Massingham and Goldman BMC Bioinformatics 2012, 13:145
http://www.biomedcentral.com/1471-2105/13/145

BMC
Bioinformatics

RESEARCH ARTICLE Open Access

Error-correcting properties of the SOLiD Exact
Call Chemistry

Tim Massingham” and Nick Goldman”

Abstract

Background: The Exact Call Chemistry for the SOLID Next-Generation Sequencing platform augments the

two-base-encoding chemistry with an additional round of ligation, using an alternative set of probes, that allows some
mistakes made when reading the first set of probes to be corrected. Additionally, the Exact Call Chemistry allows reads
produced by the platform to be decoded directly into nucleotide sequence rather than its two-base ‘color’ encoding.

plausible alternative reads.

alternative chemistries, should have superior performance.

Results: We apply the theory of linear codes to analyse the new chemistry, showing the types of sequencing
mistakes it can correct and identifying those where the presence of an error can only be detected. For isolated
mistakes that cannot be unambiguously corrected, we show that the type of substitution can be determined, and its
location can be narrowed down to two or three positions, leading to a significant reduction in the the number of

Conclusions: The Exact Call Chemistry increases the accuracy of the SOLID platform, enabling many potential
miscalls to be prevented. However, single miscalls in the color sequence can produce complex but localised patterns
of error in the decoded nucleotide sequence. Analysis of similar codes shows that some exist that, if implemented in

Background

The collection of technologies described as Second- or
Next- Generation Sequencing (NGS) platforms are char-
acterised by the synthesis of complementary strands of
DNA from clusters of homologous templates [1]. The
chemistry used differs between the platforms but that
for the Life Technologies Corporation SOLiD platform
is particularly interesting since there is not a one-to-
one correspondence between measurements made during
sequencing and nucleotides of the sequence being read.
Instead the primary output of the SOLiD platform is
a ‘color sequence, an encoded form of the nucleotide
sequence, that has advantages for calling SNPs when com-
paring the reads to a reference [2]. With the advent of the
5500 Series of machines in November 2010, an improved
‘Exact Call Chemistry’ (ECC) was introduced that changes
the way that the sequence is encoded by the platform
and allows mistakes in the measurements to be corrected,
hence producing more accurate reads [3].

*Correspondence: tim.massingham@ebi.ac.uk; goldman@ebi.ac.uk
European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridgeshire, UK

() BiolMed Central

The SOLID sequencing chemistry consists of multiple
rounds where probes, consisting of eight bases and a fluo-
rophore, are sequentially ligated to the template sequence
to build up a complementary strand. Each round con-
sists of a priming step followed by a repeated cycle of
ligating probes to the template, exciting the fluorophores
and imaging the resulting emission, then cleaving the
flurophore and part of the probe ready for the next
cycle. The probe/fluorophore combinations are designed
so that the probes interrogate the first two of the eight
ligated positions in the template, with each of four flu-
orophore colors used to indicate four of the 16 possible
nucleotide pairs at these positions. The color of the flu-
orophore for each template is recorded and used later to
determine the sequence of the read. After imaging, those
templates to which a probe failed to ligate have their pre-
vious probe decapped (i.e. dephosphorylated) so they will
not be extended on future cycles. This reduces problems
analogous to ‘phasing’ on the Illumina platform [4]. The
fluorophore and last three bases are cleaved from the
probe, leaving the strand ready to be further extended
in the next cycle. The repeated ligation of eight addi-
tional bases and then cleaving the end three mean that

© 2012 Massingham and Goldman; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Massingham and Goldman BMC Bioinformatics 2012, 13:145
http://www.biomedcentral.com/1471-2105/13/145

the pair of bases of the template sequence that is inter-
rogated moves on by five positions every cycle. After a
specified number of cycles, the round is stopped and the
complementary strand melted from the template to leave
the template ready to be primed for the next round. Each
round uses a different primer so that the positions inter-
rogated by the probes change each time; for example, on
the first round the first position of the probes on cycles
1, 2, ... corresponds to positions 1, 6, ... of the tem-
plate sequence; on round two these become positions
2,7,...,etc.

After five rounds, probes have been ligated so that every
position of the template sequence has been the first posi-
tion of a probe. The colors recorded and prior knowledge
of one of the bases, typically the last adapter base adjacent
to the template, are sufficient to determine the nucleotide
sequence assuming that no errors have been made. Con-
ventionally, one of the rounds is primed so that it starts
one base before the beginning of the template sequence
and so the first base interrogated is the last base of a
known adapter sequence.

The SOLID Exact Call Chemistry (ECC) augments the
‘two-base-encoding’ chemistry with an extra round where
a different set of probes is ligated. Each cycle of this
round interrogates positions 1, 2 and 4 of each five-
nucleotide block of the template. The same four fluo-
rophores are used, each now indicating the presence of
one of 16 of the possible 64 combinations of nucleotides
at the positions interrogated. These color calls can be
used to detect and recover from miscalls made in previous
rounds.

Directly decoding the colors from the first five rounds
into nucleotide sequence allows catastrophic failures to
occur where a single calling error creates errors in every
position from then on [2]. As well as allowing some
errors to be corrected, the additional round also enables
the calls to be translated into nucleotide sequence in a
manner that behaves more gracefully in the presence of
mistakes [3].

The mathematical basis for the error correcting prop-
erties of the SOLIiD ECC is the theory of convolutional
codes [3], a class of codes which are incorporated into
some of the most powerful error-correcting codes in gen-
eral use, for example those used in the Voyager deep-space
exploration program [5]. Convolutional codes are a cat-
egory of linear codes [6,7] and we use the theory of
linear codes to analyse the error correcting properties of
the SOLiD Exact Call Chemistry, describing the types of
sequencing mistakes it can correct and those cases where
the presence of an error can only be detected. For iso-
lated mistakes that cannot be unambiguously corrected,
we show that the type of substitution can be determined
and its location can be narrowed down to two or three
positions in the read, leading to a significant reduction

Page 2 of 11

in the the number of plausible alternative reads. If the
read is ‘corrected’ at the wrong location, we show that
the nucleotide read ultimately produced contains errors
that have a distinctive pattern. Finally, we apply the same
techniques used to analyse the Exact Call Chemistry to
look at hypothetical alternative chemistries and show that
some of them have superior characteristics, being able
to correct more errors and inducing simpler patterns of
error in the decoded nucleotide sequence when reads are
miscorrected.

