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Abstract

Background: Over the past years, statistical and Bayesian approaches have become increasingly appreciated to
address the long-standing problem of computational RNA structure prediction. Recently, a novel probabilistic
method for the prediction of RNA secondary structures from a single sequence has been studied which is based on
generating statistically representative and reproducible samples of the entire ensemble of feasible structures for a
particular input sequence. This method samples the possible foldings from a distribution implied by a sophisticated
(traditional or length-dependent) stochastic context-free grammar (SCFG) that mirrors the standard thermodynamic
model applied in modern physics-based prediction algorithms. Specifically, that grammar represents an exact
probabilistic counterpart to the energy model underlying the Sfold software, which employs a sampling extension of
the partition function (PF) approach to produce statistically representative subsets of the Boltzmann-weighted
ensemble. Although both sampling approaches have the same worst-case time and space complexities, it has been
indicated that they differ in performance (both with respect to prediction accuracy and quality of generated samples),
where neither of these two competing approaches generally outperforms the other.

Results: In this work, we will consider the SCFG based approach in order to perform an analysis on how the quality of
generated sample sets and the corresponding prediction accuracy changes when different degrees of disturbances
are incorporated into the needed sampling probabilities. This is motivated by the fact that if the results prove to be
resistant to large errors on the distinct sampling probabilities (compared to the exact ones), then it will be an
indication that these probabilities do not need to be computed exactly, but it may be sufficient and more efficient to
approximate them. Thus, it might then be possible to decrease the worst-case time requirements of such an SCFG
based sampling method without significant accuracy losses. If, on the other hand, the quality of sampled structures
can be observed to strongly react to slight disturbances, there is little hope for improving the complexity by heuristic
procedures. We hence provide a reliable test for the hypothesis that a heuristic method could be implemented to
improve the time scaling of RNA secondary structure prediction in the worst-case — without sacrificing much of the
accuracy of the results.

Conclusions: Our experiments indicate that absolute errors generally lead to the generation of useless sample sets,
whereas relative errors seem to have only small negative impact on both the predictive accuracy and the overall
quality of resulting structure samples. Based on these observations, we present some useful ideas for developing a
time-reduced sampling method guaranteeing an acceptable predictive accuracy. We also discuss some inherent
drawbacks that arise in the context of approximation. The key results of this paper are crucial for the design of an
efficient and competitive heuristic prediction method based on the increasingly accepted and attractive statistical
sampling approach. This has indeed been indicated by the construction of prototype algorithms.
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Background

In computational structural biology, a well-established
probabilistic methodology towards single sequence RNA
secondary structure prediction is based on modeling sec-
ondary structures by stochastic context-free grammars
(SCFGs). In a sense, SCFGs can be seen as a generaliza-
tion of hidden Markov models (HMMs), which are widely
and successfully used in the large field of bioinformatics.
Briefly, SCEGs extend on traditional context-free gram-
mars (CFGs) by additionally defining a (non-uniform)
probability distribution on the generated structure class
which is induced by the grammar parameters that can eas-
ily be derived from a given database of sample structures
via maximum likelihood techniques. Notably, different
SCFG designs can be used to model the same class of
structures, where flexibility in model design comes from
the fact that basically all distinct substructures can be dis-
tinguished and with increasing number of distinguished
features, the resulting SCFG gains in both explicitness and
complexity, which may result in a more realistic distribu-
tion on the modeled structure class.

Traditionally, SCFG based prediction approaches are
realized by dynamic programming algorithms (DPAs) that
require O (%) time and O(n?) storage for identifying the
most probable folding for an input sequence of length n.
Examples for successful applications of several lightweight
(i.e. small and simple) SCFGs for RNA secondary struc-
ture prediction can be found in [1] and a popular SCFG
based prediction tool is for instance given by the Pfold
software [2,3].

However, for a very long time, the free energy minimiza-
tion (MFE) paradigm has been the most common tech-
nique for predicting the secondary structure of a given
RNA sequence. The respective methods are traditionally
realized by DPAs that employ a particular thermodynamic
model for the derivation of the corresponding recursions.
They basically require O(#®) time and O(n?) storage
for identifying a set of candidate structures for an input
sequence of length n. In fact, while early methods, like
[4-6], computed only one structure (the MFE structure of
the molecule), several more elaborate MFE based DPAs
have been developed over the years for generating a set
of suboptimal foldings (see, e.g., [7-9]). Some implemen-
tations are considered state-of-the-art tools for compu-
tational structure prediction from a single sequence, for
instance the Mfold software [9,10] or the Vienna package
[11,12].

In the traceback steps of the corresponding DPAs, base
pairs are successively generated according to the energy
minimization principle, such that the predicted set of sub-
optimal foldings often contains many structures that are
not significantly different (that have the same or very
similar shapes and contain mostly the same actual base
pairings). To overcome these problems, several statistical
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sampling methods and clustering techniques have been
invented over the last years that are based on the partition
function (PF) approach for computing base pair probabili-
ties as introduced in [13]. Briefly, these methods produce a
statistical sample of the thermodynamic ensemble of sub-
optimal foldings and rely on a statistical representation
of the Boltzmann-weighted ensemble of structures for a
given sequence [14]. They are implemented in the widely
used Sfold package [15].

In fact, over the past years, statistical approaches
to RNA secondary structure prediction have become
an attractive alternative to the standard energy-based
approach (which basically relies on several thousands of
experimentally-determined energy parameters). In prin-
ciple, many of these approaches — in contrast to Sfold
— rely on (thermodynamic) parameters estimated from
growing databases of structural RNAs. For instance, the
CONTRAfold tool [16] is based on a discriminative sta-
tistical method and uses a simplified nearest neighbor
model for the underlying conditional log-linear model
(CLLM). Briefly, CLLMs are flexible discriminative proba-
bilistic models that generalize upon more intuitive gener-
ative probabilistic models (like vanilla SCFGs or HMMs),
where any SCFG has an equivalent representation as an
appropriately parameterized CLLM. The prime advan-
tage of using discriminate instead of generative training
is that more complex scoring schemes can be considered,
whereas generative models are generally easier to train
and use. Actually, CONTRAfold in several cases manages
to provide the highest single sequence prediction accu-
racy to date and eventually closes the performance gap
between the best thermodynamic methods and the best
(lightweight) SCFGs. However, there are some bench-
marks that show better performance by other methods,
suggesting in the least that the performance of struc-
ture prediction can vary considerably depending on RNA
family [17-19].

Notably, following CONTRAfold, several other statis-
tical methods have been subsequently developed, such
as for instance constraint generation (CG) [20], or Con-
textFold [21]. These are all classified as discriminative
statistical methods which implement different variants of
standard thermodynamic models. In fact, they condition
on a set of RNA sequences being given (in order to obtain
estimates for the free energy parameters), whereas a gen-
erative SCFG approach models the probabilities of the
input RNA sequences (in order to induce corresponding
ensemble distributions).

Anyway, statistical methods for RNA folding have previ-
ously been chosen to be either purely physics-based (e.g.,
Sfold) or discriminative and implementing a thermody-
namic model (e.g., CONTRAfold), not generative. This
might have been due to the misconception that SCFGs
could not easily be constructed to mirror energy-based
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models (as mentioned e.g. in [16]), although it has been
demonstrated lately that this is actually possible (see,
e.g. [22]).

However, a generative statistical method for predict-
ing RNA secondary structure has recently been proposed
[23]. This method builds on a novel probabilistic sampling
approach for generating random candidate structures for
a given input sequence that is based on a sophisticated
SCFG design. Basically, it generates a statistical sample of
possible foldings for the given sequence that is guaran-
teed to be representative with respect to the correspond-
ing ensemble distribution implied by the parameters of
the underlying SCFG. Particularly, conditional sampling
probabilities for randomly creating unpaired bases and
base pairs on actual sequence fragments are considered
that are calculated by using only the grammar parameters
and the corresponding inside and outside probabilities for
the sequence. As the underlying elaborate SCFG mirrors
the thermodynamic model employed in the Sfold soft-
ware, this sampling algorithm represents a probabilistic
counterpart to the sampling extension of the PF approach
(as implemented in Sfold). In fact, the sole difference is
that it incorporates only comprehensive structural fea-
tures and additional information obtained from trusted
databases of real-world RNA structures instead of the
recent thermodynamic parameters.

