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Abstract

Background: Genomic technologies are, by their very nature, designed for hypothesis generation. In some cases, the
hypotheses that are generated require that genome scientists confirm findings about specific genes or proteins. But
one major advantage of high-throughput technology is that global genetic, genomic, transcriptomic, and proteomic
behaviors can be observed. Manual confirmation of every statistically significant genomic result is prohibitively
expensive. This has led researchers in genomics to adopt the strategy of confirming only a handful of the most
statistically significant results, a small subset chosen for biological interest, or a small random subset. But there is no
standard approach for selecting and quantitatively evaluating validation targets.

Results: Here we present a new statistical method and approach for statistically validating lists of significant results
based on confirming only a small random sample. We apply our statistical method to show that the usual practice of
confirming only the most statistically significant results does not statistically validate result lists. We analyze an
extensively validated RNA-sequencing experiment to show that confirming a random subset can statistically validate
entire lists of significant results. Finally, we analyze multiple publicly available microarray experiments to show that
statistically validating random samples can both (i) provide evidence to confirm long gene lists and (ii) save thousands
of dollars and hundreds of hours of labor over manual validation of each significant result.

Conclusions: For high-throughput -omics studies, statistical validation is a cost-effective and statistically valid
approach to confirming lists of significant results.

Background
High-throughput molecular biology experiments are now
commonplace. Technologies such as microarrays [1] and
next-generation sequencing [2] are routinely used to mea-
sure thousands ormillions of variables for each sample in a
study. From the measured variables, several hundred may
be “statistically significant” in a typical experiment [3].
Usually a much smaller number are manually validated,
typically those with the most significant p-values, using
an independent validation technology (Figure 1). One goal
of manual validation is to confirm specific biological find-
ings. For example, it may be of interest to confirm a
specific SNP is associated with a complex phenotype or to
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confirm a specific protein-protein interaction. It has been
pointed out that confirming only a small number of results
with an independent technology is often less convincing
than the original experiment [4].
But the true advantage of genomic technologies lies

in their ability to generate global hypotheses about the
genome, epigenome, transcriptome, or proteome. Net-
work analyses, systems biology, and gene set analysis fall
into this category, since they produce results that relate
many features simultaneously. Manual validation is also
commonly used to support these global hypotheses by:
(i) providing evidence for the technology and methods
that generate a set of significant results [5,6] or (ii) ensur-
ing that downstream functional analyses based on sets of
significant features - such as gene set analysis [7] - are
based on accurate lists of features.
When the goal of validation is to confirm only spe-

cific biological conclusions, investigators may choose the
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Figure 1 Validation strategy schematic. A set of RNA sequencing
data is analyzed using statistical models (blue = high expression,
yellow = low expression) and a list of significant genes is identified at
a fixed false discovery rate (FDR). From the list of significant genes a
few - usually the most statistically significant - are validated with the
independent validation technology quantitative PCR (qPCR). Ideally
the confirmation with inde-pendent technology can be used to
validate the entire list of significant genes.

most biologically interesting features to subject to manu-
ally validate. However, when the goal is either to implic-
itly or explicitly validate methods or lists of significant
results there is no standard approach for validation, so
researchers do one of the following: (i) manually validate
only the set of top hits - based on statistical or biologi-
cal significance, (ii) to manually validate the entire set of
significant results, or (iii) validate a small random subset
of results. Since manually confirming results is costly and
time-consuming, strategy (i) or (iii) are more common.
When the goal is to support a statistical method or list

of features, analyzing only the most significant hits may
not be sufficient [4]. This type of validation is statisti-
cally unsound for validating lists of genes, since using a
strongly biased sample will lead to strongly biased sta-
tistical analyses. If there are more false positives than
expected, due to batch effects or other artifacts [8,9],
the broader scientific conclusions of the study may be
strongly biased. For example, gene set enrichment anal-
ysis may give inaccurate results when correlation is not
accounted for appropriately [10]. Furthermore, the choice
of results to subject to manual confirmation is often based
on biological intuition, which is subject to human biases
and subjective error [11].
Here we suggest that the third approach, statistical val-

idation of significant results, is the most effective. We
present a new statistical procedure for calculating the
probability that a result has been validated. These prob-
abilities are calculated based on manually confirming a
small random sample of significant results. This new sta-
tistical method estimates the accuracy of lists of features,
or the quality of technology and statistical methods, and
hence the strength of global genomic hypotheses. Fur-
thermore, statistical validation is cheaper and less time
consuming than confirming every significant result.