Methods

Convolutional code theory

We start by defining the terminology we need to analyze
the SOLiD code. The chemistry of the sequencing reac-
tions and imaging mean that each fragment of DNA, or
‘source sequence’ (nucleotides), is encoded into a ‘code
sequence’ (colors) of equal or greater length. The original
five rounds produce as many observed colors as there are
nucleotides in the fragment; the ECC round adds one-
fifth as many additional color calls. The code sequence is
then observed with potential errors (‘observed sequence’).
Since the code sequence is longer than the source
sequence, not all possible code sequences correspond to
an encoded source sequence; those that do correspond
are termed ‘valid. Given an observed sequence, some
procedure is used to find the closest valid code sequence
(‘corrected sequence’) and the nucleotide sequence that
produces this code sequence is the decoded sequence.
Note that the source sequence and decoded sequence
are sequences of nucleotides (‘base-space’), whereas
the code, observed and corrected sequences are colors
(‘color-space’).

In terms of the theory to be presented, colors and
nucleotides are just different representations of the same
things, members of a set of four elements over which a
finite field (i.e. Galois field, GF,) is defined (see Table 1).
To prevent confusion between the various matrices and
vectors studied and their concrete representation as
nucleotides or colors, all calculations in the text are
described in terms of elements GF4 and the more usual
notations are reserved for when an actual sequence of
nucleotides or colors is meant.

The ECC code, and any linear code in general, is defined
in terms of a k x n generator matrix G with elements
in GFs4. A source sequence s is a row vector of length
k consisting of elements of GF4, and its code sequence
¢ is sG where the vector-matrix multiplication is under-
stood in the usual sense but addition and multiplication
of elements is carried out within GF4 (Table 1). Codes
are termed linear because any linear combination of valid
code sequences is also a valid code sequence: if s; and s
are source sequences with corresponding code sequences
¢1 and ¢, and w; and wy are elements of GF; then

Massingham and Goldman BMC Bioinformatics 2012, 13:145
http://www.biomedcentral.com/1471-2105/13/145

Table 1 Different representations of GF4

Representation Elements ® 0
GF4 0 1 o B 0
Nucleotides A @ G T 1 1
Colors 0 1 2 3 o o
B B

Page 3 of 11

1 o B ® 0 1 o B
1 o B 0 0 0 0 0
0 B o 1 0 1 B
B 0 1 o 0 o 1
o 1 0 B 0 B 1 o

For the purposes of the coding theory presented here, both nucleotides and colors represent elements of the Galois Field over four elements (GF4) and the
correspondence between them is shown below. For example, the color ‘2’, the nucleotide ‘G’ and the element ‘a’ are considered to be equivalent for the purposes of
calculation. A field consists of a set of elements and rules on how to add (&) and multiply (®) them together; the results of combining two elements are expressed by
the Cayley tables above; for example, @ 8 = 1 and ¢ ® o = B. The standard rules for associativity and commutativity for multiplication and addition still apply in
finite fields, and multiplication is still distributive over addition [8]. One notable difference from ordinary arithmetic is that all elements are self-invertible under

addition in GF4, so addition and subtraction are equivalent operations.

wicl + wacy = (wisy + was2)G so ¢ = wicy + waco is a
valid code sequence corresponding to the source sequence
w181 + wass.

Rather than expressing errors in terms of a specific
color miscall, we consider types of errors defined by
what happens when an element of GF; is added to a
call. For example, the error type ‘4+p’ transforms the
color 1 (= 1, anelement of GF4) into 2 (= «) since
1® B = «a, and transforms 0 (= 0) into 3 (= fB)
since 0 @ B = B (see Table 1). Although we will be
considering color miscalls in the coding sequence, it is
instructive to examine the action of these error types on
nucleotides to show that they can have a concrete inter-
pretation: +8 complements the nucleotide, +« results in
a transition, +1 preserves whether the nucleotide is an
amino- or keto- acid (‘transcomplement’) and +0 leaves
the nucleotide unchanged. The group structure ensures
that all possible substitutions can be encoded in this
form and, when errors are rare, the sequence of error
types will consist mostly of 0s. Adding the sequence
of error types to the observed sequence results in the
recovery of the (true) code sequence; likewise, adding
the error types to the code sequence results in the
observed sequence.

Each generator matrix has an associated parity check
matrix H that can be used to determine whether a code
sequence is valid. The parity check matrix uses a subset
of the elements of observed sequence to call a puta-
tive decoded sequence and then calculates the expected
value of the remaining ‘parity’ elements by treating the
decoded sequence as true. The expected and observed
parity sequences are then summed element-wise to cre-
ate the parity check sequence. H is constructed so that
the parity check sequence is the sequence-matrix product
xH, where x is the observed sequence. By construction,
the parity check of valid code sequence is a sequence of
0s; invalid code sequences have a non-zero parity check.
When errors have occurred, the observed sequence can
be expressed in terms of the code sequence for the source
sequence and a sequence of error types e: x = ¢ + e. Since
the parity check of a valid code sequence is a sequence

of zeros, the parity check of the observed sequence only
depends on the sequence of errors and not the source
sequence as xH = (¢ + e)H = eH. The value of eH = xH
is termed the ‘syndrome’ of the error, a sequence in GF4 of
length n — k that partitions the set of possible errors into
equivalence classes.

Syndromes provide a simple and efficient method of
decoding an observed sequence under the assumption
that errors are rare and so the most plausible corrected
sequence is the valid coding sequence which requires the
fewest changes from the observed sequence. An error
consisting of multiple changes may belong to the same
equivalence class as one with fewer changes but the sim-
pler error is the more likely and so is the best predictor
of what error actually occurred. Before decoding begins,
a table is constructed mapping every syndrome (o) to the
simplest possible sequence of error types that has it (e);
this can be done by enumerating all single errors, followed
by doublets, triplets, etc. until every syndrome has been
observed at least once and all error types up to a given
complexity have been considered. The syndrome table is a
function of the code structure only and can be calculated
once and distributed with the probe sets. To decode each
observed sequence x, its syndrome xH is calculated and
then located in the table to find the simplest sequence of
error types exy that could cause it. The sequence x+ ey is
then a valid code sequence which can then be decoded. If
there are several equally simple sequences of error types,
then an error has been detected but the correction is
ambiguous.

