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Arrow plot: a new graphical tool for selecting
up and down regulated genes and genes
differentially expressed on sample subgroups
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Abstract

Background: A common task in analyzing microarray data is to determine which genes are differentially expressed
across two (or more) kind of tissue samples or samples submitted under experimental conditions. Several statistical
methods have been proposed to accomplish this goal, generally based on measures of distance between classes. It is
well known that biological samples are heterogeneous because of factors such as molecular subtypes or genetic
background that are often unknown to the experimenter. For instance, in experiments which involve molecular
classification of tumors it is important to identify significant subtypes of cancer. Bimodal or multimodal distributions
often reflect the presence of subsamples mixtures. Consequently, there can be genes differentially expressed on
sample subgroups which are missed if usual statistical approaches are used. In this paper we propose a new graphical
tool which not only identifies genes with up and down regulations, but also genes with differential expression in
different subclasses, that are usually missed if current statistical methods are used. This tool is based on two measures
of distance between samples, namely the overlapping coefficient (OVL) between two densities and the area under
the receiver operating characteristic (ROC) curve. The methodology proposed here was implemented in the
open-source R software.

Results: This method was applied to a publicly available dataset, as well as to a simulated dataset. We compared our
results with the ones obtained using some of the standard methods for detecting differentially expressed genes,
namely Welch t-statistic, fold change (FC), rank products (RP), average difference (AD), weighted average difference
(WAD), moderated t-statistic (modT), intensity-based moderated t-statistic (ibmT), significance analysis of microarrays
(samT) and area under the ROC curve (AUC). On both datasets all differentially expressed genes with bimodal or
multimodal distributions were not selected by all standard selection procedures. We also compared our results with (i)
area between ROC curve and rising area (ABCR) and (ii) the test for not proper ROC curves (TNRC). We found our
methodology more comprehensive, because it detects both bimodal and multimodal distributions and different
variances can be considered on both samples. Another advantage of our method is that we can analyze graphically
the behavior of different kinds of differentially expressed genes.

Conclusion: Our results indicate that the arrow plot represents a new flexible and useful tool for the analysis of gene
expression profiles from microarrays.
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Background
Genome-wide expression analysis is an increasingly
important tool for identifying gene function, disease-
related genes and transcriptional patterns related to drug
treatments. Microarrays enable the simultaneous mea-
surement of the expression levels of tens of thousands
of genes and have found widespread application in bio-
logical and biomedical research. Increasing numbers of
multi-class microarray studies are performed, but the
vast majority continues to be two class (binary) stud-
ies, for example when both control and a treatment
are examined [1-4]. The objective of the study in most
of them, is to determine the genes that are differen-
tially expressed between the two classes. Differentially
expressed genes are usually detected using statistics based
on means or medians. However, if there are genes dif-
ferentially expressed on different subclasses, those tech-
niques do not select them because either mean or
median values tend to be similar between the considered
groups.
Genes with a bimodal or a multimodal distribution

within a class (considering a binary study) may indicate
the presence of unknown subclasses with different expres-
sion values [5,6], meaning that there are two separate
peaks in the distribution; one peak due to a subclass clus-
tered around a low expression level, and a second peak
due to a subclass clustered around a higher expression
level. As a consequence, the identification of such sub-
classes may provide useful insights on biological mech-
anisms underlying physiologic or pathologic conditions.
In cancer research, a common approach for prioritizing
cancer-related genes is to compare gene expression pro-
files between cancer and normal samples, selecting genes
with consistently higher expression levels in cancer sam-
ples. Such an approach ignores tumor heterogeneity and
is not suitable for finding cancer genes that are overex-
pressed in only a subgroup of a patient population. As a
result, important genes differentially expressed in a subset
of samples can be missed by gene selection criteria based
on the difference of sample means [7].
The particular application that motivated our work con-

cerns the development of a methodology which could
simultaneously identify up- and down-regulated genes
and differentially expressed with bimodal or multimodal
distributions with similar means on both groups. For
convenience, the latter case is referred to as special genes.
Different statistical tests have been proposed to select

differentially expressed genes [8-11]. Among them, is the
receiver operating characteristic (ROC) analysis, which
is widely used to evaluate a diagnostic system but can
be interpreted as a measure of separation between two
distributions.
A ROC curve displays the relationship between the pro-

portion of true positive (sensitivity) and false positive

(1-specificity) classifications resulting from each possible
decision threshold value in a two class classification task
[12]. These proportions depend on the classification rule
and in general higher values of the marker are associ-
ated with the case group. However, if ROC analysis is
blindly applied to select genes differentially expressed, i.e.,
keeping the same classification rule for all genes in an
experiment, not proper ROC curves (NPROC) [11] can be
produced because genes with positive and negative reg-
ulation have opposite classification rules. NPROC curves
are obtained when they cross or are below of the reference
line (Figure 1C–E).
Genes can be ranked using the area under the ROC