Statistical methods have been developed for calculating
internal validation within studies [12] and for optimizing
the number of confirmatory experiments to perform given
a fixed set of costs [13]. But, to our knowledge, this is the
first statistical method for evaluating independent exper-
imental validation based on a subsample of significant
results.

Methods
A statistical approach to validation
Interesting results in high-dimensional studies are the
assays that are statistically significant at a specified false
discovery rate (FDR). The FDR can be thought of as the
acceptable level of false positives among a set of signifi-
cant results [3]. If 100 variables are significant at an FDR
≤ 5%, then we expect no more than 0.05 × 100 = 5 false
discoveries. Applying an independent technology to con-
firm all 100 variables and finding 5 or fewer false positives
would verify this claim. However, applying independent
technologies or functional assays to individual discoveries
is often costly and time consuming.
Here we propose to experimentally test a random sam-

ple of significant results with an independent technology
and confirm the false discovery rate with a statistical
procedure. The approach consists of manually confirm-
ing a sample of n hits with the independent technology,
determining the number of false positives, nFP , and calcu-
lating the probability the true proportion of false positives,
π0, is less than the claimed FDR of α̂. When a sub-
set of features is claimed to be significant at a specified
FDR, α, then the expected proportion of false positives
among the significant results is α. The expected propor-
tion of false positives in the validation sample π0, should
then be approximately equivalent to the original FDR.
We can then use the expected proportion of false pos-
itives in the validation sample to confirm the original
FDR estimate.
If the probability Pr(π0 ≤ α̂|nFP , n) is larger than 0.5,

then the validation sub-study supports the original FDR
estimate, although larger values are required to strongly
support validation. Using the posterior distribution, it is
also possible to calculate a posterior credible interval for
the false discovery rate, π0, as a measure of variability.
This probability represents a direct measurement of con-
cordance, unlike statistics like the correlation between
the original and validation statistics which measure only
agreement and depend on the scale of the measurements
being taken [14].

Calculating validation probabilities
Suppose that there are m significant hits at an FDR of π0,
and n of them are sampled randomly for validation. For
each of the n probes let δi = 1 if probe i is a false positive
according to the independent technology and δi = 0 if not.
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Each probemay have a different probability of being a false
positive, so Pr(δi = 1|pi) = pi where pi is drawn from a
distribution, f (p) such that Ef (p)[ p]= π0. The distribution
of δi can be written as:

f (δi) =
∫ 1

0
pδi(1 − p)1−δi × f (p)dp

=
⎧⎨
⎩

∫ 1
0 p × f (p)dp = π0 if δi = 1

∫ 1
0 (1 − p) × f (p)dp = 1 − π0 if δi = 0

= π
δi
0 (1 − π0)

1−δi (1)

So the number of false positives, nFP has a binomial
distribution with parameter π0. We assume a Beta(a, b)
conjugate prior distribution for π0 [15], so the posterior
distribution is a Beta(a+nFP, b+n−nFP) [16]. This result
relies on the independence of the validation experiments,
but does not rely on the rate of true or false positives. The
potential reasons for dependence between validation tests
include batch and other technical artifacts [9]. However,
methods have been developed to address these poten-
tial sources of dependence [8,17], which lead to nearly
independent hypotheses [18].
Using this posterior distribution it is straightforward to

calculate the probability that the FDR (π0) is less than the
claimed level (̂α): Pr(π0 < α̂|nFP , n). We can also calculate
the posterior expected value of the FDR using the mean
of the posterior, a+nFP