The ECC code is defined by the architecture shown
in figure 1. The encoding ‘machinery’ looks at windows
of length five of the source sequence, moving along one
element at a time, and performing the specified addi-
tions and multiplications. Two streams of symbols are
emitted. For the first stream, corresponding to the stan-
dard color encoding, the first two elements of the win-
dow are added together. For the second stream, the ECC
encoding, only every fifth symbol is recorded, a practice
known as puncturing or perforating. This stream multi-
plies the second and fourth elements of the window by

Massingham and Goldman BMC Bioinformatics 2012, 13:145
http://www.biomedcentral.com/1471-2105/13/145

Color stream

Puncturing matrix

Arararars
VXX | XX

@ ——> ECC stream

Figure 1 Architecture of the SOLiD ECC encoder. The architecture
of the convolutional code for the SOLID ECC consists of two streams.
The nucleotide sequence @y, a, . . . is passed through the encoder,
progressing one position at a time, and the color obtained from the
additions and multiplications indicated is emitted from each stream.
The top ‘color stream’ is that produced by the two-base-encoding
chemistry and the bottom ‘SOLID ECC stream’ is punctured so that
only every fifth color member of the sequence is used.

B and sums them with the first element. In terms of the
SOLiD chemistry rounds, the color calls from each of the
first five rounds correspond to every fifth element of the
first stream with a different offset for each round and the
calls from the final round correspond to the punctured
second stream.

The calculation for both the first and second streams
(i = 1,2) can be expressed as the dot product a - p; where
a is a row vector of the bases in the window and the p;
describe the calculations to be done, with p; = 11000
and py = 1B0B0. The p; are the ‘probe generators’ for the
chemistry since they define the color of fluorophore that
each probe has attached to it: the probe that interrogates
the sequence b has color b - p;.

The architecture of the ECC code imposes the block
structure shown in figure 2 on the source sequence. The
read is partitioned into blocks of length five, each of which
can be uniquely recovered from the indicated five ele-
ments of the encoded sequence. The remaining elements
of the encoded sequence each span two blocks and are in
effect parity colors that can be used to detect the presence
of errors. Ignoring the parity colors, the generator for each
block is the invertible matrix

Further blocks

Block 1 Block 2

R ——
A A .
[V[1
*~—s >~—
Cyy e—e Cp, ——e
Cyy o—e C,y ——
Cyy o—e C,
Ca1 Cao e
Co1 —l o Cs2 —2....

Figure 2 Block structure of encoded read. A read partitioned into
blocks of five bases, with block i containing bases b1;b,ib3;04;bs;,
showing how the two-base-encoding and ECC color calls are split
into five ‘data’ colors ¢yicyic3icaics;, from which the block can be
called, and a ‘parity’ color (p4) which straddles the block and its
downstream neighbour. The data colors are used to determine the
nucleotide sequence of the blocks and the parity color is used to
detect whether an error has occurred. Note that the data colors are a
mixture of both color streams, with the parity color coming from the
color stream of the code.

Page 4 of 11

10001 01111
11008 BBaau«w

Gplock=] 01100 Bock = | BB B«
0011p 00001
00010 11111

which can be used to freely convert between a sequence
of five nucleotides and its encoding. For example, the
nucleotide sequence ACGAT (= 0la0p) has the color
encoding 13233 (= 1BapB) since (01a¢0B8)Gplock =
(1BaBp). Conversely, (lﬁaﬁﬁ)GE&)Ck = (01x08).

After reordering the encoded sequence appropriately,
the generator for the full code, Ggcc, can be expressed
in terms of the generators for each of the blocks and an
additional column for each of the parity colors:

GBlock 0 ce us 0 ...
0 Ggloek 0 ...Ju1us ' "
Gecc= . . |=(c"1p)
0 Gglock +|0 m

where u; is a column vector with five elements consisting
of Os except for a 1 in the i position, with G™ and P being
defined appropriately. The dimensions of Ggcc are k X #,
where k is the length of the read (source sequence) and n
the total number of color calls produced in both the two-
base-encoding and ECC chemistry rounds.

The parity-check matrix, Hrcc, corresponding to gen-
erator Gecc, is

Gl o P
Hice = (0 In—k) (In—k)

where [, is the m X m identity matrix. By consider-
ing the action of this parity-check matrix on an encoded
sequence, the calculation of the syndrome can be given
concrete form: the first matrix of the factorised form of
Hgcc takes the observed sequence and inverts it block
by block to get a putative nucleotide decoding, with the
values of the parity colors preserved. The second matrix
calculates the parity colors for the putative decoding
and adds them element-wise to the parity colors actually
observed. The resulting sequence of length n—k is the syn-
drome. If the syndrome is composed entirely of Os, i.e. the
parity-check has been passed, then the code sequence and
its putative nucleotide decoding are valid. If the syndrome
has non-zero entries then an error has been detected.
When an error is known to have occurred but is ambigu-
ous, it may be mistakenly ‘corrected’ by applying the
wrong error type. The equivalence class contains the
possible simple error types that could have caused the
observed syndrome but only one of them is the one that
actually occurred; applying any to the observed sequence

Massingham and Goldman BMC Bioinformatics 2012, 13:145
http://www.biomedcentral.com/1471-2105/13/145

will result in a valid code sequence. We can determine the
pattern of nucleotide errors that mistaken correction will
result in: if the observed sequence with (unknown) error
e1 is ¢+ e; and the correction e; # e; is applied, then con-
verting back to a nucleotide sequence using the inverse of
the block generator results in (c+e; +e3) G~1. The differ-
ence between the nucleotide translation of the corrected
sequence and the correct nucleotide sequence is (e; +
e2) G~1 — the pattern of error induced. Note that the pat-
tern does not depend on the correct nucleotide sequence,
but only on the two changes being considered. By examin-
ing all possible combination of error types belonging to an
equivalence class, the full set of patterns that may occur
can be determined. The pattern of error may be a single
base change, or a more complicated multi-base change.

