ set J.

//simple heuristics for speed.
if setI is smaller than setJ then continue
else if setI \ setJ< 50% of setI then continue

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 19 of 21
http://www.biomedcentral.com/1471-2105/13/144
else if setJ< 33% larger than setI \ setJ then
continue endif

//identify those pairs where set I is a (typically
fuzzy) subset of set J
Compute the optimum pattern and LLR for set I
versus set J – set I;
if LLR is not significant then continue;//
significance defined as for FindSuperSets ()
if Set I fails to contribute its ‘fair share’ to the
superset LRR then continue;
Add an arc pointing from node J to node I &
weighted by –LLR;

end for
for each set that lacks a Superset do

Compute the optimum pattern and LLR for the
set versus the complementary set;
Add an arc pointing from the root to the
corresponding node & weighted by –LLR

end for
end function

Note that the RtnDiGraph () function returns a directed
acyclic graph (DAG), for which the ShortestPathTree() algo-
rithm [45] finds a minimum spanning tree emanating from
the root node. Because the distances assigned to the arcs in
the graph correspond to the negatives of the LLRs, this tree
maximizes the total LLR as defined for the corresponding
FD-table (see [42]). Incidentally, in this sense, this approach
is akin to using the data to infer the DAG and parameters
corresponding to a Bayesian network [62] and then deter-
mining the most likely paths through the DAG from a pre-
defined root node. This approach avoids the computational
expense of using MCMC sampling to optimally define both
the FD-table and the corresponding pattern-partition pairs
concurrently by using an heuristic approach that is substan-
tially faster yet still based on statistical criteria.
The sequence sets corresponding to the tree returned by

the ShortestPathTree() algorithm are still fuzzily defined and
thus typically contain sequences that belong to one or more
distinct protein subgroups and thus that are not proper sub-
sets of their respective supersets. The following RefineTree()
function eliminates inappropriate overlap between sets while
also eliminating nodes from the tree that, as a result of the
refinement process, are no longer statistically significant:

function RefineTree (Tree)//return a refined tree
representing subgroup relationships.

input: a tree where each node corresponds to a
sequence set
output: refined tree

do
do//eliminate insignificant nodes from the tree. . .
Find the arc with the lowest weight (i.e., with
the lowest subset-to-superset LLR);
if this LLR is not significant then

Remove the arc and the child (subset) node
from the tree;
Connect the children of the removed node to
the parent of that node;
Merge the set corresponding to the removed
node into the parent set;

end if
while an arc has been removed;
do //eliminate overlap between the sequence sets. . .

Label the leaf nodes as ‘candidates’ and leave
other nodes unlabeled.
for each pair of nodes do

if both nodes are labeled as ‘fixed’ then continue;
else if one node is the root then continue;
else if one node is ‘fixed’ and the other is a
‘candidate’ then

remove all overlapping sequences from
‘candidate’ node;

else if both nodes are candidates then
for each sequence S present in both node
sets do

remove S from the set with the poorer
optimal pattern match;

end for
end if

end for
Label all current ‘candidate’ nodes as ‘fixed’;
Label as ‘candidates’ all nodes whose subtree
consists entirely of labeled nodes;

while some nodes were newly labeled as
candidates;
Define the root node set as containing all
sequences absent from the other node sets;
Merge each leaf node with only a few sequences
into its parent node;
Merge nodes with a single child into their parent
nodes; //this step is optional
Relocate nodes that, due to previous step, are no
longer properly placed in the tree.

while the tree has been changed in any way;
end function

The tree returned by the RefineTree() function is out-
put as a Newick-format character string (a formal lan-
guage specification for trees), which is then parsed and
translated into a FD-table within the CreateTree() rou-
tine. This routine also creates a seed alignment for each
row in the FD-table using a few of the most characteristic
sequences in each set. These, along with the correspond-
ing patterns (one for each column), are then used as in-
put to the mcBPPS procedure (Step 3).

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 20 of 21
http://www.biomedcentral.com/1471-2105/13/144
Additional file

Additional File 1: Additional figures referred to in the main article
as Figures S1–S6.

Abbreviations
CD: conserved domain; CDD: Conserved Domain Database; DAG: directed
acyclic graph; FD: functional divergence; LLR: log-likelihood ratio;
mcBPPS: multiple category Bayesian Partitioning with Pattern Selection;
amcBPPS: automated mcBPPS; MCMC: Markov chain Monte Carlo.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AFN designed and implemented the algorithm, performed the jackknife
analyses and simulations, generated the multiple sequence alignments used
as input to the amcBPPS program, ran the programs and wrote the initial
draft of the manuscript. CL and AMB converted CDD alignments and
hierarchies into appropriate formats for analysis and provided additional
CDD information as required for this study. All authors evaluated the output
files and read, revised and approved the manuscript.