a+b+n , which can give us an idea of the
actual FDR of our original results. For our analysis, we
made the assumption that the prior distribution for π0 was
U(0, 1), by setting the parameters to the Beta function to
a = b = 1. This prior is somewhat conservative, since it is
likely that many of the results in the validation experiment
will be true positives.
In some cases it may be useful to encode the belief

that most of the results will be true positives in the prior
by choosing values of a and b that put greater prior
weight on higher validation probabilities. Specifically, a
much less conservative prior choice would set the mean
of the prior distribution to be the observed FDR for the
validation targets in the original study α̂ = a

a+b . Since
this choice permits a range of solutions for a and b, one
could select the choice that maximizes the prior variance

ab
(a+b)2(a+b+1) . This could be accomplished by choosing a
to be a small value like 0.01 and setting b = 1−α̂

α̂
× a.

For small values of α̂ this prior may influence the prior
probabilities and make it difficult to compare validation
at different FDR levels. This is a particular concern given
the known variability in FDR estimates, particularly for
small sample sizes or low FDR levels [19]. In general, con-
servative and non-adaptive prior distributions will lead
to less potential for bias and greater comparability across

FDR levels. Our R functions for calculating the validation
probabilities allow for different choices of a and b. How-
ever, the validation probability is somewhat robust to prior
choice (Results).

Bootstrap confidence intervals for the validation
probabilities
It may be of interest to determine the variability of the vali-
dation probability. One potential approach is to calculate a
bootstrap confidence interval for the posterior probability
[20]. The basic approach is as follows.

1. For b = 1, . . . ,B bootstrap samples, take a random
sample of size n with replacement form the n
validation results. Calculate the number of false
positives and calculate the null statistic:
Prb(π0 < α̂|nbFP , n).

2. Calculate the 2.5th and 97.5th quantiles of the
distribution of null statistics, Prb(π0 < α̂|nbFP , n). Use
these values as a 95% confidence interval for the
validation probability.

The bootstrap is not justified for small sample sizes,
and when the validation sample size is small, these boot-
strap confidence intervals may not have the appropriate
coverage.

Choosing the FDR level and sample size
An important question for statistical validation is: How
does one choose the FDR level and the validation sam-
ple size to use? To answer this question, suppose that in
a given study for each FDR cutoff q, there are nsig(q) sig-
nificant genes. The goal is to find the minimum number
of sampled results required to achieve a high validation
probability Pr(π0 < q|nFP , n), for the case where the
results would be confirmed with a perfect independent
technology. The minimum validation sample size for FDR
cutoff q can be found by solving the following optimiza-
tion problem:

min
n

Pr(π0 < q|n × q, n) > Target Probability

In other words, what is the minimum validation sample
size needed to get at least the target validation probability,
assuming that q × n false positives will be observed?
Here, as in any sample size calculation, wemust estimate

the effect size - in this case the expected number of false
positives in the validation set. In our examples, we esti-
mate the effect size as the observed FDR for the validation
targets. However, our R functions allow for alternative
choices of the expected FDR for each true FDR level. If a
user chooses higher FDR levels than the observed values,
the minimum sample size will be smaller to confirm that
higher FDR threshold.
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This optimization problem can be solved for any spe-
cific study based only on the set of p-values for the original
analysis performed. For a fixed target probability and a
fixed false discovery rate threshold, the minimum sam-
ple size will be fixed as long as the number of significant
features nsig(q) is sufficiently large. The reason is that the
optimization is over only the single variable n, when q and
the Target Probability are fixed.
As an example of this procedure, we use the data from

the first simulated study (of 100) in the errorless vali-
dation simulation as described in the Results. Based on
the p-values from that study, we calculated the minimum
validation sample size needed for each FDR threshold to
achieve a target validation probability of Pr(π0 < q|n ×
q, n) ≥ 0.5 (Figure 2). For an FDR of 5%, it is not pos-
sible to achieve the desired validation probability. For
increasing FDR cutoffs, the required validation sample
size decreases. This is not surprising, since we have shown
in the previous section that validation is more likely at
higher FDR thresholds. The lower the FDR threshold used
for validation, the more convincing the validation may be,
so the investigator can calculate this curve for any given
study and use the results to decide how many results to
validate based on available resources.
If the authors have designed their study using our esti-

mates of the minimum validation sample size, and the val-
idation probability is low, then it is likely that π0 is greater
than the claimed FDR level. If however, they choose to