Practical implementation

The theory described examines the worst case where
an error can occur anywhere and there is no additional
information about which site it is likely to have affected.
Real-life performance of the code depends on additional
factors. Firstly, the distribution of where errors occur is
not uniform, depending for example on the chemical and
physical characteristics of the sequencing process, and
may not even be independent between positions; the per-
formance of a code may change depending on the error
profile. Secondly, but related, the sequencing platform
provides quality information in the form of Phred scores
[9] that can be used to help locate the position where an
error occurred. Values quantifying the probability that a
given call is wrong are known as ‘soft information, com-
pared to the ‘hard information’ of the observed sequence
not being a valid encoding.

A convenient way to deal with these extra complications
is to simulate encoded sequence under a realistic model
of how errors occur and then decode using dynamic pro-
gramming, on a ‘trellis’ graph that defines all possible
decodings and their relative probabilities, to find the most
probable call for each position of the decoded sequence
[3]. In practice, we need to consider three classes of dif-
ferences: those due to variants between sequence under
study and the reference it is mapped against, those caused
by mutations in the original sequence due to polymerase
errors during sample preparation (‘generalised error’) and
errors made calling the encoded sequence. The first type
of difference is of interest and will affect many reads map-
ping to a single location. Of the remaining two types
of difference, the former occurs before the sequence is
encoded, so encoding provides no protection and limits
the maximum accuracy of the platform; errors of the latter
class may be correctable.

In the absence of empirical data for how the distribu-
tion of calls and miscalls changes over probes and rounds,
and how errors are correlated between positions, we have

Page 50of 11

assumed that errors occur independently for every ele-
ment of the code sequence and errors are picked uni-
formly from the three possibilities. The probability of an
error for a particular round and cycle of ligation is taken
to be equivalent to the quality score from a read sampled
at random from a real set of data, implicitly assuming that
the error characteristics for alternative probe sets (which
depend on the ligation efficiencies of the different pen-
tamers) will be the same as for the ECC probe set. The
simulation scheme is as follows:

1. Sample a fragment from genome (base-space).

2. Mutate bases of fragment independently with equal

probability (generalised error).

Encode mutated fragment (convert to code-space).

Sample qualities from a set of real data.

5. Mutate the encoded sequence with probabilities
defined by quality values.

B W

This scheme outlined has an error model similar to
that implicitly assumed when analysing real data since
information about both alternative calls and correlation
between calls has already been lost during processing into
a color-space sequence with a single quality value for each
position. The scheme does not simulate the occurrence of
insertions and deletions but these are relatively rare com-
pared to substitutions and are most likely to be due to
errors introduced during sample preparation rather than
calling errors.

Results and discussion

If a read is error-free then it can be decoded unambigu-
ously and the calls from the two-base-encoding chemistry
and ECC codes will agree. When an error occurs in any
of the two-base-encoding chemistry rounds, it translates
into multiple base miscalls. The structure of the ECC code
allows such errors to be detected, recovered from, and,
in certain circumstances, corrected. The syndrome equiv-
alence classes are defined by the types of error that can
occur and so, by examining them, we can classify the
cases where errors can be corrected unambiguously and
those where additional information is needed to resolve
the ambiguity.

Since the elements of the syndrome consist solely of
the summation of the observed and expected parity col-
ors, there is a one-to-one correspondence between them
and parity colors. An error in a block can only affect
two elements of the syndrome, those corresponding to
the two parity colors that overlap the block’s first and
last elements. We refer to these as the upstream and
downstream syndromes, respectively, so it is sufficient to
concentrate on how errors occur in only one block. All
statements we make about the error correcting properties
of the encoding are on a per-block basis, so a code that

Massingham and Goldman BMC Bioinformatics 2012, 13:145
http://www.biomedcentral.com/1471-2105/13/145

can correct one error per block can correct multiple
errors if spread between blocks. The final block only
has a upstream syndrome and so has more limited error
correction.

The value of the syndromes for all possible single-color
errors that could occur in a block or its parity colors are
shown in Table 2. For example, an error of +1 in the sec-
ond color produces the syndrome B, identical to that
produced by an error of +1 in the third position. If a syn-
drome is unique (for example, syndrome g arises only
from error 4§ in position ¢s) then, assuming only a sin-
gle error has occurred in that block or parity color, that
error can be determined and so corrected. Note that while
errors in parity color p_, overlapping a block and the pre-
vious one, appear to have unique syndromes, this parity
color is also p for the previous block and so the syndrome
can actually be caused by multiple different errors.

The syndrome equivalence classes show the types of
single-color error that cannot be disambiguated without
additional information; a error has been detected but is
not correctable. For example, the syndromes 08, O« and
01 can be generated by single errors at c;, ¢4 or py, and
so errors at these positions cannot be distinguished. The
equivalence classes define the possible simple changes to
the observed sequence that will produce a valid sequence
that can be decoded into a string of bases, only one of
which produces the correct sequence. When an error is
wrongly corrected, the code sequence is changed in two
places, the original error and the correction; the structure
of the code ensures that the changes should be comple-
mentary (both ‘+1’ or both ‘4« for example).

Using the inverse of the block generator matrix, the
pattern of changes that are induced in base-space by mis-
corrections to the observed sequence can be derived. If
errors occur and are miscorrected, such that the differ-
ence between the correct and observed values of the data
colors is d, then the pattern of differences p induced in
base-space is given by p = dG];l}) k- For example, an error
of type 4+« at the second position might be erroneously
corrected by an error of type +« at the third position,
so the differences are 000 and the pattern induced in
base-space is 00«00 (the sum of the second and third

Table 2 Syndromes for ECC generator

Error Interpretation Position
Type pP- aQ Q =]
+p Complement B0 08 al al
+o Transition 70} Oa 18 18
+1 Transcomplement 10 01 Ba Ba

Page 6 of 11
Table 3 Patterns of error for the ECC generator
Positions Change Pattern
0, C3 Single 00100
Ca, P+ Single 00001
C1, C4 Triple 01110
a, b+ Quadruple 01111

All possible patterns of error caused in corrected base-space sequence by a
single wrongly corrected error in the observed sequence of type +d (where

d =1, a or B). The ‘Positions’ column indicates all possible pairs of positions at
which an error can occur and be wrongfully corrected; it is not necessary to
identify which member of the pair corresponds to which form of error as the
resulting pattern is the same. In all cases the error pattern should be multiplied
element-wise by the error type (d) to get the actual pattern (e.g. a wrongly
corrected +p error at ¢, results in an error pattern of 00800).

rows of Ggﬁ) « multiplied by «). If this occurred to the

nucleotide sequence ATGCG then the sequence ATACG
would result.

