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Abstract

Background: Next generation sequencing approaches applied to the analyses of transposon insertion junction
fragments generated in high throughput forward genetic screens has created the need for clear informatics and
statistical approaches to deal with the massive amount of data currently being generated. Previous approaches
utilized to 1) map junction fragments within the genome and 2) identify Common Insertion Sites (CISs) within the
genome are not practical due to the volume of data generated by current sequencing technologies. Previous
approaches applied to this problem also required significant manual annotation.

Results: We describe Transposon Annotation Poisson Distribution Association Network Connectivity Environment
(TAPDANCE) software, which automates the identification of CISs within transposon junction fragment insertion
data. Starting with barcoded sequence data, the software identifies and trims sequences and maps putative
genomic sequence to a reference genome using the bowtie short read mapper. Poisson distribution statistics are
then applied to assess and rank genomic regions showing significant enrichment for transposon insertion. Novel
methods of counting insertions are used to ensure that the results presented have the expected characteristics of
informative CISs. A persistent mySQL database is generated and utilized to keep track of sequences, mappings and
common insertion sites. Additionally, associations between phenotypes and CISs are also identified using Fisher’s
exact test with multiple testing correction. In a case study using previously published data we show that the
TAPDANCE software identifies CISs as previously described, prioritizes them based on p-value, allows holistic
visualization of the data within genome browser software and identifies relationships present in the structure of the
data.

Conclusions: The TAPDANCE process is fully automated, performs similarly to previous labor intensive approaches,
provides consistent results at a wide range of sequence sampling depth, has the capability of handling extremely
large datasets, enables meaningful comparison across datasets and enables large scale meta-analyses of junction
fragment data. The TAPDANCE software will greatly enhance our ability to analyze these datasets in order to
increase our understanding of the genetic basis of cancers.
Background
Forward genetic screens have opened doors to com-
pletely novel areas of biological understanding [1]. Start-
ing with fundamental work with yeast, a significant
portion of our molecular understanding is built on hy-
potheses originating from unbiased screens. Recently,
* Correspondence: sarver@umn.edu
1Biostatistics and Bioinformatics Masonic Cancer Center, University of
Minnesota, Minneapolis, USA
Full list of author information is available at the end of the article

© 2012 Sarver et al.; licensee BioMed Central L
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
forward genetic screens have been used to study the
genetics of cancer in vivo, first using murine retroviruses
[2] and more recently using mobile genetic elements or
transposons engineered to be active within the murine
genome [3]. Transposons are mobilized by the presence
of a transposase enzyme, which can be expressed in a
tissue specific manner leading to the formation of tissue
specific cancers [4,5]. In the simplest possible conceptual
model, tumors may be formed by the disruption of a
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:sarver@umn.edu
http://creativecommons.org/licenses/by/2.0


Figure 1 Visual summary of the TAPDANCE process. Libraries of
inserts from sets of mouse tumors are generated and sequenced.
Barcode, IRDR and linker sequences are trimmed, and the remaining
genomic sequence is mapped to the genome. Regions of insertions
overrepresented within the genome and the statistical probablility of
observing such events are determined in an automated manner
allowing the comparison and contrasting of multiple datasets.
Genomic loci may be common among many mice (e.g. F) or just a
subset with a common observed phenotype or inherent genotype
(e.g., G).
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tumor suppressor gene or activation of an oncogene by
a transposon, which then leads to a selective growth ad-
vantage for the cell and progeny cells that harbor the in-
sertion. Identification of Common Insertion Sites (CISs)
in a significant number of independent tumors strongly
implicates genomic regions to be fundamentally involved
in tumor formation. Prior work has described methods
to identify CISs as well as associations between CISs in
datasets [4-9].
Identification of the location of transposon insertion

requires obtaining the sequences crossing the junction
between the transposon and the authentic genome se-
quence [10]. Mapping the genomic sequence adjacent to
the transposon to a reference genome allows the deter-
mination of the specific site of integration. Large num-
bers of insertion sites can be identified in tumors. Next
generation sequencing technology has allowed massive
numbers of transposon-genomic junction fragment to be
sequenced. The sheer quantity of sequences has intro-
duced unanticipated problems to pipelines designed to
identify CISs.
The goal of the TAPDANCE software is to fully auto-

mate the analysis of statistically significant CISs using
next generation sequencing of insertions from samples
where a mobile genetic element has been activated
within the genome. In murine forward genetic cancer
screens, these CISs represent potential drivers of tumori-
genesis. The effort and expense required to validate po-
tential oncogenes and tumor suppressors in human
cancer is immense. Yet, the potential benefit to the treat-
ment of these diseases and reducing human suffering
cannot be understated. Thus, it is of paramount import-
ance to identify and rank the importance of the driver
regions (CISs) of the genome in these datasets. To this
end we have developed the software described here, and
made it publicly available.