curve (AUC) [10,11], a common measure of discrimi-
nation, which should range between 0.5 and 1, but for
NPROC curves AUC can have values below 0.5.
Nevertheless, different scenarios can lead to NPROC

curves, for instance, when themeans of the two groups are
similar and one of the groups has a bimodal distribution
(Figure 1C–D) (or multimodal), or when both distribu-
tions are unimodal with similar means and significant
different variances (Figure 2). On both cases the corre-
sponding ROC curve will have a sigmoidal-shape with an
AUC close to 0.5.
Proper binormal model [13] and contaminated binor-

mal model [14] are methods that force the ROC curves to
be set above the reference line when they are not proper
and consequently the AUC will be higher than 0.5. How-
ever in the context of this work, not proper ROC curves
have an important role in the selection of different kinds
of differentially expressed genes.
Since it is not possible to decide beforehand the direc-

tion of the classification rule, we considered the same clas-
sification rule for all of the genes, i.e., values of expression
levels above the threshold correspond to up-regulation.
In that sense, AUC values near 1 will correspond to up-
regulated genes, AUC values near 0 will correspond to
down-regulated genes, and special genes (Figure 1C–D)
will have an AUC around 0.5. However, regardless of the
type of distributions, if means are similar (Figure 1B,
Figure 2), AUC will be near 0.5. So, using AUC is not
sufficient to select special genes.
We used the overlapping coefficient (OVL) to fur-

ther separate these different situations which produce
values of AUC near 0.5. Bradley [15] and Inman and
Bradley [16] promote the use of OVL as an intuitive
measure of the similarity between two probability distri-
butions. Graphically, OVL is the area where the densities
of the two distributions overlap when plotted on the
same axes.
We propose using AUC and OVL simultaneously to

select different types of differentially expressed genes and
plotting OVL against AUC we get a picture which we
named as arrow plot.
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Figure 1 Relationship between densities and ROC curves considering equal variances on both groups. Probability density functions of gene
expression values of two groups and their corresponding empirical ROC curves, where Y is the random variable which represents the expression
values under the experimental condition and X the random variable which represents the expression values for the control group. The same
classification rule was considered for all ROC plots, namely, high values of the decision variable correspond to positive regulation. Density plots were
obtained using kernel density estimation from two samples of size 100 simulated from normal distributions. A)X ∼ N(20, 4), Y ∼ N(30, 4);
B)X ∼ N(20, 4), Y ∼ N(22, 4); C)X ∼ 0.5N(−20, 2) + 0.5N(20, 2), Y ∼ N(0, 11); D)X ∼ N(0, 11), Y ∼ 0.5N(−20, 2) + 0.5N(20, 2);
E)X ∼ N(30, 4), Y ∼ N(20, 4).
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Figure 2 Relationship between densities and ROC curves, considering different variances and similar means on both groups. Probability
density functions of gene expression values of two groups and their corresponding empirical ROC curves, where Y is the random variable which
represents the expression values under the experimental group and X is the random variables which represents the expression values for the
control group. The same classification rule was considered in all ROC plots, i.e., high values of the decision variable correspond to positive
regulation. Density plots were obtained using kernel density estimation from two samples of size 100 simulated from normal distributions.
A)X ∼ N(20, 15), Y ∼ N(20, 60); B)X ∼ N(20, 40), Y ∼ N(20, 5).

If we consider that groups have different variances,
special genes can be mixed with genes which are not dif-
ferentially expressed as illustrated on Figure 2, that is,
genes with unimodal densities, with similar means but sig-
nificantly different variances. These genes will have AUC
values around 0.5 and low OVL values. With the pur-
pose of identifying genes under these conditions, allowing
their separation from the special genes, we developed an
algorithm based on finding bimodality (or multimodality)
using kernel densities estimates.
Nonparametric techniques are used to estimate AUC

and OVL. To estimate AUC, we used the Mann-Whitney
U statistic [17], which is equivalent to the trapezoidal rule
for integration. For the OVL, we developed an algorithm
where a naive kernel density estimator [18] is used to
construct a nonparametric estimator of OVL.
We first describe the algorithm and later we evalu-

ate the performance of our method by comparing the
gene expression profiles in two different classes using data
from a publicly dataset [6] and from a simulated dataset.
The first dataset consists of 14 different samples of nor-
mal circulating B cells (controls) and 20 heterogeneous
lymphomas (experimental group) [6]. The gene expres-
sion data were obtained on 4026 genes. The simulated
dataset consists of 10000 genes generated from a lognor-
mal distribution, where each group sample has 30 arrays.
Using publicly available data, we compared our results

with those obtained by Parodi et al. [11] using as meth-
ods, the area between the ROC curve and rising diagonal
(ABCR) and a test for not-proper ROC curves (TNCR).
We used both data sets to assess the relative perfor-
mance of our proposed method as compared to the most
common different statistical gene ranking measures.
All the analysis were performed using the open-source

R software [19] and packages from Bioconductor [20].