Lately, in an attempt to improve the quality of gener-
ated sample sets, this probabilistic sampling approach has
been extended to being capable of additionally incorporat-
ing length-dependencies [24]. In particular, the employed
(heavyweight) SCFG has been transformed into a corre-
sponding length-dependent stochastic context-free gram-
mar (LSCFG) and parts of the respective procedures have
been modified accordingly (in order to deal with this
grammar extension). LSCFGs have been formally intro-
duced in [25], where the main difference to conventional
SCEFGs is that the lengths of generated substructures are
taken into account when learning the grammar parame-
ters, yielding a more explicit structure model induced by
the resulting length-dependent probabilistic parameters.
Note that in connection with problems related to RNA
structure, the idea of considering computational methods
that actually depend on the lengths of particular substruc-
tures is not only motivated by biological aspects but has
also been discussed or applied by other authors (see, e.g.,
[26,27]).

It remains to mention that although all three sampling
approaches (PF, SCFG and LSCFG based variants) need
O(n®) time and O(n?) storage for the generation of a
statistically representative sample for an input sequence
of length #, they obviously use different ways to define
a distribution on the ensemble of all feasible secondary
structures for the sequence. Applications to structure pre-
diction (with respect to sensitivity and PPV, as well as to
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the shapes of sampled structures and predictions) showed
that none of these sampling variants generally yields the
most realistic results. Actually, which one of them should
be preferred seems to strongly depend on the RNA type
of the input sequence, but most importantly on the qual-
ity of a corresponding training set and on the performance
of the thermodynamic model on such RNAs. However, if
the worst-case complexity of one of these variants could
be improved without significant losses in sampling quality
(that is, if any of them required less time or space than the
others while it sacrificed only little predictive accuracy),
then the corresponding method would be undoubtably
the number one choice for RNA structure prediction,
outperforming most if not all computational tools for
predicting the secondary structure of a single sequence.

For these reasons, the main objective of this paper is
given as follows: We will consider the (L)SCFG based
statistical sampling approach from [23,24] in order to
perform a comprehensive experimental analysis on the
influence of disturbances (in the considered conditional
sampling distributions) on the quality of generated sam-
ple sets. Particularly, we want to explore to what extend
the quality of produced secondary structure samples for
a given input sequence and the corresponding predictive
accuracy decreases when different degrees of disturbances
are incorporated into the needed sampling probabilities.
Note that some exemplary intuitive first results and cor-
responding observations have already been presented and
discussed in [28], where it is strongly suggested that a
much more meaningful evaluation based on more sub-
stantial results (with respect to several reasonable appli-
cations that are of great interest in connection with
sampling approaches) is needed to be able to draw reliable
conclusions.

The prime motivation for such a disturbance analysis
lies in the following facts: Suppose both the samples and
predictive results are observed to behave rather resistant
even with respect to large errors in the distinct sam-
pling probabilities (compared to the exact values). Then
it seems adequate to believe that the sampling procedure
does not have to calculate these probabilities in the exact
way, but it may efficiently suffice if they are only (ade-
quately) approximated. Thus, in this case it might obvi-
ously be possible to employ an approximation algorithm
(or at least a heuristic method) for sampling probability
calculations in order to decrease the worst-case time (and
maybe also space) requirements for statistical sampling
and hence finally for structure prediction. Furthermore, to
ensure that the quality of the generated sample sets and
the predictive accuracy remains sufficiently high, analysis
results on the effects of different disturbance levels and
types should be taken into account for the development of
an appropriate approximation scheme (or heuristic). From
the other perspective, suppose the quality of sampled



Scheid and Nebel BMC Bioinformatics 2012, 13:159
http://www.biomedcentral.com/1471-2105/13/159

structures seems to strongly react on rather slight distur-
bances already. In that case, there is obviously little hope
that the worst-case complexities of the sampling method
can be improved by finding a suitable heuristic procedure
for the computation of the needed sampling probabilities.

The aim of our study might hence be declared as to
prove or disprove the hypothesis that a heuristic method
could be implemented to improve the worst-case com-
plexity of single sequence RNA structure prediction, and
to discuss some potential ideas and inherent drawbacks
that seem relevant in connection with still guarantee-
ing highly accurate results. Although existing algorithms
are in practice quite fast on any sequence for which rea-
sonable structure prediction accuracy is expected (e.g., it
takes less than an hour to predict the thermodynamic PF
for a 23S rRNA of 2500 nucleotides), sacrificing little accu-
racy might still be assumed worthwhile, given the practical
speedup of efficient heuristic methods compared the cor-
responding exact (non-heuristic) algorithms (e.g., the con-
ference paper [28] reports that inside-outside calculations
are indeed highly accelerated by approximation).

Note that since for any input sequence, the time (and
space) complexities are dominated by those of the inside-
outside computations (realized by a corresponding DPA
which inherently scales O(#3) in time and needs O(n?)
storage), the most straightforward way for reducing the
time complexity of the overall sampling algorithm might
be based on an efficient approximation algorithm or
heuristic method for deriving the inside and outside val-
ues of the input sequence. Therefore, we will incorporate
disturbances into these values (that need to be derived
for any input sequence) rather than into the underlying
grammar parameters (transition and emission probabili-
ties trained on a suitable RNA database). This means that
in this work, the source of an error will not come from a
flawed learning set, although the study of random errors
in the applied grammar parameters would actually be
analogous to tests performed in connection with the ther-
modynamic PF [29]. The justification for a disturbance
study as aspired in this article is that the parameters of
the (L)SCFG underlying the statistical sampling algorithm
from [23,24] might be assumed to be available (or if not,
can be estimated beforehand in a single training step and
might then be used for numerous input sequences). For
this reason, applying random errors on the inside and out-
side values seems to be a much better test in the context of
investigations on the impact of a performance improving
heuristic.

As we will see subsequently, the (L)SCFG based sta-
tistical sampling algorithm strongly reacts to any kind
of rather small absolute errors already, whereas its reac-
tion even to rather large relative disturbances is in most
cases indeed fair enough to still obtain samples of accept-
able quality and corresponding meaningful structure
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predictions. Hence, it seems possible that a reduction of
the worst-case time requirements of the evaluated prob-
abilistic sampling approach might be reached — without
sacrificing too much predictive accuracy — by approximat-
ing the needed sampling probabilities in an appropriate
way. Throughout this article, we will actually present some
useful considerations on how a corresponding approxi-
mation scheme (or heuristic procedure) should be con-
structed in order to ensure that the sampling quality
remains sufficiently high.

The rest of this paper is organized as follows:
Section Methods introduces the formal framework,
including the (L)SCFG model, definitions of various types
and levels of disturbances and a corresponding recur-
sive sampling strategy that will be considered within this
article. A comprehensive disturbance analysis based on
exemplary RNA data and the corresponding results will
follow in Section Results and Discussion, where both the
quality of generated sample sets and their applicability to
the problem of RNA structure prediction are investigated.
Notably, we not only compare different ways for extract-
ing predictions from generated samples in order to assess
the predictive accuracy, but also present results on the
abstraction level of shapes that is of great interest and rel-
evance for biologists. Section Results and Discussion also
includes considerations on how to develop a correspond-
ing time-reduced sampling strategy without significant
losses in sampling quality. Notably, some of the key results
are discussed in Section Errors Only on Particular Values.
Finally, Section Conclusions concludes the paper.

Methods

In this section, we provide all needed information and
introduce the formal framework that will be used subse-
quently. We start by a recap of the relevant details of the
probabilistic sampling method from [23,24] and proceed
with formally defining how a number of different types
and levels of disturbances can be incorporated into the
corresponding (L)SCFG based statistical sampling vari-
ants. Last but not least, we present a modified version
of the employed sampling strategy that (contrary to the
original one) manages to deal with disturbed ensemble
distributions.

Note that we assume the reader to be familiar with the
notions and basic concepts regarding SCFGs. A funda-
mental introduction on stochastic context-free languages
can be found in [30]. Moreover, since for the understand-
ing of this paper, no additional information on length-
dependent stochastic models is needed, we refer to [25]
for details.

Sampling based on (L)SCFG model
In general, probabilistic sampling based on a suit-
able (L)SCFG has two basic steps: The first step
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(preprocessing) computes the inside and outside probabil-
ities for all substrings of a given input sequence based on
the considered (L)SCFG model. The second step (struc-
ture generation) takes the form of a recursive sampling
algorithm to randomly draw a complete secondary struc-
ture by consecutively sampling substructures (defined by
base pairs and unpaired bases) according to conditional
sampling probabilities for particular sequence fragments
that strongly depend on the inside and outside values
derived in step one.