Acknowledgements
We thank Art Delcher for critical reading of the manuscript. Funding for AFN
provided by the University of Maryland and the NIH Division of General
Medicine Grant GM078541. Funding for CL and AMB provided by the
Intramural Research Program of the National Library of Medicine at National
Institutes of Health/DHHS. Funding to pay the Open Access publication
charges for this article was provided, in part, by the Intramural Research
Program of the National Library of Medicine at the National Institutes of
Health/DHHS.

Author details
1Institute for Genome Sciences and Department of Biochemistry & Molecular
Biology, University of Maryland School of Medicine, BioPark II, Room 617, 801
West Baltimore St, Baltimore MD 21201, USA. 2National Center for
Biotechnology Information; National Library of Medicine, National Institutes
of Health, Bethesda MD 20894, USA.

Received: 6 February 2012 Accepted: 9 June 2012
Published: 22 June 2012

References
1. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-

Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, et al: CDD: a Conserved
Domain Database for the functional annotation of proteins. Nucleic Acids
Res 2011, 39:225–229.

2. Eddy SR: Profile hidden Markov models. Bioinformatics 1998, 14(9):755–763.
3. Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH: Cn3D: sequence and

structure views for Entrez. Trends Biochem Sci 2000, 25(6):300–302.
4. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund

K, Eddy SR, Sonnhammer EL, et al: The Pfam protein families database.
Nucleic Acids Res 2008, 36:281–288.

5. Letunic I, Doerks T, Bork P: SMART 6: recent updates and new
developments. Nucleic Acids Res 2009, 37:229–232.

6. Haft DH, Selengut JD, White O: The TIGRFAMs database of protein
families. Nucleic Acids Res 2003, 31(1):371–373.

7. Remm M, Storm CE, Sonnhammer EL: Automatic clustering of orthologs
and in-paralogs from pairwise species comparisons. J Mol Biol 2001, 314
(5):1041–1052.

8. Li L, Stoeckert CJ Jr: Roos DS: OrthoMCL: identification of ortholog groups
for eukaryotic genomes. Genome Res 2003, 13(9):2178–2189.

9. Abascal F, Valencia A: Clustering of proximal sequence space for the
identification of protein families. Bioinformatics 2002, 18(7):908–921.

10. Li W, Jaroszewski L, Godzik A: Tolerating some redundancy significantly speeds
up clustering of large protein databases. Bioinformatics 2002, 18(1):77–82.

11. Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets
of protein or nucleotide sequences. Bioinformatics 2006, 22(13):1658–1659.
12. Zmasek CM, Eddy SR: RIO: analyzing proteomes by automated phylogenomics
using resampled inference of orthologs. BMC Bioinformatics 2002, 3:14.

13. Storm CE, Sonnhammer EL: Automated ortholog inference from
phylogenetic trees and calculation of orthology reliability. Bioinformatics
2002, 18(1):92–99.

14. Wicker N, Perrin GR, Thierry JC, Poch O: Secator: a program for inferring
protein subfamilies from phylogenetic trees. Mol Biol Evol 2001,
18(8):1435–1441.

15. Brown DP, Krishnamurthy N, Sjolander K: Automated protein subfamily
identification and classification. PLoS Comput Biol 2007, 3(8):e160.

16. Engelhardt BE, Jordan MI, Srouji JR, Brenner SE: Genome-scale
phylogenetic function annotation of large and diverse protein families.
Genome Res 2011, 21(11):1969–1980.

17. Lockless SW, Ranganathan R: Evolutionarily conserved pathways of energetic
connectivity in protein families. Science 1999, 286(5438):295–299.

18. Halabi N, Rivoire O, Leibler S, Ranganathan R: Protein sectors: evolutionary
units of three-dimensional structure. Cell 2009, 138(4):774–786.

19. Casari G, Sander C, Valencia A: A method to predict functional residues in
proteins. Nat Struct Biol 1995, 2(2):171–178.

20. Ye K, Feenstra KA, Heringa J, Ijzerman AP, Marchiori E: Multi-RELIEF: a
method to recognize specificity determining residues from multiple
sequence alignments using a Machine-Learning approach for feature
weighting. Bioinformatics 2008, 24(1):18–25.