All patterns induced by single-color errors are listed
in Table 3; for example, an error of type 4+« at the first
position may be wrongly corrected at either the fourth
position or the parity color, leading to the triple error
OO or the quadruple error Owaaw, respectively. Note
that no pattern ever affects the first position of the block;
the structure of the matrix Ggl}) « Shows that this posi-
tion can only be changed by errors in the second, third or
fifth positions: single-color errors at the fifth position can
be always be unambiguously corrected, and errors at the
second or third positions result in either corrections or
changes that cancel at the first position.

One notable feature of these more complex errors is that
the error type is the same at all affected positions, a prop-
erty that might help distinguish sequencing errors from
genuine variants if the reads are later mapped to a refer-
ence. By adding the mapped read to the reference in GF4,
the pattern should be evident if it was due to simple mis-
call. If the pattern is not evident, the differences are either
due to sequence variants or multiple miscalls.

While the consideration of syndromes provides use-
ful information about a code’s properties and syndrome
decoding is computationally efficient, it is not a replace-
ment for probabilistic methods of decoding since the

Equivalence
Cs Cs P+ classes
0B BB 0B {cs}
O aa O {c2, 3}
01 1 01 {c1.¢ca,p4}

All syndromes caused by a single error in a block of five code letters (¢ c,c3¢4¢5) and two parity letters (p—p4) of the SOLID ECC code. Each row in the table
corresponds to a specific type of error at the given position of the code word, with the ‘interpretation’ of an error type being the effect it would have when considered
as a nucleotide substitution. The table entries are the values of the relevant elements of the syndrome, corresponding to the upstream and downstream parity checks
for the block for each error type. The error type +0 is not shown since it represents no error; its syndromes would be 00 at all positions. The equivalence classes are
listed separately and do not correspond to specific error types. Note that p_ is also p. for the preceding block.

Massingham and Goldman BMC Bioinformatics 2012, 13:145
http://www.biomedcentral.com/1471-2105/13/145

latter incorporates the quality information about each
call and can use it to make better decisions about cor-
rection. However, syndrome decoding techniques may
still be of use in conjunction with the more computation-
ally expensive probabilistic methods since the syndrome
provides a quick test of whether the observed sequence
is valid (no correction needed). Syndrome equivalence
classes could also be used to restrict the paths through
a trellis to a plausible set, providing a heuristic to speed
up the dynamic programming algorithm to find the most
probable decoding.

Theoretical bounds

We have shown the type of errors that the ECC code can
correct but have not yet addressed whether it is optimal.
Before examining specific alternative codes, it is interest-
ing to look at what can possibly be achieved and there
are several mathematical results that restrict the perfor-
mance of any code. Firstly the Hamming [10], Johnson
[11] and Singleton [12] bounds place an upper limit on the
number of errors that a code can hope to detect or cor-
rect but codes meeting these bounds may not exist; the
Gilbert—Varshamov bound [13,14] is a lower limit on the
performance of the best code that does exist.

For reads of 50 bases encoded into 60 letters (as with
the ECC code), the lower bound guarantees that a code
exists that can detect any two errors and correct any single
error. The upper bounds show that no code can guarantee
to correct more than three errors. For reads of length 75
bases encoded into 90 letters, then a code exists that can
detect and correct any two errors but no code can guar-
antee to detect and correct more than four errors. There
is no guarantee that a convolutional code can meet this
bound and the two most common classes of codes that
come close to attaining these bounds, Turbo codes [15]
and Low-Density Parity-Check codes [16], require long-
range dependencies between positions in the sequence
and so cannot be implemented in any plausible sequenc-
ing chemistry.

Alternative chemistries

Examining the syndromes in Table 2, we notice that,
despite many possible single errors having ambiguous
syndromes, not all syndromes are present: the three syn-
dromes «f, B1 and la do not occur. The missing syn-
dromes are not truly unused, being generated by multiple
errors, but the failure to use them to distinguish sin-
gle errors suggests that there may exist alternative codes
with a greater ability to correct single calling errors. The
advantage would derive from using the extra syndromes to
partition single-color errors more evenly into equivalence
classes. Such alternative codes can be analysed using the
same techniques as the ECC code.

Page 7 of 11

Rather than consider all possible convolutional codes,
we will focus our attention on a subset that satisfy
some reasonable restrictions inspired by the reality of
the SOLID platform. It is desirable that any new chem-
istry would be backwards compatible with the two-base-
encoding chemistry, meaning that the first five rounds
of sequencing must use an unaltered two-base-encoding
probe set. This backwards compatibility restriction is
equivalent to requiring that a new code must have an
unpunctured color stream.

While the number of rounds and probe sets could be
varied, and probes of differing lengths could be used,
to remain comparable to the current ECC chemistry we
will focus only on chemistries where a single additional
round (and so only one additional probe set) will be used
and the probes remain based on pentamers. Analogous
to the code structure shown in figure 1, alternative codes
that can be implemented with a single additional round
are punctured so only every fifth element of the second
stream is produced.

By redefining the boundaries of the block structure,
the number of different alternative codes that need to be
considered can be further reduced: a code whose probe
generator starts with one or more Os is identical to one
starting at the first non-zero element with the tail padded
with zeros. The probe generator of any code that starts
with « or B can be written as aW or BW, where W is
the probe generator of a code starting with 1, and the lin-
earity of convolutional codes ensures that the two codes
have identical sets of code words: although the map-
ping between nucleotide sequence and encoded sequence
will differ, the error correcting characteristics will be
the same.