Results and Discussion
Algorithm description
For illustrative purposes, we divided the algorithm in
two parts (algorithm 1 and algorithm 2). The first part
describes the OVL estimation (Figure 3) and the second
part describes the selection of different kinds of differen-
tially expressed genes (Figure 4).
The OVL estimation was based on a non-parametric

form with densities estimated using kernel functions.
Figure 3 shows the pseudo-code which implements the
OVL estimation and Tables 1 and 2 describe the notation
and functions used there. The OVL values are computed
by finding the points that belong to the area of intersec-
tion of the two densities (Figure 3: lines 1–21) and the
jump points between densities, which are estimated by
interpolation (Figure 3: lines 24–44). The points are com-
bined into one set and sorted in ascending order (Figure 3:
line 50). Finally OVL is estimated using a trapezoidal
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Figure 3 Algorithm 1. Pseudo code to estimate OVL based on kernel density estimates.
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Figure 4 Algorithm 2. Pseudo code to select differentially expressed genes based on AUC and OVL estimates.
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Table 1 List with the notation used in Algorithm 1

Symbol Definition

GA , GB Kernel density coordinates of samples A and B

A, B pairs of coordinates of samples A and B that will be used

to estimate OVL

GAx [ i] ,G
A
y [ i] index a pair of coordinates of GA ,

where GAx [ i] is the abscissa and

GAy [ i] is the correspondent ordinate (same to GB and G)

�(.) total number of pairs of coordinates

G ordered list of points resulting from the union of A and B

P union of G with new pairs of coordinates,

which correspond to jump points between densities

G[ i] indexes a pair of coordinates of G

xnew new abscissa

ynew new ordinate

F final list of pairs of coordinates to estimate OVL

OVL overlapping coefficient between two kernel densities

Symbols are listed in order of appearance in the Algorithm.

rule considering a non-uniform grid-spacing (Figure 3:
line 51).
The selection of differentially expressed genes is based

on simultaneous analysis of OVL and AUC. The arrow
plot is obtained by plotting OVL on abscissas and AUC on
ordinates. Figure 4 shows the pseudo-code which imple-
ments the algorithm to select differentially expressed

Table 2 List of functions used in Algorithm 1

Function Definition

xMatch if there is more than one equal abscissa

(abscissa,list) on the list, returns the pair of

coordinates corresponding to the

one which has the minimum ordinate

ordinate returns the ordinate of a pair of

(abscissa,ordinate) coordinates

xPrev returns the pair of coordinates immediately

(abscissa,list) preceding the abscissa in the list

xNetx returns the pair of coordinates immediately

(abscissa,list) after the abscissa in the list

Union(list,list) joins lists

order(list) orders a list in increasing order of abscissas

abscissa returns the abscissas of a pair of

(abcissa,ordinate) coordinates

trapez(list) trapezoidal rule for area estimation

Functions are listed in order of appearance.

Table 3 List with the notation used in Algorithm 2

Symbol Definition

X p × nmatrix, corresponding to sample A with columns

representing arrays and rows representing genes

Y p × mmatrix, corresponding to sample B with columns

representing arrays and rows representing genes

UP up-regulated genes list

DOWN down-regulated genes list

X[ i], Y[ i] indexes a gene (row of the matrix)

k1, k2, k3 arbitrary thresholds

k4, w

SA , SB kernel density coordinates of subsamples of genes from

samples A and B

SA[j] indexes a gene of the subsample S from sample A

SA[j]y [ i] indexes a ordinate of a gene j of the subsample S from

sample A

BimX [ j] indexes a gene with bimodal or multimodal kernel density

from sample A

Bim[ j] indexes a gene with bimodal or multimodal kernel density

SPECIAL special genes list

Symbols are listed in order of appearance.

genes based on these two measures and Tables 3 and 4
present the notation and functions used there.
Selection of differentially expressed genes with positive

regulation (Figure 4: line 6–7) and negative regulation
(Figure 4: line 9–10), is made according to arbitrarily
selected cutoff points for AUC and OVL. However, AUC
values are expected to be close to 1 for up-regulated
and close to 0 for down-regulated genes and OVL will
have low values on both situations. Selection of special
genes is performed in two steps. The first step consists
on the selection of genes with AUC values near 0.5 and
low values of OVL (Figure 4: lines 12–13). Since the vari-
ances on both groups can be different, it is possible to
find genes with no-differential expression mixed with the