Implementation
The processing and analysis pipeline takes as input 4
files (examples included in Additional file 1: Table S7
Full examples in Additional file 2). The first file is the se-
quence file produced by the high-throughput sequencing
machine. Each line in this file contains a unique se-
quence identifier and the sequence read. An informative
sequence read will consist of a DNA barcode sample-
identification sequence ligated to either the Inverted
Repeat Direct Repeat (IRDR) for SB studies or Long Ter-
minal Repeat [LTR] for proviral studies, followed by the
captured genomic sequence and potentially ending with
the ligation adapter/linker sequence (see Figure 1). The
second file contains the barcode sequences mapped to li-
brary names. In this paper insertion libraries are gener-
ated from tumors thus the word tumor and library is
used interchangeably throughout. The third file contains
a set of metadata characteristics describing the sets of li-
braries for CISs analyses (e.g., tumor types, genotypes or
phenotypes). The last file contains a list of chromosomes
to potentially exclude from the analysis. Using these four
input files the software automatically performs raw se-
quence processing and trimming, mapping to the refer-
ence genome, CIS identification, and nearest-gene
annotation as described below. A general overview of
the process including a partial database schema is pro-
vided as Figure 2.

Raw sequence processing and trimming
The generation of PCR products containing the junction
fragments between transposon insertion sites and the
flanking genomic sequence has been described in detail
previously [4-6]. The resulting PCR products are then
sequenced utilizing next generation sequencing to gener-
ate hundreds of thousands (454 sequencing) or millions
(illumina sequencing) of reads 75-100 bp in length.
These sequences are loaded at the outset into a rela-
tional database and database queries (SQL) are used to
identify and remove barcodes denoting the library of ori-
gin. Additionally, transposon sequences and linker frag-
ments are trimmed off, leaving only endogenous
genomic sequence. In order to speed up the mapping
process, identical sequences that are derived from the
same library are condensed to a single sequence entry,
retaining the total count of observations made.



Figure 2 TAPDANCE database schema and processing flowchart. Overview of the TAPDANCE process. Input files are loaded into the
database tables named with the project id. SQL and perl functions are used to identify library of origin, genomic sequence, remove duplicate
sequences and to allow insert location identification using the bowtie mapping algorithm. This mapping process is iterative in the first iteration
sequences> 33 bp are mapped allowing 3 mismatches. Anything that did not map in the first round was remapped following removal of the
3’UTR to leave only 33 bases in the second round. Similarly in the 3rd round remaining unmapped sequences of 30 bp were mapped allowing 2
mismatches. In the 4 th round previously unmapped sequences of length 28 bp were mapped with 1 mismatch. Finally previously unmapped
sequences of length 24 bp are mapped with 0 mismatches. The mapped data is summarized and finally exported by the TAPDANCE.pl script
using configurable data stored in the config.pl script including barcodes and insertion derived sequences. The TAP2.pl scripts assembles sets of
inserts, conducts CIS analyses, Co-CIS and Pheno-CIS analyses resulting in exportable files containing relevant information. All file locations are
shown relative to root and additional intermediate tables are generated during processing as documented within the various scripts and
dependencies. Persistent tables and results files are named using the $proj variable which is set in the config.pl file.
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Sequence mapping to the reference genome
Genomic sequences are then mapped using the bowtie
algorithm [11]. To ensure that mapping to the genome
is due to authentic transposon insertion, we required
that mapping commence directly 3’ to the transposon
sequence. For SB transposon mapping, the flanking gen-
omic sequence is required to start with a TA dinucleo-
tide. This was done in order to minimize the potential
for multi-mer ligation leading to incorrect inference of
transposon integration. To minimize false positive map-
ping, we mapped randomly generated sets of 50,000
DNA sequences using bowtie and determined the mini-
mum sequence length required so that none of the ran-
domly generated sequences mapped to the mouse
genome. The empirical cutoffs established by this ana-
lysis were 33 nucleotides for 3 mismatches, 30 for 2 mis-
matches, 28 for 1 mismatch and 24 for 0 mismatches
(Figure 3). It was surprising that ~20% of the randomly
generated sequences map to the genome uniquely if
mapping length mismatch thresholds were relaxed below
these cutoffs. To avoid this random mapping behavior
and increase the stringency of the analyses, genomic
sequences of 23 or fewer bases are discarded.
The importance of considering sequence length and

mapping directly to the first base following the trans-
poson increases as the total number of sequences exam-
ined increases. Since partial linker sequences and
unintended ligation products may remain on the 3’-end
of full length junction sequences, we developed an itera-
tive mapping process in order to maximize authentic
mappings and minimize the potential for mismapping
(Figure 2). In the first iteration, full-length sequences are
mapped allowing 3 mismatches if their length is >33. In
the second iteration sequences that did not map in the
first round of mapping had their 3’ ends removed to
leave only the first 33 bases. These 33 bases were then