The block generator for alternative codes that satis-
fies all the restrictions, and its inverse, can be written
as

1000 p 1000 xy°!
1100 py 0100 xoy~
Gute=[0110ps | Gl=[0010ux3y!|L
0011 py 0001 xgy !
0001 ps 0000yt

(1)

where p1pap3paps is the generator for the second set of
probes, L is the matrix whose upper triangle consists of
0 and whose diagonal and lower triangular elements are
all 1, x = Lp and y = «x5. The ECC code has the probe
generator p1pap3psps = 1B0B0. The inverse generator
only exists when y is invertible (i.e. y # 0); when y is not
invertible, blocks of colors cannot be individually inverted
and the syndrome analysis is not applicable. Due to the
structure of L, requiring y to be invertible is the same

Massingham and Goldman BMC Bioinformatics 2012, 13:145
http://www.biomedcentral.com/1471-2105/13/145

as the sum of the elements of the probe generator not
being zero.

One further restriction will be placed on the probe
generator of alternative codes: the ECC probe genera-
tor contains O at its fifth position and this is probably
a consequence how accurately pentamers with differing
final bases can be ligated to the sequence. Codes whose
generators use the final position might theoretically have
better error correction properties but the increased rate
of calling errors, due to incorrect probes being ligated,
may cancel any improvement their use may offer; conse-
quently, we will require ps = 0.

There are 48 probe generators satisfying all the
restrictions and the invertibility condition, of which the
syndromes and equivalence class for two interesting alter-
natives are shown in Table 4. The first code has generator
P1pap3paps = 10600 and has similar equivalence classes
to the ECC code but only uses the first three positions of
the generator. While the set of syndromes for single-color
errors is also incomplete (syndromes 18, o1 and B« are
unused) and thus the error correcting properties will be
similar to the ECC code, the shorter length of the genera-
tor means that calculations on the trellis, to determine the
most probable decoding, can be carried out four times
quicker.

The second alternative code shown in Table 4, with
probe generator 18010, uses all possible syndromes and
potentially has better error correcting properties than
the ECC code. Comparing the equivalence classes of the
new code to those for the ECC code, the new code uses
the extra syndromes to split the largest class into two.
Whereas the ECC code is unable to distinguish errors
at the first, fourth or parity positions, the new code can
unambiguously correct errors at the first position and the
ambiguity of fourth and parity position errors is reduced.

Table 5 shows the error patterns induced by single-color
errors for the two alternative codes considered. Note the
reduced number of base-space errors relative to the ECC
code (Table 3).

Table 4 Syndromes for alternative codes

Generator Error Position

type p- 13 G s

10800 +8 80 o - o8
to aQ B1 B1 O

* 10 o ap 01

1010 +B B0 al Ta T
“+o a0 18 g1 B

+1 10 Ba B p

Page 8 of 11
Table 5 Patterns of error for alternative codes

Generator Positions Change Pattern
c1, G Single 01000
a3, C Single 00010

10800 e 9
c3, P+ Double 00011
Ca, P+ Single 00001
0, C Single 00100

16010 »e K
Ca, P+ Single 00001

All possible patterns of error caused in corrected base-space sequence by a
single, wrongly corrected error in the observed sequence for code with given
generator. An error occurs at one of the positions in the ‘Positions’ column; the
other member of ‘Positions’ is where the observed sequence is wrongfully
corrected. As in Table 3, all error patterns should be multiplied element-wise by
the error type (1, « or B) to get the actual pattern.

Simulations

The theory described suggests that the code with probe
generator 18010 is more powerful than the ECC code
but this does not necessarily mean that it performs bet-
ter in practice since actual performance will depend on
the distribution of different types of error and at which
positions they occur. To help quantify the difference in
performance between codes, they were compared on arti-
ficial data, simulated so that it had an error profile similar
to real data but for which the original sequence of bases is
known, the error profile being estimated by mapping to a
SNP-corrected genome.

One million fragments were sampled uniformly from
the positive strand of the genome of E. coli DH10b with
qualities being sampled from a real sequencing run of the
same genome. The probability of generalised error was set
to be equivalent to Qss, close to observed values for pre-
pared samples. Three sets of reads were produced, using
different codes on the same set of fragments to generate
the ECC information, and sequence was called into both
base-space and color-space using the Maximum A Pos-
teriori (MAP) criterion. Reads were then mapped to an
appropriately encoded reference using the BWA aligner

Equivalence

Ca Cs P+ classes
0B ao 0B {cs}

Oa 11 Oa {c1,0}

01 BB 01 {3, ca,p4}
0B 1 0B {ai}, {cs)
O B8 O {c2,c3)

01 aa 01 {ca,p+}

All syndromes caused by a single error in a block of five code letters (¢ cyc3ca¢s) and two parity letters (p—p.) for codes with the specified generator. Each row
corresponds to a specific type of error at the given position of the code word and the table entries are the values of the relevant elements of the syndrome
corresponding to the upstream and downstream parity checks for the block for each error type. The error type +0 is not shown since it represents no error. The
equivalence classes are listed separately and do not correspond to specific error types. Note that p_ is also p. for the preceding block.

Massingham and Goldman BMC Bioinformatics 2012, 13:145
http://www.biomedcentral.com/1471-2105/13/145

[17] with an edit distance of five. Results, in terms of
the total proportion of reads mapping and the proportion
mapping with a given number of errors, are shown in
Table 6.

Using the ECC information (probe generator 18080)
to help call reads makes a considerable improvement in
both color-space and base-space. Without any correction,
77.1% of simulated reads map to the reference in color-
space and only 38.4% of these are perfect, with a further
16.7% having one error. After correction, 48.6% of reads
are perfect, with 10.2% containing one error. In base-
space, the number of mapped reads increases from 47.2%
to 64.3%. This large increase is due to correcting single-
color errors that would otherwise induce multiple base
errors and prevent the read from being mapped using the
‘five differences or fewer’ criterion.