Step One - Preprocessing

According to the traditional DPA approach for predict-
ing RNA structure via (L)SCFGs, a particular underlying
grammar, say G,, must be constructed to generate all
possible RNA sequences of any length (i.e., the language
L, of all non-empty strings over the alphabet X5 :=
{A, C,G, U}), where any derivation tree for a particular
sequence r € L, corresponds to one of the feasible
secondary structures (according to certain structural con-
straints like for instance to absence of pseudoknots, as
well as with respect to preliminary defined rules for base-
pairing) for r. This means any such (inevitably ambiguous)
grammar G, basically relies on an appropriately designed
(typically unambiguous) grammar G modeling the corre-
sponding secondary structures (i.e., the language £ of all
corresponding words over Xg, := {(,), o }, where () and
» represents any of the possible base pairs and unpaired
bases, respectively, see [31]). For our investigations, we
decided to rely on a rather elaborate (L)SCFG design,
namely the exact formal language counterpart to the ther-
modynamic model applied in the Sfold program, which is
given as follows:

Definition 2.1  ([23,24]). The (length-dependent)
SCFG G generating exactly all secondary struc-
tures is given by Gy = (Zg,, Xg,, Rg,,S), where Ig =
{S,T,C,A,P,L,F,H,G,B,M,O,N,U,Z}, g, = {(,),}
and for my, := minyg; > 1 and my := minpg > 1, Rg,
contains exactly the following rules:

p1:S — T,~ initiate exterior loop

p2:T — C, p3:T — A, pa:T — CA, p5:T — AT,
pe: T — CAT, ~ shape of exterior loop

p7:C — ZC, pg:C — Z, ~~ strands in exterior loop
po:A — (ML) ~~ initiate helix
p10:P — (L),~ extend helix

pi1:L — F, p1a:L - P, p13:L — G,
p1a:L — M, ~ initiate any loop

pis5:F — Z"~1H, ~ start hairpin loop
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pie:H — ZH, p17:H — Z,~» extend hairpin loop

p18:G — BA, p19:G — AB, ppo:G — BAB,
~ shape of bulge/interior loop

p21:B — ZB, py:B — Z,~ strands in bulge/interior
loop

p23:M — UAO, ~ fist substructure of multiple loop

p2a:0 — UAN,~ second substructure of multiple
loop

pos : N — UAN, pys: N — U,~ kth substructure of
multiple loop, k > 3

pa7:U — ZU, prg:U — €,~> strands in multiple loop

P29:Z — o. ~» unpaired base

Note that G; has been parameterized to impose two rele-
vant restrictions on the class of all feasible structures: first,
a minimum length of ming;, for hairpin loops and second,
a minimum number of minye consecutive base pairs for
helices, where common choices are ming; € {1,3} and
minpe € {1,2}. However, within this work we will only
consider ming; = minpe = 1, which corresponds to
the least restrictive (yet also most unrealistic) choice and
usually yields the worst sampling results (see [23,24]).

Moreover, the needed grammar parameters (trained on
a suitable RNA structure database) are splitted into a set
of transition probabilities P, (rule) for rule € Rg, and two
sets of emission probabilities Pr,,, (ry) for r, € g and
Pty (1, 7x,) for ry 74, € Eér, i.e. for the 4 unpaired bases
and the 16 possible base pairings, respectively. It should be
mentioned that in the length-dependent case, these prob-
abilities depend on the length of the subwords generated,
meaning we then have to use Pry(rule, len=len(rule)),
where len(rule) denotes the length of a specific applica-
tion of rule in a parse tree, which is defined as the length
of the (terminal) subword eventually generated from rule.
Accordingly, we need to consider Pr,,(ry,len = 1) and
Prey (ry, 7xy, len = x9 — x1 + 1), respectively. Note that
for the sake of simplicity, we will omit the length (second
parameter) in the sequel, hence using the same notations
in either case (length-dependent or not).

However, according to [23,24], the computation of all
inside probabilities

ax(i,)) =Pr(X =}, ri...1) (1)

and all outside probabilities
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Bx(i,)) = Pr(S :>}km ry... ri_erj+1 e Ty) (2)

for a sequence r of size n, X € Zg, and 1 < i,j < n, can
be done with a special variant of an Earley-style parser
(such that the considered grammar does not need to be
in Chomsky normal form (CNF)). Notably, both sampling
variants (length-dependent or not) can be implemented
to require O(#%) time and O(#%) memory for this prepro-
cessing step.

Step Two - Random structure generation

Once the preprocessing is finished, different strategies
may be employed for realizing the recursive sampling
step. In general, for any sampling decision (for example
choice of a new base pair), a particular strategy relies on
the respective set of all possible choices that might actu-
ally be formed on the currently considered fragment of
the input sequence. Any of these sets contains exactly
the mutually exclusive and exhaustive cases as defined by
the alternative productions (of a particular intermediate
symbol) of the underlying grammar. The corresponding
random choice is then drawn according to the result-
ing conditional sampling distribution (for the considered
sequence fragment). This means the respective sampling
distributions are defined by the inside and outside values
derived in step one (providing information on the dis-
tribution of all possible choices according to the actual
input sequence) and the grammar parameters (transition
probabilities).

In this work, we will only consider the well-established
strategy from [23,24], which is also implemented in the
corresponding second step of the physics-based sampling
algorithm underlying the popular Sfold tool. Basically,
a secondary structure is sampled recursively by start-
ing with the entire RNA sequence and consecutively
computing the adjacent substructures (single-stranded
regions and paired substructures) of the exterior loop
(from left to right), where any paired substructure is com-
pleted by successively folding other loops. In fact, the
base pairs and unpaired base(s) are successively sam-
pled according to conditional probability distributions
for the considered fragment, given a partially formed
structure.

For example, suppose fragment R;; := r;...r; of input
sequence r, 1 < i,j < n = |r|, is to be folded, where it is
known that the resulting substructure on R;; must corre-
spond to a (valid) derivation of a particular intermediate
symbol X € Zg, (according to the partially formed struc-
ture). Then, the strategy considers the corresponding set
acX(i,j) of all choices for (valid) derivations of X on R;},
which actually correspond to all possible substructures
on R;; (the mutually exclusive and exhaustive cases for
X on R;j). Under the assumption that the alternatives for
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intermediate symbol X are equalto X — Y and X — VW,
this set is defined as follows:

acX(i,j) = acXy (i, ) UacXyw(,j), (3)

where

acXy(i,)) : = {prob | prob = Bx(i,)) - ay (i, )
X Pry(X — Y) # 0}
= {Bx(i,)) - prob | Bx(i,j) # 0 and

prob =ay(i,j) - Pry(X — Y) #0}

and

acXyw (i,j) == {{k, prob} | i <k <j and prob = Bx(i, )
x ay (i, k) -aw (k + 1,))-Pry(X — VW)
# 0}
= {{k, Bx(i,)) - prob} | i <k <j and
Bx(,)) # 0 and prob = ay (i, k) - aw(k + 1,))

x Pry(X — VW) # 0}.

Consequently, we have to sample from the corre-
sponding conditional probability distribution induced by
acX(i,j), that is the random choice is drawn according to
the following set of sampling probabilities:

b
{ pro | prob € acXy(i,j) or {k, prob} € ochVW(i,j)} ,

norm
(4)
where obviously,
prob prob
=1 5
Z orm + Z orm )

n
probeacXy (i) {k,prob}eacXvw (i,))

must hold, which can in general easily be guaranteed by
using norm = Bx(,j) - ax(i,j). However, if there may
occur inconstancies in the distribution induced by the
underlying grammar model (for example if a particular
implementation faces problems that arise from numerical
imprecisions or if the distribution has been deliberately
disturbed as we intend to do in the sequel), we should
instead use
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norm = E

probeacXy (i,))

= Bx(ij) >

Bx (ij)-probeacXy (i)

+ 2

{k,Bx (ij)-prob}eacXvw (i,j)

prob + Z

{k.prob}eacXvw (i,j)

prob
prob

prob

=BxGj) - | ay (o)) - Pro(X — YY)+ > av(ik)

i<ks<j
aw (k+1,j) - Prp(X — VW)

= Bx(i,)) - normy,

which then ensures that the corresponding sampling
probabilities still sum up to unity, such that they indeed
define a conditional probability distribution).