Figure 2Minimum Validation Sample Size Versus FDR Cutoff. A
plot of the minimum validation sample size required using sampling
to achieve a target validation probability of 0.5, assuming that the
experimental technology, statistical method, and validation
technology are accurate. This plot is based on the results of a specific
study and can be used to plan validation experiments. A • indicates
the minimum sample size for a fixed FDR cutoff and a × indicates
that for that FDR threshold the target validation probability can not
be achieved.

validate many fewer targets than suggested by the mini-
mum validation sample size, it is ambiguous whether the
sample size was too small or the FDR did not validate.

Calculating qPCR validation costs
Manually confirming genomic results with independent
technologies or functional assays can be costly and time
consuming, since most validation technologies must be
performed one gene, transcript, or protein at a time. There
are a large number of validation technologies, but one
of the most commonly used is quantitative PCR (qPCR).
To compare costs associated with different strategies we
use qPCR validation for gene expression studies as an
example. The results presented here are representative
of the results for any costly independent confirmation
experiment.
We estimated the costs associated with two differ-

ent qPCR technologies: SYBrGreen and TaqMan. For
TaqMan we assumed that three genes and a reference
gene were multiplexed in each reaction, which is theo-
retically possible but optimistic in practice. SYBrGreen
reactions also included a reference gene, but were not
assumed to be multiplexed. We calculated costs as fol-
lows: $250 for each TaqMan probe, $150 for Mastermix
for each plate for both SYBrGreen and TaqMan, and $4
for each 96-well plate. We assumed each reaction was
replicated three times to ensure accurate measurements
- a typical approach taken in validation experiments. We
also made the assumption that one research assistant,
working full time and paid $40,000 per year, could run
and analyze four 96-well plates per day. For the purposes
of our analysis we assumed 22 working days per month.
Based on these assumptions, we can calculate the

cost and time required for validating ngenes genes on
nsamples samples for each technology. For TaqMan, after
accounting for multiplexing the number of plates run is
ngenes×nsamples

96 , so the cost (CTaqMan) and time (TTaqMan) for
the validation experiment are as follows.

CTaqMan = $250 × ngenes︸ ︷︷ ︸
Primer Costs

(2)

+ ($4 + $150) × �ngenes × nsamples
96

�︸ ︷︷ ︸
Reagent Costs

+ $40, 000 × TTaqMan︸ ︷︷ ︸
Personnel Costs

TTaqMan = 1
4 × 22 × 12

× �ngenes × nsamples
96

� (3)

For the SYBrGreen validation, reactions can not be mul-
tiplexed. However, these reactions also do not incur the
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primer costs of the TaqMan reactions. So the cost (CSG)
and time (TSG) for the validation experiment are as
follows.

CSG = ($4 + $150) × �ngenes × nsamples × 3 × 2
96

�︸ ︷︷ ︸
Reagent Costs

(4)

+ $40, 000 × TSG︸ ︷︷ ︸
Personnel Costs

TSG = 1
4 × 22 × 12

× �ngenes × nsamples × 3 × 2
96

� (5)

In these equations the terms inside the floor opera-
tors �·� represent the number of plates needed to run the
reactions, which must be multiplied by the fixed costs
for those plates. From these equations, it can be seen
that manual confirmation of gene expression results using
either Taqman or SYBrGreen is costly and time consum-
ing. Taqman is slightly more expensive, but slightly less
time consuming.