Table 4 List of functions used in Algorithm 2

Function Definition

AUC(list,list) Area above the ROC curve

estimated by the trapezoidal rule

OVL(list,list) overlapping coefficient estimated by Algorithm 1

kernel(list) kernel density estimation

rank(list) returns the ranks of a list

Functions are listed in order of appearance.
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special ones. Accordingly, the second step aims at remov-
ing the genes without differential expression, through the
bimodality analysis.
Bimodality (or multimodality) is analyzed based on the

behavior of the ordinates of the kernel based estimated
densities of both groups, considering only the gene list
that is selected in the first step mentioned above (Figure 4:
line 13). The points of both densities are ordered in
increasing order of abscissas (Figure 4: lines 22–23). If an
ordinate is equal or less than the ordinate immediately
after, it is assigned a label 1 and 0 otherwise (Figure 4:
lines 25–28 and 38–41). This allows us to analyze the vari-
ation of the density over the observed range. Considering
only the points where the function is increasing, if the dif-
ferences between the ranks of adjacent ordinates is 1, the
distribution is expected to be unimodal, otherwise the dis-
tribution will be bimodal or multimodal (Figure 4: lines
30–33 and lines 43–46). To declare a gene to be special it
is enough to find bimodality in one of the groups (Figure 4:
lines 50–54), yet it is of interest to analyze in which group
bimodality is observed, and this is possible using different
color labels on the arrow plot.

Performance and implementation
The running time of the algorithm in a dataset with 10000
genes, takes less than 60 minutes on a 533 MHz Pentium.

Figure 5 Arrow plot of lymphoma data. AUC≥ 0.9 and OVL< 0.5
was considered to select up-regulated genes, corresponding to red
dots on the plot. To select down-regulated genes an AUC≤ 0.1 and
OVL< 0.5 was considered, corresponding to blue dots on the plot. To
select special genes an OVL< 0.5 and 0.4 <AUC< 0.6 was
considered. Orange dots correspond to a bimodal or multimodal
density in the experimental group, cyan dots correspond to a
bimodal or multimodal density in the control group and green dots
correspond to a bimodal or multimodal densities in both groups.

R source code for the implementation of this algorithm
is available in Additional file 1.

Lymphoma data
From a total of 4026 genes, our method selected 178
differentially expressed genes, where 68 corresponded
to up-regulated genes, 90 to down-regulated and 20
corresponded to special genes. We used AUC≥0.9 and
OVL<0.5 to select up-regulated genes, AUC≤0.1 and
OVL<0.5 to select down-regulated genes and OVL<0.5
and 0.4<AUC<0.6 to select special genes. Thresholds
were chosen arbitrarily, although an analysis of the the
arrow plot (Figure 5) could help on deciding which thresh-
olds to use.
Table 5 shows the 20 selected special genes. Genes are

listed in ascending order of OVL, which ranged between
0.389 and 0.499. AUC values ranged between 0.407 and
0.593. Bimodality was tested on the 20 special genes; 2
genes have bimodality in the control group, 5 genes on
the experimental group and 13 genes on both. For the
20 special genes, kernel densities and their corresponding

Table 5 AUC and OVL values and bimodality group
identification of the 20 selected special genes

Gene ID Gene name OVL AUC Group

GENE3323X BCL7A 0.389 0.477 B

GENE3473X Unknown 0.399 0.407 B

GENE1877X Unknown 0.428 0.421 B

GENE3388X Immunoglobulin J chain 0.432 0.529 B

GENE1141X MAPKKK5 0.443 0.571 E

GENE3521X Similar to KIAA0050 0.446 0.593 B

GENE3407X Histone deacetylase 3 0.453 0.543 B

GENE75X VRK2 kinase 0.457 0.546 C

GENE2519X Unknown 0.461 0.529 E

GENE3343X LR11 0.461 0.543 B

GENE1817X BL34 0.472 0.586 B

GENE3389X Immunoglobulin J chain 0.476 0.475 E

GENE3909X Placental bikunin 0.492 0.463 C

GENE2887X LBR 0.492 0.486 E

GENE3547X Immunoglobulin kappa

light chain 0.493 0.413 B

GENE1004X BNIP3 0.494 0.511 B

GENE2547X CLK3 kinase 0.495 0.500 B

GENE2778X DNA Ligase III 0.496 0.536 B

GENE3322X BCL7A 0.498 0.532 E

GENE463X PARP 0.499 0.461 B

Special genes were selected using OVL< 0.5 and 0.4<AUC<0.6. E: bimodality in
experimental group, C: bimodality in control group and B: bimodality in both
groups. Genes are ordered by ascending order of OVL.
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Figure 6 Kernel density plots and empirical ROC plots. Kernel density estimate of the 20 special selected genes expression values, where red
densities represent the experimental sample and black densities represent the control sample. The x-axis is on log base 2 scale. From left to the
right, each plot pair correspond to densities and respective empirical ROC curve of the gene ID’s: GENE1141X GENE3521X, GENE3547X, GENE3473X,
GENE2547X, GENE2519X, GENE1877X, GENE3343X, GENE3322X, GENE3323X, GENE3389X, GENE3388X, GENE3909X, GENE2887X, GENE2778X,
GENE463X, GENE1004X, GENE3407X, GENE75X, GENE1817X.