21. Chakrabarti S, Bryant SH, Panchenko AR: Functional specificity lies within
the properties and evolutionary changes of amino acids. J Mol Biol 2007,
373(3):801–810.

22. Feenstra KA, Pirovano W, Krab K, Heringa J: Sequence harmony: detecting
functional specificity from alignments. Nucleic Acids Res 2007, 35:495–498.

23. Pirovano W, Feenstra KA, Heringa J: Sequence comparison by sequence
harmony identifies subtype-specific functional sites. Nucleic Acids Res
2006, 34(22):6540–6548.

24. Kalinina OV, Mironov AA, Gelfand MS, Rakhmaninova AB: Automated
selection of positions determining functional specificity of proteins by
comparative analysis of orthologous groups in protein families. Protein
Sci 2004, 13(2):443–456.

25. Mirny LA, Gelfand MS: Using orthologous and paralogous proteins to
identify specificity-determining residues in bacterial transcription factors.
J Mol Biol 2002, 321(1):7–20.

26. Hannenhalli SS, Russell RB: Analysis and prediction of functional sub-types
from protein sequence alignments. J Mol Biol 2000, 303(1):61–76.

27. Livingstone CD, Barton GJ: Identification of functional residues and
secondary structure from protein multiple sequence alignment. Methods
Enzymol 1996, 266:497–512.

28. Carro A, Tress M, de Juan D, Pazos F, Lopez-Romero P, del Sol A, Valencia A,
Rojas AM: TreeDet: a web server to explore sequence space. Nucleic Acids
Res 2006, 34:110–115.

29. Mihalek I, Res I, Lichtarge O: A family of evolution-entropy hybrid methods for
ranking protein residues by importance. J Mol Biol 2004, 336(5):1265–1282.

30. Gu X: Vander Velden K: DIVERGE: phylogeny-based analysis for functional-
structural divergence of a protein family. Bioinformatics 2002, 18(3):500–501.

31. Lichtarge O, Bourne HR, Cohen FE: An evolutionary trace method defines
binding surfaces common to protein families. J Mol Biol 1996, 257(2):342–358.

32. Sankararaman S, Sjolander K: INTREPID–INformation-theoretic TREe traversal
for Protein functional site IDentification. Bioinformatics 2008, 24(21):2445–2452.

33. Fischer JD, Mayer CE, Soding J: Prediction of protein functional residues from
sequence by probability density estimation. Bioinformatics 2008, 24(5):613–620.

34. Capra JA, Singh M: Characterization and prediction of residues determining
protein functional specificity. Bioinformatics 2008, 24(13):1473–1480.

35. Chakrabarti S, Panchenko AR: Ensemble approach to predict specificity
determinants: benchmarking and validation. BMC Bioinformatics 2009, 10:207.

36. Marttinen P, Corander J, Toronen P, Holm L: Bayesian search of
functionally divergent protein subgroups and their function specific
residues. Bioinformatics 2006, 22(20):2466–2474.

37. Fong Y, Wakefield J, Rice K: Bayesian mixture modeling using a hybrid
sampler with application to protein subfamily identification. Biostatistics
2010, 11(1):18–33.

38. Howson C, Urbach P: Scientific reasoning: the Bayesian approach. 3rd edition.
Chicago: Open Court Publishing Company; 2005.

39. Liu JS: Monte Carlo Strategies in Scientific Computing. New York: Springer; 2008.
40. Neuwald AF, Kannan N, Poleksic A, Hata N, Liu JS: Ran's C-terminal,

basic patch and nucleotide exchange mechanisms in light of a

http://www.biomedcentral.com/content/supplementary/1471-2105-13-144-S1.pdf

Neuwald et al. BMC Bioinformatics 2012, 13:144 Page 21 of 21
http://www.biomedcentral.com/1471-2105/13/144
canonical structure for Rab, Rho, Ras and Ran GTPases. Genome Res
2003, 13(4):673–692.

41. Neuwald AF: The CHAIN program: forging evolutionary links to
underlying mechanisms. Trends Biochem Sciences 2007,
32(00):487–493.

42. Neuwald AF: Surveying the manifold divergence of an entire protein
class for statistical clues to underlying biochemical mechanisms.
Statistical Applications in Genetics and Molecular Biology 2011, 10(1):36.