Results and Discussion
Non-random validation can not be used to confirm a
complete list of significant results
Manually confirming only the most significant results
(Figure 1) is probably the most common validation strat-
egy in genomic studies. To highlight the need for a statisti-
cal approach to validation, we consider two representative
studies that use this strategy. In both cases, the implicit
assumption was made that validating the most signifi-
cant results was sufficient to support the accuracy of a
statistical method or an entire list of significant results
[21,22]. This assumption is often made by investigators
who perform global gene-set enrichment or functional
analysis of significant features, after manually confirming
only the most extreme results. This has led some to sug-
gest that individual validation experiments do not reflect
the quality of genomic results [4].
In the first study 388 cassette exons were identified with

a Bayesian network as Nova alternative splicing targets
with FDR < 1%. A convenience sample of 31 exons was
validated, yielding 28 true positives [22]. We calculate the
posterior distribution for the estimated FDR among the
validated results using the Beta distribution derived from
equation 1 (see Methods). Based on this posterior distri-
bution we obtained a 95% posterior credible interval for
the FDR of (0.04, 0.25). Our results suggest that based on
the validation sample the true FDR for the original anal-
ysis is likely between 4% and 25%, substantially higher
than the reported FDR. This is not surprising, since the
expected number of false discoveries at an FDR of 1%
is 0.01 × 31 = 0.31. Since the claimed FDR does not
match the validation results, the probability of validation

(see Methods) is low, Pr(π0 ≤ 0.01|nFP = 3, n = 31) =
2.87 × 10−4.
In the second study 53 master regulator transcription

factors were identified for a “mesenchymal” gene expres-
sion signature at an FDR of 5% [21]. The two most signif-
icant master regulators were confirmed functionally. The
investigators did not report the FDR for the hits that were
functionally confirmed, so it is not possible to directly cal-
culate the validation probability. However, we make the
conservative assumption that these hits were also signif-
icant at an FDR of 5%, although the FDR is likely much
lower for the top two hits. Using the less stringent thresh-
old of 5% the 95% credible interval for the true FDR is
wide (0.01, 0.70). The reason is that although 100% of
tested results were confirmed using the functional test, the
sample size is too small to confirm the original false dis-
covery rate claims. Thus, the corresponding probability of
validation Pr(π0 ≤ 0.05|nFP = 0, n = 2) = 0.14 is low.
In these studies, only a small fraction of the top hits

were confirmed with independent technology. However,
the entire list of significant results was used in each case to
form a biological picture and interpretation of the results.
The corresponding validation probabilities suggest that
this confidence in the entire set of significant results is
not sufficiently justified. These examples are illustrative of
typical validation strategies and suggest the need for a new
approach for supporting lists of significant results with
independent measurements. In the next section, we show
that manually confirming a random sample of results is
more effective than manually confirming only the most
significant results when the goal is to provide statistical
support for validation.

Statistical validation can be used to confirm lists of
significant results
To compare: (i) manually confirming only the most sig-
nificant results and (ii) statistical validation, an example
is needed where every single genomic feature is assayed
on both the original technology and an independent val-
idation technology. Such data sets are rare, since most
measurements from high-throughput -omics studies are
not confirmed with independent technology because of
time or financial constraints.
To make this comparison, we obtained expression data

for 805 genes from a study of brain and reference tissue
measured by both RNA sequencing and an independent
technology, quantitative PCR (qPCR) [23]. These data
can be thought of as an experiment where every gene has
been subjected to independent confirmation. Previous
studies have shown that the qPCR and RNA-sequencing
approaches produce comparable results in this experi-
ment, suggesting that the validation probability should
be high [23]. We use RNA-sequencing and quantitative
PCR (qPCR) as a representative example of the type
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of independent manual confirmation that is performed
in genomic experiments. However, our results easily
generalize to any costly/time-consuming independent
validation, whether it is with an independent technology
or using a functional assay.
We compared the two strategies: (i) statistical validation