empirical ROC curves can be analyzed in Figure 6. All the
selected genes had a sigmoidal-shaped ROC curve.
Among the 20 special genes selected list (Table 5), 3

have an unknown regulatory function. All the remaining
17 genes are related with proteins encoding. GENE3323X
(BCL7A) and the GENE3388X (Immunoglobulin J chain)
are presented in other clones in the same dataset,
GENE3322X and GENE3389X respectively. Alizadeh
et al. [6] observed that BCL7A gene can be altered by
translocation in lymphoid malignancies. The biological
properties of the 20 selected genes are described in the
Additional file 2.
We compared our results with those obtained by Parodi

et al. [5], where ABCR and TNRC statistics were used.
According to the highest TNRC value, a total of 1607
differentially expressed genes were considered, and 16 of
them were special genes. Eight of them are considered to
be special according to our methodology. The remaining
8 genes of their list have AUC and OVL values slightly
higher than the considered cutoff points on our study.
However, if we choose threshold values for AUC and OVL
to catch those genes, we will select 85 more special genes.
Nine feature selection methods were applied to the full

dataset, namely Welch t-statistic, fold change (FC), rank
products (RP) [21], average difference (AD) [22], weighted
average difference (WAD) [23], moderated t-statistic
(modT) [24], intensity-based moderated t-statistic (ibmT)
[25], significance analysis of microarrays (samT) [26] and
area under the ROC curve (AUC).We assessed the overlap

between gene lists produced by different feature selection
methods and ranked lists of differentially expressed genes
were produced. We examined the top 20 mostly highly
ranked genes, and for all methods the 20 special genes
selected by our methodology are missed.

Simulated data
We simulated ten thousand genes (see Methods for
details), among which 9500 were non-differentially ex-
pressed, 225 were up-regulated, 225 were down-regulated
and 50 were special genes. Analyzing the arrow plot
(Figure 7), we considered 0.3 as threshold value for the
OVL. As for the AUC, we classified as up-regulated those
genes with AUC above 0.9, as down-regulated genes those
with AUC below 0.1 and special genes those with AUC
between 0.4 and 0.6. In the arrow plot we can observe the
distribution of the truly 500 differentially expressed genes,
and we can conclude that 95% of them were selected by
our methodology. In the first step of the algorithm used to
select special genes (Figure 4), 33 genes which were can-
didate to special genes were selected. Through the second
step we found that all of the genes had bimodality in at
least one of the groups.
We can conclude that our algorithm for detection of

bimodality performed with 100% of accuracy on that list.
ROC analysis was conducted to evaluate and com-

pare the performance of the above methods. We ana-
lyzed the performance of these methods regarding the
discrimination between differentially expressed genes and
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Figure 7 Arrow plot of simulated data. Orange dots correspond to
truly no differentially expressed genes, red dots correspond to truly
up-regulated genes, blue dots correspond to truly down-regulated
genes and green dots to truly special genes. We considered as
up-regulated genes those for which AUC≥ 0.9 and an OVL< 0.5. To
select down-regulated genes an AUC≤ 0.1 and an OVL< 0.5 were
considered and to select differentially expressed genes with bimodal
or multimodal densities we considered an OVL< 0.5 and
0.4 <AUC< 0.6.

non-differentially expressed genes considering two sce-
narios. First we studied the performance of the meth-
ods concerning the capacity to differentiate among up-
regulated, down-regulated and special genes; secondly we
studied the performance concerning only the capacity to
identify special genes.
The construction of the ROC curves were based on the

absolute values of the following statistics: FC, AD, WAD,
RP, Welch-t, SAM, SAMROC, ibmT, modT and shrinkT,
where high values are related to DE genes. The ROC curve
for the AUC method was constructed considering AUC
values ranging from 0.5 to 1; in this way, any AUC value
below 0.5 was substituted by its complementary value, i.e.,
by 1−AUC. High AUC values are related to DE genes.
When analyzing the arrow plot, we verified that only the
OVL statistic is needed since lower values of the OVL
correspond to DE genes.
The empirical ROC curves, under the first scenario are

represented in Figure 8, and the respective empirical AUC
values are displayed on Table 6.
The OVL with an estimated AUC value near of the unit

showed to be the one with a better performance followed
by the Rank Products method. The method with lowest
performance was SAMROC, however all methods showed
high values of performance.
Considering the scenario where the goal is to select only

special genes, the empirical ROC curves (Figure 9) and

Figure 8 Empirical ROC curves. Comparison of ROC curves in
experiments where the goal is to select up- and down-regulated
genes and special genes.

the empirical AUC values (Table 7) showed that OVL was
the method with better performance followed by the FC
method, however with an AUC value considerably low.
WAD and shrinkT were the methods with the lowest
performance.