Figure 3 Genomic mapping and sequence length. Randomly generated sets of 50,000 (A|G|C|T) sequences of varying lengths described on
the X-axis were mapped to the mouse genome using bowtie. The total number of mappings of each sequence that either mapped to no region
(black triangle) mapped to multiple regions (blue diamond) or mapped to a single region (red square) were plotted for each sequence length
using bowtie mapping software allowing A) 3mismatches B) 2 mismatches C) 1 mismatch and D) 0 mismatches. At intermediate sequence
lengths for a fixed number of mismatches, ~20 % of randomly generated sequences were capable of uniquely mapping to the genome.
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mapped allowing 3 mismatches. In the third iteration,
sequences that did not map in the second iteration were
shortened to 30 bp and combined with shorter
sequences before mapping was again attempted allowing
2 mismatches. The procedure was then repeated using
sequences of 28 bp (1 mismatch) and 24 bp (0
mismatches).
Mapped regions are exported to a bed file in order to

visualize all the “raw” mappings and the strand on which
the mapping was observed using genomic browsers such
as IGV [12] or for smaller datasets, the UCSC genome
browser [13].

Mapping orientation
The SB transposon and MULV retrovirus are both asym-
metric, meaning that the biological effect of the insertion
depends on the orientation of the insertion. For this rea-
son it is important to track the orientation of the
insertion. Generally, when insertion-genomic junctions
are amplified, two separate PCR reactions are performed,
one that amplifies junctions from the “right” side of the
insertion and a separate reaction that amplifies junctions
from the “left” side of the insertion. This procedure is
used to maximize the chance of recovering sequence
from an insertion if the required restriction enzyme site
is not present on either side of the insertion. The
sequences from these two PCR reactions are prepared
separately for the right reads and the left reads. This is
relevant because the SB transposon can activate tran-
scription only if pointed in the correct orientation,
whereas a splice site acceptor capable of causing tran-
script disruption is present in both orientations
(Figure 4A). Furthermore, genomic sequence derived
from both right and left library generation can map to
the + or – strand. Specific insertion orientation to the
positive strand can be identified by either a right read



Figure 4 SB transposon mapping and Orientation. A) The SB
transposon is asymmetric and can map in either + or – orientation
within specific TA sites. B) Genomic region after insertion of SB
transposon in either + orientation (red) capable of driving
transcription of genes encoded on the positive strand or in –
orientation (blue) capable of driving genes encoded on the – strand.
In either direction a splice site acceptor is available, leading to
transcript disruption. PCR products derived from SB junction
fragments are capable of determining which orientation the
transposon has integrated. The sets of primers i-iv indicate how the
PCR products are obtained. Each of the transposon side primers
contains a library specific barcode to allow multiplexing during the
sequencing process.
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that maps to the + strand or a left read that maps to the
– strand. (Figure 4B) Alternatively, specific transposon
insertion orientation to the negative strand can be iden-
tified by the opposite events. To simplify the analyses, all
insertions are converted so that the site of integration is
defined on the strand that can drive transcriptional acti-
vation. In other words if the SB transposon is mapped to
the + strand it can drive transcription on the positive
strand and if it is mapped to the negative strand it can
drive transcription on the negative strand.

Elimination of non-clonal insertions
Several artifacts are present in the sequence datasets
generated by PCR amplification of insertions. The first
artifact is due to remobilization of a clonal transposon
insertion into a neighboring TA dinucleotide in a small
subset of daughter cells of the original clone. This
artifact can be attributed to “local hopping” of the remo-
bilized transposon [14]. In the dataset this artifact pre-
sents as a dominant TA with many mapped reads and
several neighbouring TA’s with relatively few mapped
reads. We hypothesize that these insertions were origin-
ally in the dominant TA, and then jumped to the neigh-
bouring TA in a daughter cell. Therefore, these
insertions should be grouped with the dominant TA.
Another artifact is created when sequencing errors at
the beginning of the mapping sequence leads to incor-
rect mapping to TA positions only a few bases away.
This artifact also presents as a dominant TA with a few
neighboring TA’s being mapped at a very low frequency.
To minimize the impact of counting these non-clonal
events as unique events, the raw data counts are binned
into 100 bp regions based on the location and orienta-
tion of insertion.
Finally, transposon activity is not extinguished as the