43. Little RJA, Rubin DB: Statistical Analysis with Missing Data. 2nd edition. New
York: Wiley-Interscience; 2002.

44. Neuwald AF: Bayesian classification of residues associated with protein
functional divergence: Arf and Arf-like GTPases. Biol Direct 2010, 5:66.

45. Tarjan RE: Data structures and network algorithms. Philadelphia: Society for
Industrial Mathematics; 1983.

46. Neuwald AF, Green P: Detecting patterns in protein sequences. J Mol Biol
1994, 239:698–712.

47. Moore EF: The shortest path through a maze. Harvard University Press: Proc
International Symposium on the Theory of switching, Part II; 1957.

48. Neuwald AF: Rapid detection, classification and accurate alignment of up
to a million or more related protein sequences. Bioinformatics 2009, 25
(15):1869–1875.

49. Shao J, Tu D:. Springer-Verlag, Inc: The Jackknife and Bootstrap; 1995.
50. Felsenstein J: Confidence Limits on Phylogenies: an Approach Using the

Bootstrap. Evolution 1985, 39(4):783–791.
51. Neuwald AF, Liu JS: Gapped alignment of protein sequence motifs

through Monte Carlo optimization of a hidden Markov model. BMC
Bioinformatics 2004, 5(1):157.

52. Neuwald AF, Liu JS, Lipman DJ, Lawrence CE: Extracting protein alignment
models from the sequence database. Nucleic Acids Research 1997, 25
(9):1665–1677.

53. Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He
S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, et al: CDD: a curated
Entrez database of conserved domain alignments. Nucleic Acids Res 2003,
31(1):383–387.

54. Hogue CW: Cn3D: a new generation of three-dimensional molecular
structure viewer. Trends Biochem Sci 1997, 22(8):314–316.

55. Kannan N, Haste N, Taylor SS, Neuwald AF: The hallmark of AGC kinase
functional divergence is its C-terminal tail, a cis-acting regulatory
module. Proc Natl Acad Sci U S A 2007, 104(4):1272–1277.

56. Kannan N, Neuwald AF: Did protein kinase regulatory mechanisms evolve
through elaboration of a simple structural component? J Mol Biol 2005,
351(5):956–972.

57. Neuwald AF: Bayesian shadows of molecular mechanisms cast in the
light of evolution. Trends Biochem Sciences 2006, 31(7):374–382.

58. Neuwald AF: The glycine brace: a component of Rab, Rho, and Ran
GTPases associated with hinge regions of guanine- and phosphate-
binding loops. BMC Struct Biol 2009, 9:11.

59. Neuwald AF: The charge-dipole pocket: a defining feature of signaling
pathway GTPase on/off switches. J Mol Biol 2009, 390(1):142–153.

60. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ:
Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res 1997, 25(17):3389–3402.

61. Bron C, Kerbosch J: Algorithm 457: finding all cliques of an undirected
graph. Commun ACM 1973, 16(9):575–577.

62. Pearl J: Bayesian Networks: A Model of Self-Activated Memory for
Evidential Reasoning. In: Proceedings of the 7th Conference of the
Cognitive Science Society. University of California, Irvine, CA 1985, 329–334.

doi:10.1186/1471-2105-13-144
Cite this article as: Neuwald et al.: Automated hierarchical classification
of protein domain subfamilies based on functionally-divergent residue
signatures. BMC Bioinformatics 2012 13:144.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions

	Background
	Problem definition and solution strategy
	Bayesian sampling over contrast alignment models
	Multiple category functional divergence models

	Results and discussion
	Algorithm
	Identifying simple subgroups (Step 1)

	link_Fig1
	link_Fig2
	link_Fig3
	Defining a hierarchy for the protein class (Step 2)
	The mcBPPS sampler (Step 3) and further refinements
	Implementation and testing
	Criteria for comparing hierarchies
	Lack of gold standards
	Comparison criteria for this analysis

	link_Fig4
	Evaluation of the amcBPPS program
	Comparisons with manually curated CDD hierarchies

	link_Tab1
	link_Fig5
	Delete-half jackknife analyses

	link_Fig6
	Simulations
	Time complexity
	Analysis of protein domains lacking CD hierarchies

	Conclusions
	link_Fig7
	link_Tab2
	Methods
	Evaluation procedures
	Pseudocode for Step 1

	Additional file
	show [me]
	Acknowledgements
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49
	link_CR50
	link_CR51
	link_CR52
	link_CR53
	link_CR54
	link_CR55
	link_CR56
	link_CR57
	link_CR58
	link_CR59
	link_CR60
	link_CR61
	link_CR62