Conclusions
Wehave presented a graphical and computational method
for microarray experiments which allow the identifica-
tion of genes that express differently under two conditions
even if the behavior in average is similar. The main objec-
tive of this work was to select differentially expressed
genes due to the presence of different subclasses, which
could give important information about their inherent
biological functions, and that are usually missed by usual
methods.
AUC and OVL statistics were used to achieve this

goal. Both statistics are invariant when a suitable com-
mon transformation is made on variables [12,16], and on
microarray data analysis log transformations are widely
used. Arrow plot is obtained by plotting OVL against
AUC. This plot is easily interpreted because both statis-
tics range between 0 and 1, and in addition to detecting

Table 6 Empirical AUC values

OVL RP WAD FC AD AUC

0.998 0.969 0.959 0.953 0.939 0.937

SAM ibmT modT Welch-t ShrinkT SAMROC

0.930 0.924 0.924 0.924 0.924 0.921

Comparison of AUC values where the goal is to select up- and down-regulated
genes and special genes. The AUC values are sorted by decreasing order.
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Figure 9 Empirical ROC curves. Comparison of ROC curves in
experiments where the goal is to select special genes.

genes with up- or down-regulation, arrow plot is also able
to detect special genes, however for the latter genes a
bimodality analysis needs to be added.
The approach used by the arrow plot is similar to the

volcano plot, in the sense that two selection criteria are
needed to select genes. Using double filtering criterion
will obtain amore robust result. Yet, the cost we pay is that
some true differentially expressed genes might be missed.
However, arrow plot allows us to pick some genes from
the single filtering region for further examination.
Non-parametric techniques were used because they

eliminate the need to specify parametric models. The
non-parametric kernel density method has few assump-
tions about the form of the distributions. This is attractive
because it can be used on thousands of genes on an
automatic way. The disadvantage of non-parametric tech-
niques is that it results in a loss of efficiency. Yet, the
loss of efficiency is balanced by the reduction of the risk
of misinterpreting the results by incorrectly specifying a
parametric form for the distribution.
The proposed algorithm is particularly useful in sit-

uations where bimodality exists in the gene expression
data. The proposed methodology outperforms other well

Table 7 Empirical AUC values

OVL FC SAMROC Welch-t ibmT modT

0.9459 0.7786 0.7608 0.7604 0.7555 0.7545

SAM RP AUC AD WAD shrinkT

0.6934 0.6733 0.6288 0.6140 0.5793 0.5793

Comparison of AUC values where the goal is to select special genes. The AUC
values are sorted by decreasing order.

known methods for detecting different kinds of differ-
entially expressed genes. Future work includes further
evaluation of this methodology on other real datasets.
We recognize that selecting DE genes through an arrow

plot has shortcomings. For instance, using arbitrary cut-
off points for AUC and OVL will require the user to have
some experience and results are sensitive to the cut-off
choice. Nevertheless, the analysis of the arrow plot will
help the user to select the cut-off points for AUC and
OVL. This plot has to be seen as a statistical exploratory
tool rather than an inference tool. The objective of the plot
is the visual identification of genes which can play a special
role. No other plot is able to achieve this goal.
Arrow plot is an exploratory graphical tool for microar-

ray experiments, useful in the identification of different
kinds of differentially expressed genes, particularly in the
identification of genes with a special behavior which are
not detected by usual methods and yet can bring relevant
biological information. This methodology can be used in
all platforms.

Methods
Data sets
Lymphoma data
We used microarray data provided by the study of
Alyzadeh et al. (2000) [6] which are publicly available at
the website http://llmpp.nih.gov/lymphoma/data/figure1/.
They used a special microarray called Lymphochip, where
they selected genes that are preferentially expressed in
lymphoid cells and genes with known or suspected roles
in important processes in immunology or cancer. They
used these microarrays to characterize gene expression
patterns in the three most prevalent adult lymphoid
malignancies: DLBCL (diffuse large B-cell lymphoma),
FL (follicular lymphomas) and CLL (chronic lymphocytic
leukemia). They also profiled gene expression in purified
normal lymphocyte subpopulations under a range of
activation conditions (see original paper for more details
[6]). Fluorescent cDNA probes, labelled with the Cy5 dye,
were prepared from each experimental messenger RNA
sample. A reference cDNA probe, labeled with the Cy3
dye, was prepared from a pool of mRNAs isolated from
nine different lymphoma cell lines. Each Cy5-labelled
experimental cDNA probe was combined with the Cy3-
labelled reference probe and the mixture was hybridized
to the microarray. The fluorescence ratio was quantified
for each gene and reflected the relative abundance of
the gene in each experimental mRNA sample compared
with the reference mRNA pool. The ratio values were log
transformed (base 2) and stored in a Table (rows, indi-
vidual cDNA clones; columns, single mRNA samples).
The dataset that we used in our study is part of the orig-
inal one, and was the same used in the study of Parodi
et al. [5]. This database included 4026 gene expression

http://llmpp.nih.gov/lymphoma/data/figure1/
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profiles, where the control group had 14 samples of nor-
mal circulating B cells (NBC), of which 6 were highly
stimulated and 8 slightly or not stimulated samples. The
experimental group had 20 heterogeneous lymphomas
by pooling 9 samples of FL and 11 samples of CLL. Both
classes included two subclasses, namely: 6 heavily stim-
ulated and 8 slightly stimulated or unstimulated samples
in controls and 9 follicular lymphomas and 11 chronic
lymphocytic leukemias in experimental group. Parodi et
al. [5] estimated missing data by the method proposed by
Troyanskaya et al. [22].