All three codes perform better than uncorrected
sequence in both color-space and base-space. There was
little difference between their performance in absolute
terms, although the code generated by 18010 produced
more error-free reads than the other two. This small abso-
lute difference disguises a larger increase in the proportion
of corrected reads: under the 13080 code, 10.2% of reads
were corrected to being perfect compared to 11.4% for the
18010 code, an 11.8% relative improvement even though
the absolute improvement is only 1.2%. The 10800 code
produces more mappable base-space sequence than either
of the other codes and the reason for this may be in the
pattern of errors in base-space that single-color errors
make: comparing the patterns in Tables 3 and 5 shows
that, for the two alternative codes, single-color errors pre-
dominantly cause a single base error when wrongfully
corrected, rather than more complex errors, and so there
are fewer base-space errors in total.

While the code generated by 18010 does perform
better than the ECC code, the improvement is not
especially dramatic despite the syndrome equivalence

Table 6 Number of errors for simulated data

Space Probe Percentage
generator mapped 0

Color None 771 384
" 18080 784 486
" 10800 78.3 484
" 18010 78.3 49.8
Base None 47.2 384
" 18080 64.3 496
" 10800 65.5 494
" 18010 64.9 50.8

Page 9 of 11

classes suggesting superior error-correcting properties.
The decoding algorithm uses soft information as well as
the hard information from color calls when determin-
ing the most probable base at each position of decoded
sequence and this is a possible explanation for the small
difference between the performance of the codes. The
equivalence classes narrow down the possible errors but,
rather than randomly picking the correction, MAP decod-
ing uses the quality information to guide the choice and
the right correction might be picked the majority of the
time even without this extra assistance.

Conclusions
The addition of the Exact Call Chemistry to the SOLiD
platform enables many sequencing errors to be detected
that would otherwise would pass unnoticed; this in itself
provides useful information about the accuracy of reads.
Without using quality information, the ability of the Exact
Call Chemistry to correct sequencing errors is limited but
the number of possible options can often be drastically
reduced. The quality of the calls for the encoded sequence
can then be used to choose between the options for
correction, leading to genuine ability to correct sequenc-
ing mistakes. The five-base length of the block places
a limit on how frequently errors can occur before the
encoding can no longer offer protection. In our simula-
tions, the number of perfect color-space reads increases
by 27% when error correction is performed, the majority
of these corrections being single errors that might other-
wise degrade the base-space translation of the read. The
error correction capability offered by the ECC results in
measurable gains for the SOLID platform but there is a
trade-off between the extra time and expense and the
improvements possible through increasing coverage using
additional sequencing runs.

The complex triple and quadruple errors that can be
induced in the final nucleotide reads by miscorrection of

Percentage mapped with 0 - 5 errors

1 2 3 4 5
16.7 10.5 6.2 36 1.8
10.2 9.7 5.0 3.2 1.7
10.3 9.7 50 3.2 1.7
9.1 9.7 49 3.2 1.7
23 1.6 1.8 1.8 12
4.7 2.1 3.1 2.6 2.1
6.2 3.0 2.3 24 2.2
5.0 2.2 24 24 2.2

Percentage of reads mapped (five edits or fewer), and mapped with a given number of errors, for one million simulated reads using the codes with probe generators
as specified. For comparison, figures are also given using only the two-base-encoding probe set (probe generator ‘None’). Since color-space reads have their first
position trimmed before mapping to produce reads 49 colors long, the percentages of mapped reads and reads with a given number of errors are slightly inflated

compared to those given for base-space reads.

Massingham and Goldman BMC Bioinformatics 2012, 13:145
http://www.biomedcentral.com/1471-2105/13/145

the observed sequence are not well represented by the
Phred error model [9], where each site is assigned an
individual quality independent of other sites. This may
have consequences for downstream analyses that assume
the Phred model is a good representation of the probabil-
ity that a particular site is in error. The patterns of error
induced by the largest equivalence class of the ECC code
may allow some sequencing errors to be distinguished
from genuine variants after mapping to a nucleotide ref-
erence. The power of this approach is unlikely to be good
and so it will not be an adequate replacement for mapping
and variant calling using a more appropriately encoded
reference. One possibility would be to encode the refer-
ence using the ECC code and match directly against that,
using all the available information but making variant call-
ing difficult due to the complex structure of the data. A
simpler alternative would be to decode into two-base-
encoding colors, using the extra ECC calls to correct the
color calls. The corrected color reads can then be mapped
against a color-encoded reference using the many tools
already developed.

The variation in the ability of the ECC to correct errors
at different positions in each block suggests a simple
improvement to the platform that would enable it to
recover from problematic rounds. Consider, for example,
that one of the initial five rounds has experienced some
form of gross failure, perhaps due to a bad wash or incom-
plete melting of the previous primer and sequence from
the template, so that every cycle in that round is of poor
quality. The priming of the final round could be adjusted
to start at a different position of each block, chosen to
maximise the chance of correcting previous errors. For the
ECC code, the priming would be chosen to ensure that
calls from the bad round coincide with positions two or
three of the final round (the equivalence class with two
elements); the alternative code generated by 18010 would
be primed so that the errors coincide with the first posi-
tion and correction could be guaranteed. This technique
could also help recover from transient errors, like bub-
bles in the buffer preventing calls being made for a large
number of clusters on a particular cycle.

The alternative codes that we describe have equal or
superior error correction ability to that of the ECC but
the creation of a new probe set is a considerable invest-
ment and a more thorough search of alternatives codes
should be undertaken before the expense is incurred.
All the alternative codes considered satisfy a number
of restrictions, several of which could be relaxed to
improve the error correction properties. Firstly, more
rounds could be used, slowing the sequencing process
down but providing more redundancy with which to cor-
rect errors. Secondly, the architecture of the encoder was
constrained to be backwards compatible with the two-
base-encoding sequencing chemistry, completely defining

Page 10 of 11

one unpunctured stream. A completely new chemistry
could vary both probe sets and also change the puncturing
matrix, allowing much more flexibility over the design of
the code architecture and potentially creating codes that
are capable of unambiguously correcting multiple errors.

While many sequencing errors can be corrected, their
occurrence is non-uniform, being more frequent in the
later cycles of each round. This leads to a tendency for the
poorest reads to contain multiple errors in close proxim-
ity. Such bursts of errors cannot be successfully corrected,
so the advantage of the ECC is limited to generally high
quality reads containing a few sparsely distributed errors.
Perhaps the major advantage of the new chemistry is that
the sequencing platform can produce reliable nucleotide
sequence, without the possibility of a single error caus-
ing a catastrophic decoding failure, which allows the reads
produced to be analysed with the wealth of tools available
that assume nucleotide sequence.