tumor develops in a forward genetic screen. This means
that new insertions will continually occur in daughter cells
of the original clone that forms the tumor. Insertions that
occur later in the development of a tumor will only occur
in a few cells and should be considered passenger muta-
tions. This effect appears in the dataset as mapped inser-
tions that are only counted once or twice, as opposed to
clonal insertions that are counted many times by the NGS
machine. In order to exclude these low-level passenger
insertions, we set a cut-off based on the percentage of the
total mappable reads in each tumor. For example, con-
sider a case where 100,000 sequence reads from a single
tumor can be uniquely mapped to 1,000 regions in that
tumor. In our datasets we find that a subset of the 1,000
regions will be identified by a single sequence read while
the remaining regions will be identified by many sequence
reads. To set a cut-off we require that a region be identi-
fied by, at least, a certain percentage of the total sequence
reads that were mapped to that tumor. If we set the cut-
off to 1/10,000th that would mean that only the subset of
1,000 regions that were identified by at least 10 reads will
be included in CIS analysis. This cut-off eliminates
mapped insertions that are only read a few times and
probably represent non-clonal insertions. TAPDANCE
allows the user to select the cut-off value. Alternatively,
the user can choose not to have a cut-off. Based on our
analysis of datasets that directly compare the 454 platform
with the Illumina GAIIx platform we recommend using
no cut-off for 454 data and a cut-off of 1/10,000th for Illu-
mina data.

Project summary files
A summary file is generated for each project that
describes the counts for each project, for each direc-
tional library, and for each library. The percentage of
mappable reads that map to the genome for each run
and broken down by library can be obtained from this
file. All sequences from a single sequence run are depos-
ited into the SQL database.

Meta-analyses of multiple projects
Each project can be merged with any number of previ-
ously existing projects in the database, and files
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containing all raw mappings and all regional mappings
at the thresholds defined in the config.pl file are auto-
matically generated. The software will merge libraries
that are identified by the same name, and multiple pro-
jects can utilize the same sets of barcodes for different
projects without causing confusion, since the informatics
model utilizes the library name as a unique identifier.
One of the major bottlenecks in our previous work-

flows was the combination and reanalysis of datasets
that were obtained in separate sets of sequencing runs.
To simplify this informatics problem we wrote the soft-
ware to allow combination of any set of projects to gen-
erate a new project or meta-analyses to allow CIS
generation from any subset of libraries. In this manner a
common set of barcodes can be reused over and over in
separate projects and the individual projects can be effi-
ciently analyzed together.

CIS calculation
The identification of CISs based on large numbers of
sequences from hundreds or thousands of libraries is a
nontrivial statistical and informatics challenge. TAP-
DANCE uses Poisson distribution statistics to calculate
CISs. The Poisson distribution determines the probabil-
ity of observing a given number of events within a re-
gion assuming that these events occur in an essentially
unbiased manner. In this case the transposon insertions
are the events, while the expected number of insertions
in a given window is calculated based on the size of the
genome and the total number of insertions. The prob-
ability estimate is then corrected based on the total
number of windows examined (i.e., the total number of
insertions) using Bonferroni correction to account for
multiple testing. Essentially, the probability of observing
a given number of insertions becomes smaller as the
genome becomes larger, or the window of interest
becomes smaller, or the total number of insertions
becomes smaller, or the number of insertions within a
given window becomes larger.
More formally the Poisson distribution is calculated

using the following formula.

P x : uð Þ ¼ e�uuxð Þ=x!

Where
e is the base of the natural logarithm
x is the actual number of inserts within a window
u is the number of inserts observed (total) / (genome
size /window size)
Each dataset is analyzed multiple times using different

window sizes, which generates a list of CISs for each
window size analyzed. For each CIS analysis, the win-
dow sizes to be used are determined by identifying the
maximum window size that will give a corrected p-
value< 0.05 (after correcting for multiple testing) with
an integer number of insertions by examining window
sizes from 10000 bases to 301000 bases in 1000 base
steps. If fewer than 2000 insertions or more than 200000
inserts are examined, default window sizes of 12500,
25000,50000,100000, 200000, and 301000 bases are used.
A peak finding algorithm was written to iteratively

identify non-overlapping peak windows with the largest
number of events for each window size. The dataset is
then analyzed using each different window size, which
generates a list of CISs for each window size analyzed.
Since the use of multiple window sizes can lead to mul-
tiple potential overlapping CIS definitions, these are
resolved by identifying the minimal set of non-
overlapping regions that have the most significant prob-
ability. If the p-values for two regions are identical, the
larger window is used as the default (Figure 5).