Simulated data
We conducted a simulation study in order to evaluate the
performance of the proposed method.
Most studies of microarray data assumed normality

assumptions. However, there is relatively little literature
on evaluating the normality of this type of data. Part
of the problem is that most microarray datasets include
large amounts of biological variability and/or small sample
sizes. Biological variability makes it difficult to determine
the source of the non-normality (non-normal datasets
could simply be mixtures of normal datasets). Small sam-
ples do not have the power to be able tomake claims about
the distribution of the data.
It is well known that rawmicroarray data (across all plat-

forms) are highly skewed (usually skewed right) withmany
extreme values, so, simulated datasets were generated by
drawing case and control samples from lognormal distri-
butions, and log transformation was used afterwards to
offset the skewness. Consider X a random variable repre-
senting the expression levels in the control sample, where
X ∼ logN(μx, σx) and Y a random variable which rep-
resents the expression levels in case sample, where Y ∼
logN(μy, σy).
For case and control samples we simulated n1 = n2 =

30 microarrays and a total of 10000 genes. This sam-
pling was performed independently, albeit the fact that
individual gene expression levels are far from being inde-
pendent. In a typical microarray experiment, we expect to
see a combination of non-differentially and differentially
expressed genes (approximately 5% to 10% of the data).
Hence, we simulated 500 genes differentially expressed
and 9500 not differentially expressed. From the 500 differ-
entially expressed genes, 225 were up-regulated, 225 were
down-regulated and 50 corresponded to special genes.
Four characteristics of the data were considered in this

simulation: mean (μ), variance (σ 2), the magnitude of dif-
ference between control and case samples and bimodality
of the distributions. Hence, several combinations of these
parameters were considered.
While simulating values for expression levels of genes

not differentially expressed, we considered that the dif-
ference between the mean of the control and case arrays

ranged between -0.9 and 0.9. To provide several patterns
of density distributions we considered variances with dif-
ferences ranging from 0 and 12.25. The effect of changing
σ does not seem to affect these genes because all arrays
came from the same nearly mean vector. However, some
of these genes will be mixed with the special ones when
the variances between case and control samples are signif-
icantly different.
Genes with up-regulation and down-regulation were

generated considering the difference between the mean of
the case and control arrays ranging from 3.5 to 13.5 for
up-regulation, and -13.5 to -3.5 for down-regulation and
the differences between the variances for both situations
ranged from 0 to 12.25.
Gene expression distribution of a special gene was con-

sidered as a mixture of two lognormal distributions in one
of the groups. If X is a random variable following this dis-
tribution, we write X ∼ �α,μ0,σ0,μ1,σ1 with the distribution
defined by α logN(x;μ0, σ0)+(1−α) logN(x;μ1, σ1), x >

0, where logN(x;μ, σ) denotes a lognormal distribution
with location and scale parameters μ ∈ � and σ > 0,
respectively, and α ∈ (0, 1) specifies the contribution to
the total of the two single lognormal components. The
parameters μ and σ become the mean and the standard
deviation of the normal distribution upon log transforma-
tion of the lognormal random variable. To simulate special
genes we considered bimodality in one of the groups. For
the mixture we left μ0 = 3.5 unchanged and gradually
increased μ1 from 7 to 17, and left σ0 = σ1 = 1.2
unchanged. For the other group we considered a lognor-
mal density with location parameter approximately equal
to α × μ0 + (1 − α) × μ1. We considerer α = 0.5.
Finally we took the logarithms of the 10000 expression

levels on both groups to offset the skewness.

Non-parametric OVL
The overlapping coefficient refers to the area under two
density functions simultaneously [15]. OVL is formally
defined by (1):

OVL =
∫
c
min[ fX(c), fY (c)] dc, (1)

where fX and fY are the density functions of the random
variables X and Y respectively. The results are directly
applicable to discrete distributions by replacing the inte-
gral with a summation.
The estimation of OVL was based on a non-parametric

procedure with densities estimated using kernel func-
tions. A kernel function K(.) is defined as a continuous,
limited and symmetric function, with the property that its
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indefinite integral is equal to unity,
∫
K(u)du = 1. The

typical form of a kernel density estimator is given by (2):

f̂ (x) = 1
nh

n∑
i=1

K
(
x − xi
h

)
, (2)

where h is the bandwidth, known as the shaping parame-
ter and (x1, . . . , xn) is the sampling vector.
For the purpose of this work, we chose as kernel func-

tion a standard normal distribution (2π)− 1
2 exp(− 1

2u
2).