Note that the sampling strategy effectively works con-
form with the SCFG model, which means that it actu-
ally samples one of the possible parse trees of the given
input sequence by randomly drawing one of the respective
mutually exclusive and exhaustive cases (corresponding
to the distinct grammar rules with same premise) at any
point in the already partially constructed parse tree in
order to generate one of the possible subtrees for the given
input sequence (corresponding to one the possible sub-
structures on the considered sequence fragment, which is
currently being folded recursively).

Hence, according to the sampling process, we could
have never gotten to a point where we have to consider
all mutually exclusive and exhaustive cases for a partic-
ular premise X € Zg, on an actual sequence fragment
Rij, 1 < i,j < n, if the grammar could not derive the
sentential form ry...7;1Xrji1...r, from the start sym-
bol (axiom) § € Zg,, that is if the outside value Bx(i, )
would be equal to 0. This in fact means that the respective
probability distribution (conditioned on the considered
fragment R;;) from which the strategy randomly samples
one of the possible substructures (one valid subtree of the
already partially constructed parse tree) is not influenced
by the corresponding outside probability, due to the fact
that Bx(i,j) > O indeed only represents a scaling fac-
tor common to all sampling probabilities for the relevant
mutually exclusive and exhaustive cases. For this reason,
we can obviously without loss of information remove the
outside values from the definitions of the needed sampling
probabilities. The correctness of this simplification can
easily be formally proven by considering the above defined
set acX (i, ) of all choices for possible derivations of inter-
mediate symbol X on sequence fragment R;;. In fact, the
sampling strategy randomly draws one of the elements
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from acX (i, j) according to the corresponding distribution
induced by normalizing the probabilities of the elements
in acX(i, j) such that they sum up to unity. Particularly, we
have

= ¥

Bx (i,j)-probeacXy (i)
Z Bx(i,}) - prob

ﬂX(l)]) + NOrmy

Bx (i, )) - prob
Bx (i, )) - normy

+
{k,Bx (i,j)-prob}eacXvw (i,j)

1
— . Z prob
normey .. ..
Bx (i,j)-probeacXy (i)
+ Z prob
{k,Bx (i,j)-prob}eacXyw (i,))
! prob
norimy probeacXy (i,f) ﬁX(l’])
rob
" X
{k,probYeacXyw (i,j) X

since Bx(i,]) # 0 holds (due to the definitions of acXy (i, )
and acXyw (i,))).

Formal definitions of all corresponding sets acX(i,j),
X € Ig, and 1 < i,j < n, that are considered by the recur-
sive sampling strategy for any input sequence of length #,
including formulae for deriving the respective conditional
sampling probabilities, can be found in Section Sm-I1? (of
Additional file 1). Notably, all those formulae only depend
on some of the parameters of the underlying (L)SCFG
model and the corresponding inside values, such that after
a preprocessing of the given sequence (which includes
the complete inside computation and needs O(#) time
in the worst-case), a random candidate structure can be
generated in O(#?) time.

Considered disturbance types and levels

Obviously, under the assumption of a particular (L)SCFG
model (trained beforehand on arbitrary RNA data), the
most straightforward way for improving the performance
of the corresponding overall sampling algorithm seems to
be by reducing the worst-case complexity of the inside
calculations. Therefore, we decided to quantify to which
extend the algorithm reacts to different types and degrees
of disturbances incorporated into the considered inside
probabilities in order the get evidence if it could actually
be possible to find a corresponding approximation algo-
rithm (or at least an appropriate heuristic method) that
eventually requires less time but causes only acceptable
losses in accuracy. In fact, with respect to developing a
suitable heuristic method to be applied in practice, it is
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necessary to know about the effects of different distur-
bance levels and types to get an idea on how precisely
the respective values need to be approximated in order to
guarantee sufficiently good results and to find out which
types of errors pose fundamental problems and which
ones are negligible.

For these reasons, given an arbitrary input sequence r
of length 7, we decided to consider (more or less) skewed
inside probabilities”

aX(ly]) = maX(min(OlX(i;f) + asz(rr(i’j)) 1)» O)) (6)

for X € Zg, and 1 < i,j < n, rather than the correspond-
ing correct values ax(i,j) (obtained in the preprocessing
step for r) for defining the needed sampling probabilities.
More precisely, we want to incorporate different stages
of (more or less grave) randomly chosen errors into par-
ticular inside values for the given sequence, that is into
preliminary chosen subsets of the set of all precomputed
inside probabilities ax(i,j), X € Zg, and 1 < i,j < n.
Note that is actually suffices to consider X € Zg :=
{T,C,A,P,F,G,B,M,O,N,U} C ZIg, since only those
intermediate symbols are needed for defining the diverse
sampling probabilities that are used by the employed
sampling strategy for obtaining the distinct conditional
distributions for drawing particular random choices.

However, in order to reach our previously declared
goal, for any fixed value prob € (0,1]¢, we decided to
draw a¥"(i,j) (uniformly) at random from either of the
following sets:

Interval(func), if X € T C Igs

and [ (j—i+1>win and op=+) or
G—i+1<winand op = —)],

{0}, else,

funcgm")p (prob) :=

(7)

such that only inside values of particularly chosen inter-
mediate symbols that lie outside (op = +) or within (op =
—) a considered window of preliminary fixed size are actu-
ally disturbed, that is only for those values &x(i,j) #
ax(i,j) might result. Notably, Interval(func) is not cen-
tered on ax (i, /), as it actually describes the set of error
values a%" (i, j) that might be drawn (uniformly) at random
— which are then added to ax (i, j). Anyway, in the sequel,
we will basically consider either

func"°P (prob) := funcvzvén")p (prob) (8)

(i.e., disturbances only inside or outside fix-sized window,
but for all intermediate symbols),

funcz(prob) := ﬁ/mc;’Jr (prob) = func; 1= (prob)  (9)
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(i.e., errors for all subword lengths, but only for particular
intermediate symbols), or simply
Sfunc(prob) = ﬁmcngr (prob) = func}éﬁ (prob)  (10)

(i.e., disturbances on all considered inside values).

Moreover, func € {mep, fep, mev, fev} denotes the actual
disturbance type. Principally, we distinguish between two
degrees of errors: relative and absolute ones. To gener-
ate relative errors, we might either use func = mep
(which stands for maximum allowed error percentage,
with respect to the corresponding correct value) or func =
fep (for fixed error percentage, which is ought to force
greater and hence more severe random errors). Formally,
this means that either

Interval(mep) :=[ —prob-ax (i, }), +prob-ax(i,j)] (11)
or
Interval(fep) := {—prob - ax(i,}), +prob-ax(i,j)} (12)

might be employed for randomly drawing a relative error
a"(i,j), where prob € (0,1] indeed defines the desired
percentage. Note that the consideration of symmetric
intervals (as defined by Interval(mep)) is of interest as
it models the case that all errors a¥"(i,j) are bounded
but do not need to admit the maximum value possible
(according to prob). When studying relative errors in con-
nection with this variant, this basically corresponds to
assuming a particular approximation ratio of the under-
lying algorithm. The consideration of discrete sets (as
defined by Interval(fep)) corresponds to the case that any
error takes on the maximum value possible (according to
prob). This variant hence explicitly describes the worst-
case (by means of magnitudes of incorporated errors) of
the symmetric interval variant and is actually of inter-
est as it enables a more reliable study of the influence of
disturbances, particularly in cases where the extenuated
symmetric interval variant defined by mep seems to have
no effect on the resulting accuracy.

For similar reasons, in order to randomly choose an
absolute error a%"(i,j) for obtaining a (potentially) dis-
turbed probability @x (i, /), we might equivalently consider
either

Interval(mev) :=[ —prob, +prob] (13)

or

Interval(fev) := {—prob, +prob}, (14)

with prob € (0,1] being a preliminary fixed value. This
means we may use func = mev (which stands for max-
imum allowed error value, independent on the corre-
sponding correct value) and func = fev (for fixed error
value, usually resulting in more grave disturbances) for
causing absolute disturbances.
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Note that random errors on all outside probabilities
Bx(i,j), X € Ig, and 1 < i,j < n, could be gener-
ated in basically the same way, but since those values can
be deliberately excluded from the definition of sampling
probabilities (according to the employed sampling strat-
egy), this is obviously not necessary for the subsequent
investigations.