Software

Software reimplementing the decoding algorithm for the
two-base- and four-base- encodings (SOLiD ECC), as well
as the alternative encodings described, on a trellis to
find both the maximum likelihood (Viterbi decoding) and
maximum a posteriori [3] (forwards/backwards decod-
ing) nucleotide sequence is available at http://www.ebi.
ac.uk/goldman-srv/solid/, distributed under version 3 of
the GNU General Public Licence, as is software to sim-
ulate two- and four-base encoded reads and some utility
functions to manipulate convolutional codes in GF4. This
software is provided solely for the purposes of repro-
ducibility.

Competing interests

This work was supported in part by Wellcome Trust Technology Development
grant WT088151MA and a grant to the EBI from Life Technologies Corporation.
Life Technologies Corporation had no input into the development of the
study, article preparation or decision to publish. No other competing interests
are declared.

Acknowledgements

The authors give their thanks to Ewan Birney for suggesting a study of the ECC,
and to Marcin Sikora and Alan Blanchard of Life Technologies Corporation
(Foster City, CA) who did the original work on the application of convolutional
codes to sequencing. TM would like to thank the staff at Life Technologies
Corporation for their hospitality during a short visit. The real sequencing data
used for the analyses in this article was provided by Life Technologies
Corporation. SOLID" is a registered trademark of Life Technologies Corporation.

Authors contributions

The study was conceived and planned by both authors. The analysis of the
Exact Call Chemistry coding was done by TM, who also drafted the
manuscript. Both authors read, edited and approved the final manuscript.

Received: 31 January 2012 Accepted: 22 June 2012
Published: 22 June 2012

References
1. Metzker ML: Sequencing technologies - the next generation. Nat Rev
Genet 2010, 11:31-46.

http://www.ebi.ac.uk/goldman-srv/solid/
http://www.ebi.ac.uk/goldman-srv/solid/

Massingham and Goldman BMC Bioinformatics 2012, 13:145
http://www.biomedcentral.com/1471-2105/13/145

2. Breu H: A theoretical understanding of 2 base color codes and its
application to annotation, error detection, and error correction.
White paper, Life Technologies 2010, [http://www3.appliedbiosystems.
com/cms/groups/mcb marketing/documents/generaldocuments/
cms 058265.pdf. [Accessed: 7 Dec. 2011].

3. Applied Biosystems: SOLID System accuracy with Exact Call Chemistry
module. White paper, Life Technologies 2011, [http://www3.
appliedbiosystems.com/cms/groups/global marketing group/
documents/generaldocuments/cms 091372.pdf. [Accessed: 7 Dec. 2011].

4. Erlich Y, Mitra PP, de la Bastide, M, McCombie WR, Hannon GJ:
Alta-Cyclic: a self-optimizing base caller for next-generation
sequencing. Nat Methods 2008, 5:679-682.

5. Yuen JH, Vo QD: In search of a 2-dB coding gain. In TDA Progress Report
42-83, Jet Propulsion Laboratory, Volume July-September 1985, Jet
Propulsion Laboratory 1985:26-33. [http://ipnpr.jpl.nasa.gov/
progress report/42-83/83C.PDF. [Accessed: 7 Dec. 2011].

6. Viterbi AJ: Convolutional codes and their performance in
communication systems. /EEE Trans Commun Technol 1971, 19:751-772.

7. MacKay D: Information Theory, Inference, and Learning Algorithms.
Cambridge: Cambridge University Press; 2003.

8. Cohn PM: Algebra, Volume 1. second edition. Chichester: Wiley-Blackwell;
1982. [http://goo.gl/maps/44D0].

9. Ewing B, Green P: Base-calling of automated sequencer traces using
phred. Il. Error probabilities. Genome Res 1998, 8:186-194.

10. Hamming RW: Error detecting and error correcting codes. Bell Syst
Technl J 1950, 29:147-160.

11. Johnson SM: A new upper bound for error-correcting codes. /RE Trans
Inf Theory 1962, 8:203-207.

12. Singleton R: Maximum distance q-nary codes. [EEE Trans Inf Theory
1964, 10:116-118.

13. Gilbert EN: A comparison of signalling alphabets. Bel/ Syst Techn J 1952,
31:504-522.

14. Varshamov RR: Estimate of the number of signals in error correcting
codes. Dokl Acad Nauk SSSR 1957, 117:739-741.

15. Berrou C, Glavieux A, Thitimajshima P: Near Shannon limit error-
correcting coding and decoding: turbo-codes. In IEEE International
Conference on Communications, Volume 2, IEEE 1993:1064-1070.

16. Gallager RG: Low-density parity-check codes. /RE Trans Inf Theory 1962,
8:21-27.

17. LiH, Durbin R: Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.

doi:10.1186/1471-2105-13-145
Cite this article as: Massingham and Goldman: Error-correcting properties
of the SOLID Exact Call Chemistry. BMC Bioinformatics 2012 13:145.

Page 11 of 11

Submit your next manuscript to BioMed Central
and take full advantage of:

* Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at (-
www.biomedcentral.com/submit BiolMed Central

http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_058265.pdf
http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_058265.pdf
http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_058265.pdf
http://www3.appliedbiosystems.com/cms/groups/global_marketing_group/documents/generaldocuments/cms_091372.pdf
http://www3.appliedbiosystems.com/cms/groups/global_marketing_group/documents/generaldocuments/cms_091372.pdf
http://www3.appliedbiosystems.com/cms/groups/global_marketing_group/documents/generaldocuments/cms_091372.pdf
http://ipnpr.jpl.nasa.gov/progress_report/42-83/83C.PDF
http://ipnpr.jpl.nasa.gov/progress_report/42-83/83C.PDF
http://goo.gl/maps/44D0

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Convolutional code theory
	Practical implementation

	Results and discussion
	Theoretical bounds
	Alternative chemistries
	Simulations

	Conclusions
	Software

	Competing interests
	Acknowledgements
	Authors contributions
	References