Three methods to count inserts to determine p-value
The total number of events (insertions) is required in
order to use the Poisson distribution to calculate a P-
value. We propose to use three different methods to de-
termine the number of events in a transposon insertion
dataset (Figure 6). These three methods test 3 different
null hypothesys. The first method uses the total number
of unique mapped insertions as the event count. We
refer to this method as “insertion p-value” and test the
null hypothesys that the total number of inserts within a
region (independent of library of origin or insert loca-
tion) is similar to what could be expected to be observed
by random chance. In the example CIS depicted in
Figure 5 the total number of events used to calculate the
p-value is 10. The potential problem with this approach
is that a single library can have multiple insertions in a
given genomic window. As discussed above, this could
be caused by transposon remobilization or local hop-
ping. Counting these local hopping insertions as separate
unique insertions would be misleading. To overcome
this effect, we use a second method that uses the total
number of unique libraries within a region, referred to
as “library p-value” and test the null hypothesys that the
total number of libraries within a region (independent of
total number of inserts or insert location) is similar to
what could be expected to be observed by random
chance. This method counts multiple insertions from
the same tumor as a single insertion if they occur in a
single genomic CISwindow. In Figure 5 the total library
count is 6. With this method another misleading situ-
ation can arise when many libraries map to the same
100 bp region, Using the example in Figure 5, sequen-
cing data indicates that six tumors have a mapped inser-
tion in a single TA in region 1. Unless there was strong
selection for this single TA, which we hypothesize is
generally not the case, this represents an artifact. This



Figure 5 Window sizes, CIS calculation and resolution of
overlapping CISs. A) Based on the total number of insertions being
analysed for CISs, Window sizes (10,000-301,000 bp) are calculated to
define the largest window size which is capable of showing a
significant CIS (Poisson distribution p-value< 0.05 following
bonferroni correction based on total window size) using total
insertion numbers which can only exist as integer values. Only the
first 3 window sizes for 20139 insertions are shown here. B) For each
of the window sizes the p-value is calculated for each possible
window based on the total number of insertions starting with every
insertion throughout the genome. Non-overlapping windows with
the lowest p-value (most insertions) are then chosen for each
window size where the p-value is below a user-defined threshold.
C) In order to combine the different window sizes, non-overlapping
windows with the lowest p-value are chosen and these are returned
as CISs. In the case shown, the 24 kb window with 7 insertions had
a lower p-values than best 44 kb window and the best 10 kb
window within the region.

Figure 6 Insert counting methods for p-value calculation. Three
different methods of counting the number of insertions within a
given CIS are used by the software in order to remove potential
artifacts from the final CIS list. In the figure 10 transposon insertions
from 6 different tumor libraries are shown. The number of insertions
can be derived 1) from the total number of inserts 2) the total
number of libraries within the CIS and 3) the total number of unique
regions within a cis that hold an insertion. The total number of
inserts obtained by these 3 counting methods are then indivually
used to test the null hypothesys that no enrichment is present using
the Poisson distribution based on the window size, the genome size
and the total number of inserts present in the dataset being
examined. We expect Bonferroni corrected p-values to be less than
0.05 for each of these 3 methods of counting in order to define
ideal CIS.
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artifact could arise from false priming events or barcode
mis-assignments. In order to eliminate these possible
artifacts, we also use a third method to calculate the p-
value, referred to as the “region p-value” and test the
null hypothesys that the total number of regions (inde-
pendent of library of origin or total insert count) is simi-
lar to what could be expected to be observed by random
chance.. This method uses the total number of unique
regions within a genomic window as the total number of
events. “Strong” CISs, meaning CISs that are composed
of many insertions, libraries and regions will be statisti-
cally significant using all three methods described above.
“Weaker” CISs, however will be significant only using
one or two of the methods. We recommend that at a
minimum, a CIS should have a insert p-value, a region
p-value and a library p-value less than 0.05 following
Bonferroni correction. The p-value test for each of these
3 events is user definable, with a default setting of 0.05.

Donor chromosome considerations
The user is provided with the option of excluding chro-
mosomes from consideration due to the potential for
local hopping observed within the donor chromosome
(the chromosome where the transposon resides prior to
mobilization).

Annotation
CISs are then automatically annotated based on a user
supplied .bed file to provide the names of the genes sur-
rounding the regions of interest. All elements within
20,000 bases are returned to the gene name column. If
no elements are present, this field gets filled with the de-
fault statement “No results within a 20,000 bp window”.
Every project for which this software has been utilized

has required analyses of multiple overlapping and non-
overlapping sets of libraries. To facilitate these analyses,
the software generates CISs based on a model where the
library and the analysis group are defined. Any library
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within a project can be combined with any other librar-
ies, resulting in the automatic calculation of new com-
bined wig files of raw mapping regions, insertion regions
and CISs.