Finally, it should be clear that for func € {mep, fep}
(resulting in relative errors), only the magnitudes of the
corresponding sampling probabilities (with respect to
the implied skewed conditional sampling distributions)
change, such that the exact same structures are possible as
in the undisturbed case. Hence, we might expect that only
the consideration of sufficiently large percentages prob €
(0,1] for generating errors according to funcy " (prob)
can cause an actual shifting in the ensemble distribution,
resulting in significant quality losses. The contrary holds
for absolute errors created according to funcvzvm'()p (prob)
with func € {mev, fev}. In fact, since the (cardinalities of
the) respective sets of relevant sampling choices implied
by the skewed ensemble distribution generally differ (to a
more or less severe extent) from the corresponding exact
ones, it must be expected that only rather small fixed
error values of prob € (0,1] are reasonable choices for
our purpose. However, since for distinct subword lengths
j—i+ 1,1 < ij < n, the corresponding probabilities
ax(i,)) for any X € Zg usually imply different orders of
magnitudes, it seems practically impossible to tell how to
find an appropriate fixed error value for creating absolute
disturbances.

Resulting modified sampling strategy

It should be clear that after the desired errors (accord-
ing to any of the previously specified variants of either
mep, fep, mev or fev) have been incorporated into the pre-
computed exact inside (and outside) values for a given
sequence, the needed conditional sampling distributions
(as considered by a particular strategy) are induced by
the exact grammar parameters and the disturbed inside
(and outside) probabilities for that sequence. This, how-
ever, might create the need to (slightly) modify the
respective particularly employed sampling strategy such
that it finally gets capable to deal with these skewed
distributions.

As for this work, consider the previously sketched recur-
sive sampling strategy from [23,24]. Without any errors
in the conditional probability distributions (i.e. by using
the exact probabilistic parameters for the given input
sequence, particularly the corresponding inside values),
it always successfully generates the sampled loop type
for a considered sequence fragment. For example, sup-
pose the sampling procedure decides that base pair r;.7;
should close a multiloop, then the sequence fragment
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Riy1j-1 := riy1...7j-1 is guaranteed to be folded into an
admissible multiloop that by definition contains at least
two helical regions radiating out from this loop. How-
ever, by using disturbed sampling probabilities (given by
the exact parameters of the underlying (L)SCFG model
and disturbed inside values for input sequence r, derived
by incorporating any sort of errors), the sampling algo-
rithm may choose to form a particular substructure on
the fragment R;; 1 1, although this would actually not be
possible.

Therefore, we had to slightly modify the sampling pro-
cedure such that in any case where the chosen substruc-
ture type can not be successfully generated, it settles
for the partially formed substructure. That is, it either
leaves the complete fragment unpaired (if the desired
base pairs could not be sampled at all), or else it for
example only creates a bulge/interior loop although a mul-
tiloop should have been constructed (but only one helix
has been successfully sampled). The resulting modified
versions of the distinct sampling steps (in pseudocode)
are given in Section Sm-I (of Additional file 1), Figure 1
gives a schematic overview of the overall sampling
process.

Note that alternatively, the algorithm could have been
modified to revise any decisions that lead to incom-
pletely generated substructures, resulting in some sort of
backtracking procedures that obviously would have to be
applied in order to sample more realistic overall structures
for a given RNA sequence. However, as this effectively
results in much more complex modifications and eventu-
ally yields significant losses in performance, we opted for
the simpler and more straightforward first variant to get
rid of the described problem.

Results and discussion

The aim of this section is to perform a comprehen-
sive experimental analysis on the influence of distur-
bances (in the ensemble distribution for a given input
sequence) on the quality of sample sets generated by
the (L)SCFG based statistical sampling approach from
[23,24]. In fact, we want to explore to what extend the
quality of produced secondary structure samples for a
given input sequence and the corresponding predictive
accuracy decreases when different degrees of errors are
incorporated into the needed sampling probabilities.

RNA structure data

For our examinations, we decided to consider different
sets of trusted RNA secondary structure data for which
the (L)SCEG based sampling approach yields good quality
results when no disturbances are included in the respec-
tive sampling distributions for a given sequence. There-
fore, we took the same tRNA database (of 2163 distinct
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tRNA structures with lengths in [64, 93] and about 76 on
average, derived from [32]) and the identical 5S rRNA data
set (of 1149 distinct sequences with lengths in [102, 135]
and about 119 on average, retrieved from [33]) as collected
in [23]. These two rich data sets of trusted RNA secondary
structures will be exclusively used as the basis for the fol-
lowing applications, such that the results can easily be
opposed to the corresponding ones presented in [24].

Probability profiling for specific loop types

A statistical sample of all possible secondary structures for
a given RNA sequence can be used for sampling estimates
of the probabilities of any structural motifs. Actually, prob-
ability profiling for unpaired bases within particular loop
types can easily be applied for this purpose. In principle,
for each nucleotide position i, 1 < i < nu, of a given
sequence of length 7, one computes the probabilities that

i is an unpaired base within a specific loop type. These
probabilities are given by the observed frequencies in a
random sample set.

Since this application is rather intuitive, we decided to
use it as a starting point for our disturbance analysis.
Particularly, we derived a number of statistical samples
for the well-known Escherichia coli tRNA4% sequence
by applying the sampling strategy from Section Result-
ing Modified Sampling Strategy on the basis of diverse
sets of probabilistic parameters (inside probabilities dis-
turbed according to several particular variants as defined
in Section Considered Disturbance Types and Levels)
for that sequence and calculated corresponding proba-
bility profiles. All relevant results are displayed in Addi-
tional file 1: Figures S1 to S14 of Section Sm-II. Some
of the potentially most interesting ones are presented in
Figures 2, 3 and 4.
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Let us first consider the profiles displayed in Figure 2 (and
in Additional file 1: Figures S1 and S2). Obviously, even if
large relative errors on all inside probabilities and hence
on the needed conditional sampling probabilities are gen-
erated, the sampled structures still exhibit the typical
cloverleaf structure of tRNAs, especially for the length-
dependent sampling approach where relative disturbances
seem to have no significant negative effect on the sam-
pling quality (see Figure 2a). However, Figure 2b perfectly
demonstrates that if the disturbances have been created
by adding absolute errors to all inside values, then — even
for rather small absolute error values — the resulting sam-
ples obtained with both the SCFG and LSCFG approach
are useless.

Note that for any given input sequence, it seems to
be usually much more important for the employed sam-
pling strategy to be able to identify which ones of the
(combinatorially) possible substructures can actually be
(validly) formed on the considered sequence fragment
rather than to know their exact probabilities (according to
the conditional distribution for the respective fragment),
for two contrary reasons: First, in order to avoid draw-
ing practically impossible choices, which later forces it to

leave the considered sequence fragment (at least partially)
unpaired®. Second, for ensuring that none of the actually
valid choices is prohibited during the folding process, such
that the sampling procedure might inevitably prefer other
(potentially even impossible) substructures.
Consequently, in order to prevent a decline in accu-
racy of generated structures and a reduction of the overall
sampling quality, it seems to be of great importance that
the sampling strategy is capable of distinguishing between
inside values and especially sampling probabilities that
are equal and unequal to zero according to the exact
(undisturbed) ensemble distribution for the given input
sequence. By adding absolute errors, however, inside or
sampling probabilities being equal (unequal) to zero in the
exact case might often become unequal (equal) to zero
according to the resulting skewed (disturbed) distribu-
tions, whereas by incorporating relative errors, all consid-
ered inside and sampling probabilities obviously stay equal
or unequal to zero (as in the exact case), which intuitively
explains the basic observations made from Figure 2.

Relevant sampling probabilities
Nevertheless, in order to draw more detailed conclusions,
we counted and compared the relevant (i.e., greater than
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zero) inside and sampling probabilities that were consid-
ered for obtaining the profiles presented in Figure 2. The
results are collected in Additional file 1: Tables S1 and S2
of Section Sm-II.