by manual confirmation of a random sample of 20 genes
significant at an FDR of 10% and (ii) manual confirmation
of only the top 20 genes. We performed a likelihood ratio
test to identify differentially expressed genes based on
RNA-sequencing [23,24]. Genes with a qPCR fold-change
above 0.25 were considered true positives. The estimated
FDR for the top 20 genes was 1.09 × 10−7. All 20 were
true positives according to qPCR. The FDR threshold is
extremely low so a huge number of results would need to
be confirmed to convincingly support the FDR claim. It is
not surprising then, that the 95% posterior credible inter-
val (0.001,0.161) does not cover the original FDR estimate
and the validation probability for the 20 best hits is low
Pr(π0 ≤ 1.09 × 10−7|nFP = 0, n = 20) = 2.28 × 10−6.
For a random sample of size 20 from among the 591

genes significant at an FDR of 10%, on average 1.65 were
false positives. Since this is a random sample of results
with FDR < 10%, the validation probability is calculated
at the 10% threshold (Methods), yielding a 95% poste-
rior credible interval (0.02, 0.28) that covers 10% and a
substantially higher value of Pr(π0 ≤ 0.10|nFP = 1.65,
n = 20) = 0.44.
These results suggest that choosing a random sample

of results based on a higher FDR threshold made it eas-
ier to statistically support significance claims in genomic

studies. In the next section, we show that when attempt-
ing to statistically validate a set of significant results, it is
generally better to choose a higher FDR threshold.

Statistical validation is more likely at higher FDR thresholds
As an example, suppose that in a given study the observed
number of false positives is fixed at 0.7 × FDR level ×
the validation sample size, so the validation probability is
expected to be high. In this scenario, the validation prob-
ability increases with increasing validation sample size
(Figure 3). But for a fixed validation sample size higher
FDR thresholds on the original data set lead to higher
validation probabilities.
The reason is if only the most significant results are cho-

sen for manual confirmation, then the claimed FDR for
these results will be very small. Even if all of the results
are confirmed as true positives, it is difficult to prove the
FDR claims. For example, suppose the top 10 results cor-
respond to an FDR of 1×10−5. This suggests that for every
100,000 results there should only be one false positive.
Strong evidence for this claim would require confirming a
huge number, hundreds of thousands, of results. Alterna-
tively, if 10 results are validated at a higher FDR threshold
like 0.50, then we expect about 5 false positives. If only 3
or 4 are observed, this would lend reasonable support to
the FDR claims.

Simulation study to evaluate the validation probability
The validation probability is a measure of how well the
conclusions of the original study are supported by the

Figure 3 Validation Probability by Sample Size. A plot of the validation probability versus the sample size, for various FDR cutoffs assuming that
(0.7 × FDR level × Validation sample size) false positives are observed in the validation set. For any sample size, the validation probability is higher
when the FDR cutoff is larger.
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validation sample. We have demonstrated the potential
utility of this approach using real data sets.
We also consider three simulated scenarios to evalu-

ate the properties of the validation probability parameter
estimates. For each scenario, we calculate the validation
probability using a conservative prior (a = b = 1) and
the adaptive prior described in Methods (a = 0.01 and
b = 1−α̂

α̂
×a). In each case, we simulated 100 gene expres-

sion experiments with 1,000 genes, 300 of which were
differentially expressed. In all cases, we assume that all
genes which were significant at the given FDR cutoff were
validated (exhaustive validation).
In the first case, we assume that the independent tech-

nology perfectly distinguishes the true positives from the
false positives, so that nFP is exactly the number of genes
which were not in the set of 300, but which were sig-
nificant at the given FDR cutoff in the original study. In
the second case, we add an element of randomness to the

validation results, so that a gene in the set of 300 may not
be declared differentially expressed in the validation. In
determining the validation results, the random outcome is
based on a larger sample size than the original experiment
but may give a different result. This simulation mimics
a more realistic scenario where the validation technology
is not perfect [25]. In both of these first two cases, the
validation data should match the results of the original
experiment, so the validation probabilities should be high,
and the posterior expected value of the FDR based on the
validation should be at or below the FDR from the original
data set. In the third simulated case, we set the parame-
ters so that the original technology is incorrect 1/3 of the
time (Table 1). However, the independent technology cor-
rectly identifies the true differentially expressed genes, so
that nFP is again the number of genes not in the set of 300,
but which were significant at the given FDR cutoff in the
original data set.