Co-CIS and Pheno-CIS analyses
Valuable biological information can be extracted from
the CIS datasets by determining the association between
phenotypes and CISs (Pheno-CISs) as well as the asso-
ciations between individual Cooccurring CISs (Co-CISs).
TAPDANCE will automatically generate the associations
between the different phenotypes, between phenotypes
and CISs, and between separate CISs using Fisher’s
Exact test. Fisher’s exact test compares the probability of
getting the observed data distribution and all more ex-
treme deviations relative to the null hypothesis, where
the proportions between the two groups are random.
Multiple testing correction procedures with varying
levels of rigor (Bonferroni and Benjamini Hochberg) are
then applied separately to each of the three types of
associations being tested based on the number of tests
conducted. For the determination of association between
phenotypes and CISs the total number of tests being cal-
culated can be computed by multiplying the number of
phenotypes tested by the number of CISs being tested.
For the determination of association between CISs (or
between phenotypes) the total number of associations
tested can be computed using the formula to calculate
the total number of edges and diagonals in a polygon of
n sides (total = n(n-1)/2) where n is equal to the number
of CISs or the number of phenotypes. It is important to
emphasize that examination of association in datasets or
parts of datasets with insufficient power may mask sig-
nificant events due to the necessity to correct for mul-
tiple testing. The number of CISs to test for association
can be set by the user by defining a maximum p-value
for CISs to be considered in association analyses. It is
suggested that the user be aware of the power available
based on the sample size with regards to the annotations
and CISs examined. The default setting is all CISs with a
p = value< 10e-5. The phenotypes used for this calcula-
tion are all the sets where CIS generation is calculated
within a given project as defined by the user.

Results
A number of tests were used to determine that our auto-
mated package was performing robustly. Genomic posi-
tions were randomly generated and assigned to libraries,
with library counts equal to those from real experimen-
tal data sets. Analyses of CISs in these random datasets
determined that no genomic windows were statistically
significant. We further tested authentic mapped mouse
sequences obtained from chip-seq input control experi-
ments with library and sequence counts equal to those
from real experimental data sets. Somewhat surprisingly,
analyses of CISs in these datasets identified several
regions with high significance, which were repeatedly
found to be present. As these datasets are defined by
examining sequences in the absence of any selective
pressure, we hypothesize that these are regions that are
present in high copy number within the murine genome
but they are mistakenly annotated as a single copy in the
genome build. This hypothesis is supported by other
groups [15]. As these regions are also observed in many
of the screens we have conducted, we believe that these
regions should not be considered as drivers of tumori-
genesis. We also found another artifact specific to trans-
poson screens that contain endogenous murine sequence
within the transposon. Due to local hopping within the
original donor concatamer, the LM-PCR protocol will
amplify these internal jumps and they will map to the
murine genome. For example, part of the EN2 murine
gene sequence is included in the T2/Onc transposon. In
SB screens using this transposon, insertions mapping to
EN2 are excluded because of this artifact. All known
artifact regions, such as these, are labeled with the string
'BAD' in the annotation bed file and are not reported
by the software. The excluded regions are included as
Additional file 1: Table S1.
To compare the full functionality of TAPDANCE with

previous methods we reanalyzed the sequences obtained
for previously published colon cancer and liver cancer
screens [3,4]. Running the process using TAPDANCE
takes a fraction of the time of the original process. These
datasets were generated using the Roche 454 GS/Flex
platform. A representative summary of the 4 required
input files is provided as Additional file 1: Table S7.
Summary statistics are presented for the dataset as a
whole (Additional file 1: Table S8A) as well as broken
down by barcode (Additional file 1: Table S8B) and fi-
nally by library (Additional file 1: Table S8C).
The CIS thresholds automatically calculated via itera-

tive poisson distribution statistical analyses are very
similar to those defined by Monte Carlos simulation and
are calculated almost instantaneously (Additional file 1:
Table S2).
The CIS list is generated as a spreadsheet that contains

the chromosome, start and end address of the CIS re-
gion, the 3 associated p-values (insert, library, and re-
gion), the libraries that are included, and the annotation.
Additionally the total count of inserts that are capable of
driving insertions on the positive strand are provided for
each CIS. This number can be combined with the total
number of insertions to determine whether a specific
gene is potentially being overexpressed or is being dis-
rupted due to the orientation of transposon insertion.
CIS regions were identified in the colon cancer data