First, it seems obvious that due to the more explicit
length-dependent version of the considered grammar
parameters (length-dependently trained transition and
emission probabilities), there should generally result a
much smaller number of relevant inside values and sam-
pling probabilities when applying the LSCFG model rather
than the conventional one. Tables S1 and S2 exemplar-
ily prove this intuitive assumption. Note that this effect
might indeed be responsible for the observation that
the LSCFG based sampling approach reacts consider-
ably less to large relative errors than the conventional
length-independent variant, as indicated by Figure 2a:
less inside probabilities are effectively disturbed, such that
the extend of the relative errors imposed on the cor-
responding sampling probabilities is inevitably smaller
for the LSCFG variant than for the length-independent
one.

Moreover, there are much more relevant exact inside
and sampling probabilities than corresponding relevant
disturbed values for basically any (intermediate) symbol
when considering the traditional SCFG model, whereas
for the LSCFG variant the contrary holds, that is generally
way more inside and sampling probabilities are relevant in
the disturbed cases than in the exact case. Actually, in both
cases (length-dependent and not), the numbers of relevant
disturbed inside values &x (i, ), 1 < i,j < n, are rather sim-
ilar (for basically all X € 73 ), in contrast to the numbers
of relevant sampling probabilities (corresponding to valid
choices for substructures) for the distinct sampling steps
which are in general to a large extend greater when using
the traditional SCFG approach than under the assump-
tion of the corresponding LSCFG model. This behavior
might be the reason for the fundamental differences in
the resulting (albeit useless) loop profiles presented in
Figure 2b.

Finally, it remains to mention that under the assump-
tion of the conventional SCFG model, it happens that
for any X € Zg, most inside values are relevant in
both the exact and the disturbed case, whereas signifi-
cantly less are relevant only in the exact case and very
few are only relevant in the disturbed case (see Table S1a).
Considering the LSCFG variant, however, for any X €
Z¢, the least inside values are relevant only in the exact
case, as indicated by Table S1b. Obviously, this seems to
be the natural consequence of the previously formulated
observations.

Errors only on particular values
Now, in an attempt to find out in which cases partic-
ular absolute errors have a very significant (negative)
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impact on the resulting sampling quality and to identify
potentially existing situations where they barely influence
the output of the applied statistical sampling algorithm,
we want to consider some of the more specialized vari-
ants for generating absolute disturbances (as defined in
Section Considered Disturbance Types and Levels). The
corresponding profiles are basically shown in Figures 3
and 4 (as well as in Additional file 1: Figures S3 to S14).

Notably, even if absolute disturbances may only occur
for inside values ax(i,j), X € Zg, withj —i+1 >
win (i.e., for substructure lengths greater than a particu-
lar fixed value win), the corresponding sampling results
are of no practical use at all (see Figure 3). In fact, there
seem to be no noticeable improvements when consid-
ering increasing values of win, which means that even
if more inside values ax(i,j), X € Zg, namely those
satisfying j — i+ 1 < win, are guaranteed to be exact (con-
tain no relative or absolute errors), the resulting samples
might not be expected to gain in quality. This obser-
vation is actually unfortunate as regards the derivation
of a corresponding heuristic version of the inside algo-
rithm, since the inside computation starts by calculating
the respective values for small sequence fragments and
subsequently considers larger ones, meaning the straight-
forward approach of deriving all values ax(i,)), X € 73,
with j — i + 1 < win in the exact way and approximat-
ing only the remaining ones (i.e., using a constant window
size win for exact calculations) might not yield results of
acceptable quality if absolute errors can not be ruled out
(completely).

Nevertheless, as we can see from Figure 4, if absolute
disturbances may only occur for inside values ax(i,)),
X e Igs, with j — i+ 1 < win (ie., for substructure
lengths less than or equal to a particular fixed value win),
the corresponding sampling results might actually be of
acceptable quality, but seemingly only for rather small val-
ues of win. This means in order to obtain a practically
applicable heuristic, it seems a good idea to consider a
constant (small enough) window of size win and com-
pute all values ax(i,)), X € Zg, withj —i+1 > win
in the exact way, thus approximating only those satisfying
j— i+ 1 < win. However, due to the contrary course of
action of traditional inside calculations, this approach can
obviously not be realized. Consequently, this observation
does not contribute to developing an appropriate heuristic
variant of the preprocessing step, but it actually motivates
the construction of an innovative sampling strategy that
takes on a reverse sampling direction (that constructs sub-
structures in an inside-to-outside fashion, contrary to the
generation of corresponding derivation trees according to
the underlying grammar).

Finally, for the sake of completeness, it should be noted
that by incorporating absolute errors (for all subword
lengths) only for any of the distinct intermediate symbols
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X € Ig at once (ie., by disturbing only the inside
values ax(i,j), 1 < i,j < n, for a particular X € Igs),
we found out that some are more sensitive with respect
to disturbances in the underlying ensemble distribution
than others (see Additional file 1: Figures S7 to S14 of
Section Sm-II). In principle, the strongest (negative) reac-
tions to the influence of the generated absolute errors
were observed for symbols T, C, A, F (for the tradi-
tional SCFG model), G and U, whereas less severe quality
losses basically resulted for intermediates M, O, N and
P. Moreover, for two symbols, namely F (for the LSCFG
model) and B, we recognized no noticeable impact of
the caused disturbances to the accuracy of the generated
sample sets.

Prediction accuracy - Sensitivity and PPV

In connection with sampling approaches, there exist
diverse (more or less) efficient well-defined principles for
extracting a particular structure prediction from a gener-
ated set of candidate structures for a given input sequence.
In fact, under the condition that a corresponding folding
can be calculated in O(#®) time and with O(1n?) storage
(i.e., has the same worst-case complexities as the prepro-
cessing step), the statistical sampling method considered
in this work can easily be applied to single sequence sec-
ondary structure prediction without significant losses in
performance and its predictive power can easily be mea-
sured by means of seusitivity (Sens.) and positive predictive
value (PPV)L. Briefly, these two common measures are
widely used in order to quantify the accuracy of RNA
secondary structure prediction methods and are usually
defined as follows (see e.g. [34]):

e Sens. is the relative frequency of correctly predicted
pairs among all position pairs that are actually paired
in a stem of native foldings, whereas

® PPV is defined as the relative frequency of correctly
predicted pairs among all position pairs that were
predicted to be paired with each other.

Formally, they are given by Sens. = TP - (TP + FN)~!
and PPV = TP . (TP + FP)™!, where TP is the num-
ber of correctly predicted base pairs (¢rue positives), FN is
the number of base pairs in the native structure that were
not predicted (false negatives) and FP is the number of
incorrectly predicted base pairs (false positives).

In order to investigate to what extend the accuracy of
predicted foldings changes when different dimensions of
relative disturbances are incorporated into the needed
sampling probabilities, we decided to perform a series of
cross-validation experiments based on the same partitions
of the tRNA and 5S rRNA databases into 10 approximately
equal-sized folds, respectively, as considered in [23,24]. In
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particular, for each sequence, we generated several sample
sets on the basis of different relative error types and val-
ues, where from each of the produced samples, we derived
corresponding predictions according to a number of com-
peting reasonable selection principles and construction
schemes (which can all be applied to the respective sam-
ple set without increasing the worst-case complexity of the
overall algorithm).

Briefly, we employed two different well-defined selec-
tion procedures in order to identify one particular struc-
ture from the produced sample as prediction: First, we
picked the most likely secondary structure (ie., the one
with the highest probability among all feasible struc-
tures for the input sequence according to the induced
(L)SCFG model), in strong analogy to traditional SCFG
based probabilistic structure prediction methods. This
choice will be denoted by most probable (MP) struc-
ture subsequently. Additionally, as one of the most
straightforward and reasonable choices for statistically
representative samples of the overall structure ensem-
ble, we took the most frequently sampled folding (i.e.,
the one with the highest number of occurrences among
all candidate structures within the generated sample
set), which will be named most frequent (MF) structure
subsequently.

Note that if the samples are indeed representative
with respect to the underlying ensemble distribution (i.e.,
if a sufficiently large number of candidate foldings is
randomly generated on the basis of the corresponding
conditional probability distributions considered by the
employed strategy), then these two predictions should be
rather identical in most cases, at least if no disturbances
are considered (i.e., under the condition that the exact
inside probabilities are used for deriving the respective
conditional sampling distributions). In fact, any repre-
sentative set of candidate structures for a given input
sequence obtained by (L)SCFG based statistical sampling
obviously reflects the probability distribution on all feasi-
ble foldings of that sequence which strongly depends on
the corresponding inside probabilities. Thus, if the pre-
processed inside values contain any errors, then the MF
structure of a particular statistically representative sam-
ple set corresponds to the most likely folding of the given
sequence with respect to the skewed ensemble distribu-
tion induced by the disturbed inside values, whereas the
MP structure of that sample is indeed equal to the most
likely folding (among all generated candidate structures)
with respect to the exact ensemble distribution®. Hence,
the results for MP and MF structure predictions might
differ in the disturbed cases, especially as the gravity of
generated disturbances grows.