Table 1 Simulation study to assess the properties of the validation probability

Scenario Quantity FDR FDR FDR
5% 10% 50%

Errorless validation Median Validation Probability 0.72 0.91 1.00

Prior = Uniform Validation Probability IQR (0.58, 0.87) (0.72, 0.98) (1.00,1.00)

FDR 95% Credible Interval Coverage 0.98 0.68 0.00

Median Posterior Expectation of FDR 0.04 0.07 0.35

Validation subject to error Median Validation Probability 0.64 0.87 1.00

Prior = Uniform Validation Probability IQR (0.37, 0.83) (0.71, 0.95) (1.00,1.00)

FDR 95% Credible Interval Coverage 0.98 0.68 0.00

Median Posterior Expectation of FDR 0.05 0.08 0.24

Results should not validate Median Validation Probability 0.00 0.00 0.25

Prior = Uniform Validation Probability IQR (0.00,0.00) (0.00,0.00) (0.15,0.51)

FDR 95% Credible Interval Coverage 0.00 0.00 0.96

Median Posterior Expectation of FDR 0.35 0.37 0.52

Errorless validation Median Validation Probability 0.83 0.94 1.00

Prior = Adaptive Validation Probability IQR (0.70,0.94) (0.79,0.99) (1.00,1.00)

FDR 95% Credible Interval Coverage 0.88 0.63 0.00

Median Posterior Expectation of FDR 0.04 0.07 0.35

Validation subject to error Median Validation Probability 0.76 0.91 1.00

Prior = Adaptive Validation Probability IQR (0.49, 0.91) (0.78, 0.97) (1.00,1.00)

FDR 95% Credible Interval Coverage 0.91 0.77 0.00

Median Posterior Expectation of FDR 0.04 0.07 0.23

Results should not validate Median Validation Probability 0.00 0.00 0.25

Prior = Adaptive Validation Probability IQR (0.00,0.00) (0.00,0.00) (0.15,0.51)

FDR 95% Credible Interval Coverage 0.00 0.00 0.95

Median Posterior Expectation of FDR 0.35 0.37 0.52

For each of three scenarios and two choices for the prior distribution, 100 simulated gene expression studies were generated with 1,000 genes each. This table reports
the median (25th percentile, 75th percentile) of the validation probability across the 100 studies, the coverage proportion of the 95% posterior credible interval for the
estimated FDR in each scenario, and the median posterior expectation of the FDR.
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When the original experiment is supported by the val-
idation data and the validation test is perfect (Table 1
Scenario: Errorless validation) the validation probabil-
ities are high. This is true even in the more realis-
tic setting where the independent technology is subject
to random error (Table 1, Scenario: Validation sub-
ject to error). The validation probability is also larger
for larger values of the FDR, consistent with observa-
tions on the real examples described above. The poste-
rior expected value of the FDR based on the validation
data is at or below the FDR from the original data set,
which is consistent with expectations. In the case where
the validation experiment does not support the original
experiment, the validation probabilities are much lower
(Table 1, Scenario: Results should not validate). Here,
we can see the posterior expected value of the FDR
exceeds the FDR from the original data set, again as
expected.
Interestingly, the coverage probabilities for the 95% pos-

terior credible intervals are greater for lower values of the
FDR. The reason is that the estimate of the FDR is con-
servatively biased and this bias is stronger for higher FDR
cutoffs. The bias means that the posterior credible inter-
vals cover the true FDR, but frequently do not contain the
original FDR estimate because of the conservative bias.
The adaptive prior led to slightly higher validation prob-

abilities but lower coverage of the 95% credible intervals
- suggesting that the adaptive prior may be slightly anti-
conservatively biased. However, the estimates were not
wildly different suggesting relative robustness of the vali-
dation probabilities to the choice of prior.