More than the choice of the kernel function, the choice
of the bandwidth, h, is what drives the kernel estimator. A
choice of the bandwidth h satisfying some optimal criteria
[27], is given by (3):

h =
(
4
3

) 1
5
sn− 1

5 , (3)

where s is the empirical standard deviation.
However this choice of h may tend to over-smooth

the distribution if the population is multimodal. A better
result may be obtained by using the interquartile range,
R [28]. If the distribution of interest is bimodal, using
interquartile range may over-smooth further. Therefore
the use of an adaptive measure of spread is recommended
(4):

h =
(
4
3

) 1
5
min

(
s,

R
1.34

)
n− 1

5 . (4)

The function density from R uses as default settings
the normal kernel and the value for h given in (4). In our
calculations of the OVL, we used this function from R,
with the default settings to estimate the densities, and for
the trapezoidal rule needed to computed the area, we used
the function trapz of the library caTools from R.

Non-parametric AUC
ROC curve assesses the effectiveness of a continuous diag-
nostic marker in distinguishing between two independent
populations. In a standard situation a case is assessed pos-
itive if the corresponding marker value is greater than
a given threshold value. Associated with any threshold
value is the probability of a true positive (sensitivity) and
the probability of a true negative (specificity). Let X be
the random variable for the marker on the control group
and Y the random variable for the marker on the case
group. For any given threshold value c, sensitivity is given
by P(Y > c) = 1 − FY (c), and specificity is given by
P(X ≤ c) = FX(c). The theoretical ROC curve is a func-
tion ROC(t) = 1 − FY [ F−1

X (1 − t)], where t = 1 − FX(c),
is 1-specificity. Hence, the ROC curve plots 1-specificity
against the sensitivity calculated for different values of
the threshold c. The area under this curve (AUC) mea-
sures how well the marker discriminates between the two

groups involved and is given by P(Y > X). Note that these
definitions are a consequence of the assumption that high
values of the marker are associated with the experimental
group.
The simplest non-parametric estimation method for

the ROC curve involves using empirical cumulative dis-
tribution functions. The empirical cumulative distribu-
tion function is defined for any given value c, to be the
observed percentage of sample values less than or equal
to c. The resulting estimated ROC curve is an increasing
step function on the unit square. The area under this curve
is equal to the Mann-Whitney U-statistic and provides
an unbiased non-parametric estimator for the AUC [17].
Bamber [29] showed that the AUC, when calculated
using the trapezoidal rule, is equal to the Mann-Whitney
U-statistic.
This method was performed using functions from the

ROC library from Bioconductor.

Arrow plot
Plotting OVL against AUC gives rise to a graph which
we called arrow plot. In order to identify different kinds
of differentially expressed genes, it is necessary to select
appropriate cutoff points both for the AUC and OVL. Dif-
ferentially expressed genes will have low values for the
OVL, say less than 0.5. Up-regulated genes will corre-
spond to AUC near 1, down-regulated genes will cor-
respond to AUC values near 0, and special genes will
have AUC values around 0.5. An algorithm to check for
bimodality is added, where special genes are highlighted
using different colors depending whether bimodality is
verified in case or control group or both.

TNRC and ABCR statistics
Parodi et al. [5] developed two new ROC based methods
to identify differentially expressed genes that may cor-
respond both to proper and to not proper ROC curves.
TNRC (Test for Not-proper ROC Curves) is a test to iden-
tify not proper ROC curves and ABCR (area between the
ROC curve and the rising diagonal) statistic represents a
measure of the distance between the distributions of gene
expression in two classes.
The ABCR statistic is obtained using the empirical ROC

curve, where ties are not considered. In that sense, if n0
is the number of individuals observed with X (considering
the same notation as in non-parametric AUC section) and
n1 the number of individuals observed with Y , n = n0+n1
will be the total of individuals observed and m0 ≤ n will
represent the total observations without ties.
They first rank the genes accordingly to ABCR (5).

ABCR =
m0∑
k=1

|AUCk − Ak|, (5)
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where AUCk is the partial area under a ROC curve
between the consecutive abscissa points for k = 1, . . . ,m0
computed according to the standard trapezoidal rule, and
Ak = 2k−1

2m2
0
represent the partial area of the chance line.

The first g genes correspond to a False Discovery Rate
defined by the user.
TNRC statistic is used to test for not proper ROC

curves:

TNRC =
m0∑
k=1

|AUCk − Ak| − |AUC − 0.5| (6)

where AUC is the area under the empirical ROC curve.
Not proper ROC curves are identified by high values of
the TNRC statistic.
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