However, we decided to additionally apply two different
commonly used construction schemes for computing a
new structure as predicted folding, where the predicted
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structure itself must not necessarily be contained in
the given sample. Particularly, we first determined a
maximum expected accuracy (MEA) structure of the gen-
erated sample set as defined in [23], which maximizes
the number of correctly unpaired and paired positions
with respect to the true folding and is computed on
the basis of the considered sample (rather than on the
basis of the entire structure ensemble for the sequence
as done for example in the Pfold [3] and CONTRAfold
[16] programs). Furthermore, we calculated the unique
consensus structure of the produced sample, called the
centroid structure, which effectively reflects the overall
behavior of the sample set and is actually formed by all
base pairs that occur in more than 50% of the sampled
structures (for details, see e.g. [35]). Note that for similar
reasons as discussed above for MF structure predictions,
MEA and centroid structures obtained from statistically
representative sample sets can only reflect the skewed
ensemble distribution rather than the exact one in the
disturbed case.

Table 1 Prediction results by means of sensitivity and PPV
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Last but not least, we derived two different sets of
so-called yt—o-MEA and y;—,-centroid structures for the
produced samples, respectively, as defined in [23] (in con-
nection with sampling algorithms), where y;_, €[0, c0)
is a trade-off parameter for controlling the sensitivity and
PPV of the predicted foldings. Note that the default choice
Yt—o = 1 serves as the neutral element with respect to
the prediction, meaning the prediction is neither biased
towards a better sensitivity nor to a better PPV and cor-
responds to the above described well-known MEA or
unique centroid structure, respectively. Notably, by mea-
suring the performance at several different settings of
Yt—o (i.e. by determining the (adjusted) sensitivity and
PPV for various values of y;_,), it becomes possible to
derive a corresponding receiver operating characteristic
(ROC) curve" and to calculate the estimated area under
this curve (AUC), for both the MEA and the centroid
prediction principle, respectively. This obviously allows
for a much more informative and reliable comparison of
the predictive powers of the different sampling variants

(a)For our tRNA database

Approach Errors MP struct. MF struct. MEA struct. Centroid

Sens. PPV Sens. PPV Sens. PPV Sens. PPV

SCFG — 0.7818 0.8437 0.7792 0.8445 0.7324 0.8939 0.6754 0.9158
mep (0.5) 0.7822 0.8447 0.7599 0.8370 0.7169 0.8927 0.6607 0.9140

mep (0.99) 0.7590 0.8388 0.6768 0.8004 06414 0.8877 0.5817 09127

fep (0.5) 0.7798 0.8440 0.7234 0.8184 0.6864 0.8896 0.6292 09134

fep (0.99) 04101 0.7295 0.2864 0.5590 0.2532 0.7776 0.2157 0.8291

LSCFG — 0.8545 0.9534 0.8542 0.9535 0.8335 0.9736 0.8250 0.9783
mep (0.5) 0.8545 0.9534 0.8429 0.9524 0.8236 0.9731 0.8150 0.9773

mep (0.99) 0.8519 0.9533 0.7988 0.9413 0.7833 0.9676 0.7735 0.9726

fep (0.5) 0.8548 0.9536 0.8224 0.9486 0.8029 0.9707 0.7940 0.9758

fep (0.99) 0.7530 0.9325 0.5769 0.8623 0.5668 0.9075 0.5567 0.9195

(b) For our 55 rRNA database
Approach Errors MP struct. MF struct. MEA struct. Centroid

Sens. PPV Sens. PPV Sens. PPV Sens. PPV

SCFG — 04251 0.5372 04251 0.5363 0.3403 0.6967 0.2689 0.8044
mep (0.5) 04143 0.5280 04160 0.5290 03334 0.6987 0.2643 0.8051

mep (0.99) 0.3897 05227 0.389%4 05216 0.2957 0.7069 0.2362 0.8072

fep (0.5) 04055 0.5203 0.4049 05198 0.3209 0.7068 0.2532 0.8087

fep (0.99) 0.2043 04410 0.1756 03788 0.1066 0.6867 0.0814 0.7666

LSCFG — 0.8993 0.9412 0.8997 0.9409 0.8959 09513 0.8873 0.9574
mep (0.5) 0.8993 0.9412 0.8909 0.9380 0.8903 0.9478 0.8819 0.9541

mep (0.99) 0.8989 0.9414 0.8639 0.9269 0.8659 0.9408 0.8574 0.9482

fep (0.5) 0.8993 09412 0.8796 0.9328 0.8798 0.9445 0.8716 09515

fep (0.99) 0.8251 0.9052 0.7162 0.8375 0.7148 0.8661 0.6986 0.8879

All values have been computed by 10-fold cross-validation procedures, using sample size 1000 and minpe] = ming; = 1.
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than considering only the corresponding results for the
default choice y—, = 1.

However, the (unadjusted) sensitivity and PPV measures
obtained by considering the four different (unparameter-
ized) prediction principles sketched above are listed in
Additional file 1: Tables S3a and S5a!, where a few selected
ones are presented in Table 1. The corresponding AUC
values obtained by varying instances of y;_, are all col-
lected in Additional file 1: Tables S3b and S5b, some
of them are presented in Table 2. Note that in accor-
dance with [23,24], we considered any value of yt_, €
(125K | =12 < k < =1} U{2X | 0 < k < 12} in
order to obtain appropriate ROC curves and correspond-
ing AUC values. Plots of some of the resulting curves
can be found in Additional file 1: Figures S15 to S18 of
Section Sm-IIL.

Let us first consider the results reported in Table 1.
As we can see, the PPV is principally not affected by
the different dimensions of disturbances caused accord-
ing to mep(prob), as only in the case of MF structure
prediction one can observe a slight change for the worse.
However, with increasing value of mep, there results a
moderate decline in sensitivity (with respect to all four
prediction schemes) of up to about 10% for the traditional
and 5% for the length-dependent sampling approach in
the case of tRNAs, whereas for 5S rRNAs, the sensi-
tivity values only decrease up to about 3% to 4% for
both sampling variants. Unsurprisingly, for both RNA
data, the change for the worse by means of measured
sensitivity is less significant when considering MP struc-
ture predictions than when employing any of the other
three principles, especially in the case of the LSCFG
model. This is due to the fact that MP structures are
always extracted by relying on the exact distribution
(see discussion above). Altogether, these observations
indicate that relative disturbances caused by mep do
not have a significant negative effect on the predictive
accuracy.

Moreover, Table 1 indicates that generating errors
according to the fep(prob) variant (unsurprisingly) yields
greater losses in the accuracies of selected predictions. In
fact, as prob gets greater, there generally result consider-
ably smaller PPV values for all four prediction schemes
(mostly for MF structures) than in the corresponding
undisturbed case. Furthermore, the respective sensitiv-
ity values degrade enormously, albeit again compara-
tively less in connection with MP structure predictions.
However, these changes for the worse are obviously less
significant when using the length-dependent sampling
approach instead of the more general conventional vari-
ant, which matches the observations made above for dis-
turbances caused by mep(prob). Nevertheless, errors pro-
duced according to fep(prob) for moderate percentages
prob seem to generally have only a rather small influence
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Table 2 Prediction results by means of AUC values

(a) For our tRNA database

Approach Errors MEA struct. Centroid
SCFG — 0.828522 0.833894
mep (0.5) 0.819658 0.823811

mep (0.99) 0.786645 0.788478

fep (0.5) 0.805999 0.807240

fep (0.99) 0440021 0422778

LSCFG — 0.936285 0.919736
mep (0.5) 0.932121 0916321

mep (0.99) 0.916540 0.896024

fep (0.5) 0.924191 0.908943

fep (0.99) 0.752030 0.722737

(b) For our 5S rRNA database.