Statistical validation is cheaper and less time-consuming
thanmanually confirming all significant results
An alternative strategy to confirming only the most sig-
nificant results is to manually curate every significant
result using an independent technology or assay. How-
ever, this approach is both costly and time consuming (see
Methods). As an example of the potential advantages of
the proposed statistical validation strategy, we analyzed
the data from six gene expression microarray experiments
(Table 2). For each experiment, we performed a standard
significance analysis and identified the genes differentially
expressed at a false discovery rate of 5% [3]. In many cases,
a huge number of genes are identified as significantly
differentially expressed. We used the equations (2-5) to
calculate the costs associated with manually confirming
all of the genes in the significance lists. These experiments
would clearly never be performed, as the costs in terms
of both money and time are prohibitive. For comparison
purposes, we also calculated the costs performing statisti-
cal validation using the minimum sample size required to
obtain an expected minimum validation probability of 0.5.
Note that since the target probability (0.5) and the FDR
level (5%) are fixed, the validation sample size is always the
same.
When performing statistical validation, only a subsam-

ple of results must be confirmed, so the costs are sub-
stantially lower. Although the costs are still high in this
case, they are substantially less prohibitive than man-
ually confirming an entire list of results. The larger
the list of significant hits, the more pronounced the
savings from statistical validation. From the table, it

Table 2 Statistical validation analysis of data from six microarray experiments obtained fromGEO

Study GSE # # DE Genes # Samples Fraction of DE Genes Cost Cost
Required for Statistical Validation (Manual) (Statistical)

GSE10245 6,742 58 3.57% 3.85 years 0.14 years

$2.5e6 $8.8e4

GSE11492 333 8 72.37% 0.03 years 0.02 years

$8.9e4 $6.4e4

GSE17913 739 79 32.61% 0.58 years 0.18 years

$3.0e5 $9.8e4

GSE16032 343 10 70.26% 0.03 years 0.02 years

$9.3e4 $6.5e4

GSE16538 1,624 12 14.83% 0.19 years 0.03 years

$9.3e4 $6.6e4

GSE11524 2,295 30 10.50% 0.68 years 0.07 years

$7.1e5 $7.5e4

For each data set, differential expression was calculated with respect to the primary biological variable. For each experiment, the number of genes differentially
expressed at 5% is reported. In each case, 241 genes are required for statistical validation, for each study we present the fraction of the DE genes required for statistical
validation. Tthe cost in dollars and graduate student years of manually confirming the whole list of DE genes or only the DE genes needed for statistical validation is
also reported.
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is clear that validation at the FDR 5% level is both
costly and time consuming, even using statistical vali-
dation. As we have shown, higher FDR thresholds lead
to smaller minimum validation sample sizes (Figure 3).
The results in Table 2 suggest that choosing a higher
FDR threshold for statistical validation may be more
economical.

Conclusions
Genomic technologies are, by their very nature, designed
for hypothesis generation. In some cases, the hypotheses
that are generated require that genome scientists confirm
findings about specific genes or proteins. But the true
advantage of high-throughput technology is that global
genetic, genomic, transcriptomic, and proteomic behav-
iors can be observed. Validating high-dimensional exper-
imental results with independent technologies and assays
is critical. Without independent validation, it is impossi-
ble to distinguish discoveries from spurious results due to
technological artifacts, inappropriately applied statistical
methods, or unmeasured latent variables.
Here we have introduced the first method for statisti-

cally quantifying the strength of a validation experiment.
We have proposed a new statistical approach to validation
that focuses on the last two cases. We have illustrated this
approach with representative examples from the litera-
ture and an extensively validated RNA-sequencing exper-
iment. We have also shown that statistical validation may
be substantially more cost effective than manually con-
firming every significant result. Our work suggest that
(i) the validity of lists of significant results can be inferred
from confirming a small random sample of results, (ii) that
this approach may reduce the costs to investigators, and
(iii) statistical validation allows researchers to quantify the
quality of their validation experiments. A web applica-
tion for calculating validation probabilities is available at:
http://www.biostat.jhsph.edu/∼jleek/validate/. R code for
reproducing all the results and simulations in this paper is
also available from that site.
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