(n= 67; Additional file 1: Table S3) as well as the liver
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cancer data (n= 27; Additional file 1: Table S4). In total,
three files are useful for CIS visualization: (i) the wig file
containing the CISs where the CIS regions are identified
as peaks with a height corresponding to the –log of the p-
value. (ii) a bed file containing the regions and orientation
of the insertions used for CIS calculations (iii) a bed file
containing all individual seqeunce mappings. These can
be loaded into IGV (5) and the specific rational for each
Figure 7 Analyses of colon cancer data set. A) CISs on chromosome 18
shows the position on chromosome 18 and the y-axis shows the –log of th
chromosome 18. The CIS region, the intron exon boundaries of WAC and t
zoomed-in 1000 bp region of the WAC CIS showing further detail regardin
mappings that were used for the CIS region calls.
CIS, the orientation of each transposon and the raw inser-
tion mappings can be directly analyzed (Figure 7).
To demonstrate the meta-analyses and Pheno-CIS

portion of the software we performed a combined ana-
lysis of the insertions derived from liver tumors together
with the colon cancer tumor insertions and identified
CISs (n = 93; Additional file 1: Table S5) in the combined
dataset. The TAPDANCE software then automatically
, identified by the TAPDANCE system visualized by IGV , The x-axis
e p-value. B) Zoomed in visualization of the Wac CIS region on
he actual transposon insertion regions are shown. C) A further
g the transposon insertion orientation as well as the raw read
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calculated associations between tumor phenotypes
(colon or liver) and CISs. (Figure 8; Additional file 1:
Table S6) Specific CISs showed clear associations with
each of the tumor types as would be expected from the
known biology. For example insertions in APC are asso-
ciated with colon tumors, while EGFR insertions are
associated with liver tumors. Additionally, prior to the
removal of the Y-chromosome artifact from CIS consid-
eration the male phenotype was commonly observed to
be significantly associated with Y chromosome inserts,
which shows that the methodology is capable of identify-
ing statistical associations of biological relevance.
To further demonstrate the co-CIS capability of the

software we analyzed an insert dataset derived from
retroviral insertions obtained from the RTCGD [16]. This
dataset composed of ~6700 mapped insertions derived
from ~1600 tumor libraries was analyzed for CIS using
the TAPDANCE methodology. The results are consistent
with previously generated results (Additional file 1: Table
S9) and co-CIS were calculated between CIS with a re-
gion p-value< 0.00001. The top hits obtained by
Figure 8 Genome-wide association of phenotypes and CISs. A) Genom
tumors. The –log base 10 of the CISs p-value is plotted with an upper thre
all tumors. The header bar indicates colon tumors in dark grey and liver tu
library are indicated by red boxes in the first panel. In the second panel th
plotted as a heatmap with increasing yellow intensity showing increased s
significantly associated with colon tumors, while a CIS containing the Egfr
association are provided in Additional file 1: Table S6.
alternative formulations of co-occurring insertion event
analyses [7,9] in this dataset were also obtained by
TAPDANCE coCIS analyses (Additional file 1: Table
S10).
Finally, we compared our CIS calculation method dir-

ectly with the modified Gaussian kernel convolution
framework [6] using a pancreatic cancer dataset recently
published [17]. Our method was able to find and score
18 of the top 20 regions within the top 31 CIS
(Additional file 1: Table S11). All top 20 CIS were scored
within the top 50 CIS by TAPDANCE. The majority of
the differences can be attributed to the different meth-
ods of ranking used in the final sorts. It should also be
noted that the sequence analyses and genome mappings
were done independently, indicating that the full
TAPDANCE pipeline is showing similar results to the
modified Gaussian kernel convolution method.

Discussion
Previously, multiple steps in CIS generation sequence
cleaning, mapping to the genome, CIS calling, and
e-wide map of CISs calculated using all tumors, colon tumors or liver
shold of 16. B)Heat map of CISs with p-value> 10-5 calculated using
mors in light grey. Transposon insertions in CIS regions within a given
e Fisher’s exact test p-value has been converted to the –log base 10 is
tatistical significance. The CIS containing the Apc gene is highly
gene is highly associated with the liver tumors. Actual p-values for
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association needed to be carried out separately in a non-
automated fashion. In this work we present a fully auto-
mated rationally derived method for complete analyses
and make it publicly available. Previously, Monte Carlo
simulation based on the actual TA density within the
genome as well as the number of inserts on each
chromosome was used to estimate the number of inserts
necessary to be called a CIS within a given window. Our
method, utilizing the Poisson distribution based calcula-
tion directly provides similar results (Additional file 1:
Table S2) in a far less computationally intense and fully
automated fashion. In practice, window size thresholds
and significance cutoffs are remarkably similar to Monte
Carlo simulation based on TA density on a chromosome
by chromosome basis and calculated in a fraction of the
time. Additionally, P-values are generated for each CIS,
which is not possible using the Monte Carlo method as
previously implemented. The incorporation of multiple
schemes of counting of inserts for use within the p-value
calculation based on 1) total number of inserts within a
window; 2) based on the total number of libraries; 3) the
total number of unique insert regions allows for the se-
lection of CISs with “ideal” tumor driver characteristics
to be ranked higher than CISs with less ideal
characteristics.
We show that the potential for incorrect mapping

exists with short sequences, and resolve this by requiring
input sequences to be of sufficient length such that no
sequences will be mapped by random chance. Addition-
ally we have shown that 1) our empirically derived statis-
tical model for CIS calling behaves adequately using
random positional/library data and 2) real bias exists in
murine sequencing data that needs to be taken into ac-
count in the analyses of CISs.
This methodology is robust, statistically conservative

and efficient. The results generated are consistent with
previous workflows, both in the statistical thresholds
identified as well as the CIS list membership. This
method has a number of advantages. It runs much faster,
and is capable of running the volume of data currently
being generated via current NGS techniques. Similar
results are obtained, independent of sequencing depth
once a basic sampling threshold is reached. Using this
system we are able to obtain similar CIS results from
datasets that are sequenced separately using 454
(~1000’s of sequences per library) and Illumina
(~100,000’s of sequences per library). We have utilized
this software in the analyses of ~20 different forward
genetic screens using both 454 and Illumina based se-
quencing approaches.

Conclusions
Widespread incorporation of this software will allow
meaningful meta-analyses of transposon based genetic
screens. We also note that the software can be readily
configured to identify CISs and associations from any
organism.
Availability
We have made the full software package publicly avail-
able at Source Forge (http://sourceforge.net/p/tapdance-
bio/home) and the Galaxy Toolshed (http://toolshed.g2.
bx.psu.edu).
Requirements
The command line version of TAPDANCE requires the
user to have Bowtie [11], PERL DBI and R software in-
stalled. The command line version also requires access
to a read /write mysql account.
Additional files

Additional file 1: Additional supporting Tables. Table S1.xls. Suspect
regions identified in Chip-SEQ data. CISs found to be highly significant in
data sets composed from real mouse sequence obtained as a control for
CHIP-SEQ randomly assigned to libraries. The trial was repeated with 3
different subsets of data A, B, C. Regions returned from all 3 tests are
labeled “BADrepeat” and not returned as CIS drivers. Table S2.
Comparison of window sizes and insert numbers calculated to be
significant by Poisson distribution followed by Bonferroni correction with
window sizes and inserts calculated by Monte Carlo Simulation for Colon
cancer dataset and for liver cancer dataset. Table S3. CISs calculated by
TAPDANCE method for colon cancer dataset. Table S4. CISs calculated by
TAPDANCE method for liver cancer dataset. Table S5. CISs calculated by
TAPDANCE method for combined datasets. Table S6. Association results
for the combined datasets. Highly significant results are shown in Bold
for the association between A)phenoCIS and B)coCIS. Table S7. Examples
of 4 files required in the data directory in order to run the command line
version of TAPDANCE. A) a file containing sequences labeled seqs.tab. B)
A tab delimited file containing the barcodes, the library names ending in
either –L or –R based on the direction of priming and the direction of
priming (Left or Right). C) A tab delimited text file containing groups for
CIS analyses, the default superset for association should be labeled “all”
and subsets should be named with 6 or less meaningful characters. D) a
Text file containing chromosomes that should not be analyzed due to
the presence of the donor transposon concatamer and local hopping.
Table S8. Report of the counts of the initial mapping and how many
sequences have the described characteristics A) for the entire dataset, B)
broken down by directional library, and C) total for each library following
combination of left and right primed reads. Additionally in C the number
of reads that were mappable, the number of reads that map and the
total of regions that map at the defined threshold of the total mapped
sequences is reported. For mapping to the genome we have observed
50-80% mapping to the genome of the mutagenized organism. Mapping
percentages significantly lower would indicate potential problems. Table
S9. CIS identified in the RTCGD retroviral insertion dataset. Table S10. Co-
CIS identified in the RTCGD retroviral insertion dataset. Table S11. CIS
identified in a pancreatic ductal adenocarcinoma SB screen generated by
TAPDANCE methodology directly compared to the TOP 20 CIS generated
by the modified Gaussian kernel convolution framework.

Additional file 2: Example data. We have included a zipped up
archive.zip which contains 4 data files in the data directory, as well as the
results obtained after running the scripts.
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