Approach Errors MEA struct. Centroid
SCFG — 0.409278 0.408549
mep (0.5) 0401914 0400515

mep (0.99) 0.376683 0.375488

fep (0.5) 0400827 0.397566

fep (0.99) 0.189628 0.182902

LSCFG — 0.914801 0.918933
mep (0.5) 0.911963 0.915503

mep (0.99) 0.902330 0.905126

fep (0.5) 0.906507 0911063

fep (0.99) 0.776239 0.777355

All values have been computed by 10-fold cross-validation procedures, using
sample size 1000 and minpe] = mingg = 1.

on the resulting prediction accuracy. In most cases, only
marginal losses in performance can be expected when dis-
turbances are generated by fep(prob) with values prob of
up to about 0.5, whereas for percentages of up to about
0.75, there should usually still result an acceptable accu-
racy of selected predictions (according to any of the four
considered extraction principles).

Finally, it should be mentioned that all these observa-
tions and conclusions are actually affirmed by comparing
the more reliable AUC results given in Table 2, which draw
a rather similar picture of the behavior of both sampling
approaches under the influence of the considered types
and dimensions of relative disturbances in the underlying
ensemble distribution.

Sampling quality - Specific values related to shapes

Obviously, the sensitivity and PPV measures used in
the last section for assessing the accuracy of predicted
foldings depend only on the numbers of correctly and
incorrectly predicted base pairs (compared to the trusted
database structure). For biologists, however, it is usually
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much more important to get the correct shape of the
native folding. This is due to the fact that a predicted
set of suboptimal foldings calculated by modern compu-
tational structure prediction methods generally contains
lots of similar foldings but for biologists, only those with

Table 3 Comparison of sampling quality for tRNAs
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significant structural differences are of interest. Accord-
ing to these aspects, the concept of abstract shapes was
introduced [36-38], which are defined as morphic images
of secondary structures such that each shape comprises
a class of analogical foldings. Notably, there are five

(@) CSPfeq values (for selection principle MP struct.)

Approach Errors Shape level
0 1 2 3 4 5
SCFG — 0.2413 0.4082 0.5548 0.5548 0.5552 06278
mep (0.5) 0.2409 0.4068 0.5548 0.5548 0.5552 0.6265
mep (0.99) 0.1877 0.3551 0.5382 0.5382 0.5386 0.6075
fep (0.5) 0.2339 04017 05511 05511 0.5516 0.6269
fep (0.99) 0.0014 0.0384 0.1979 0.1979 0.1984 0.2326
LSCFG — 03324 0.4956 0.6574 0.6574 0.6579 0.7351
mep (0.5) 03324 04956 0.6574 0.6574 0.6579 0.7351
mep (0.99) 03236 04892 0.6560 0.6560 0.6565 07332
fep (0.5) 03324 0.4966 0.6588 0.6588 0.6593 0.7369
fep (0.99) 0.0624 0.2626 0.6246 0.6250 0.6250 0.6967
(b) CSPgreq values (for selection principle MF struct.)
Approach Errors Shape level
0 1 2 3 4 5
SCFG — 0.2099 0.3699 0.55%94 0.55%94 0.5599 0.6302
mep (0.5) 0.1683 0.3301 05372 05372 05377 0.6047
mep (0.99) 0.0522 0.1822 04517 04517 04517 0.5215
fep (0.5) 0.1049 0.2547 05155 05155 0.5160 0.5793
fep (0.99) 0.0000 0.0125 01110 01110 0.1119 0.2062
LSCFG — 0.3269 0.4892 0.6560 0.6565 0.6565 0.7337
mep (0.5) 0.2534 04235 0.6708 0.6708 06713 0.7485
mep (0.99) 0.1137 0.2954 0.6801 0.6801 0.6801 0.7568
fep (0.5) 0.1794 0.3653 0.6704 0.6704 0.6709 0.7531
fep (0.99) 0.0023 0.1262 0.6334 0.6334 0.6357 0.7240
(c) CSPgreq values (for selection principle MEA struct.)
Approach Errors Shape level
0 1 2 3 4 5
SCFG — 0.0555 0.2094 04193 04193 04207 04679
mep (0.5) 0.0416 0.1817 0.4045 0.4045 0.4055 0.4489
mep (0.99) 0.0125 0.0989 03112 03112 03126 0.3570
fep (0.5) 0.0245 0.1364 0.3662 0.3662 0.3666 04059
fep (0.99) 0.0000 0.0014 0.0245 0.0245 0.0250 0.0546
LSCFG — 0.1854 03574 04919 04919 04919 0.5465
mep (0.5) 0.1405 0.3056 04998 04998 0.4998 0.5567
mep (0.99) 0.0730 0.2191 04753 04753 04753 05284
fep (0.5) 0.1003 0.2556 0.4836 0.4836 0.4836 0.5409
fep (0.99) 0.0009 0.0781 0.3902 0.3902 0.3921 04508
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Table 3 Comparison of sampling quality for tRNAs (Continued)
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(d) CSPgreq values (for selection principle Centroid)

Approach Errors Shape level
0 1 2 3 4 5

SCFG — 0.0374 0.1276 02973 0.2973 0.2977 03130
mep (0.5) 0.0273 0.1045 02779 02779 0.2783 0.2908

mep (0.99) 0.0083 0.0541 0.2007 0.2007 0.2007 02173

fep (0.5) 0.0134 0.0795 0.2473 0.2473 0.2473 0.2603

fep (0.99) 0.0000 0.0009 0.0120 0.0120 0.0120 0.0227

LSCFG — 0.1729 03158 0.4300 0.4300 04300 04762
mep (0.5) 0.1322 02728 04374 04374 04374 0.4859

mep (0.99) 0.0693 0.1914 04101 04101 04101 0.4558

fep (0.5) 0.0957 0.2261 04207 04207 04207 04642

fep (0.99) 0.0009 0.0633 03264 03264 03269 0.3648

Tables record specific values related to shapes of predictions and sampled structures, obtained from our tRNA database. All results were computed by 10-fold

cross-validation procedures, using sample size 1000 and minpe] = mingy, = 1.

different shape levels which have been proven to gradu-
ally increase abstraction by disregarding certain unpaired
regions or combining nested helices (see e.g. [39]), where
secondary structures can accordingly be considered
level 0 shapes.

For these reasons, we decided to complete our anal-
ysis of the influence of disturbances to the qual-
ity of probabilistic statistical sampling by considering
the following meaningful specific values related to the
shapes of predictions and sampled structures as defined
in [23,24]:

e Frequency of prediction of correct structure
(CSPfreq): In how many cases is the predicted
secondary structure (or its shape) equal to the correct
structure (or the correct shape)?

Frequency of correct shape occurring in a sample
(CSOfteq): In how many cases can the correct shape
(on different levels) be found in the generated
sample set?

Number of occurrences of correct shape in a sample
(CSpum): How many times can the correct shape be
found in the generated sample set?

Number of different shapes in a sample (DSpym):
How many different secondary structures (or shapes)
can be found in the generated sample set?

We can easily compute the respective values from the
predicted structures and the corresponding sample sets
that were derived for the calculation of the sensitivity and
PPV measures in the last section. The obtained results
are collected in Additional file 1: Tables S7a to S8g of
Section Sm-II. Some of the most interesting ones are
recorded in Tables 3 and 4.

First, as regards tRNAs, we observe that for MP pre-
dictions, disturbances caused by mep(prob) do generally
not have a noticeable negative impact on the frequency of
correct structure predictions (see Table S7a), and for the
three other extraction principles, such disturbances do at
least not yield a significant decline of the corresponding
CSPfreq value for shape levels 2 to 5 and under the assump-
tion of the LSCFG approach, where for MF structures,
there indeed results a slightly higher CSPeq value with
increasing relative error percentage prob (see Tables S7b
to S7d). When the more intensive variant as defined by
fep(prob) is used for incorporating random errors into the
considered sampling probabilities, the LSCFG based sam-
pling algorithm still yields acceptable results with respect
to CSPgreq on abstraction levels 2 to 5, where for MP and
ME structure predictions it obviously behaves quite resis-
tant to the imposed distributions even for large values of
prob.

Similar results are observed for 5S rRNAs (see Addi-
tional file 1: Tables S8a to S8d, where for all four prediction
selecting principles, the CSPfeq values (for all shape lev-
els in case of MP predictions and at least for shape levels
1 to 5 for all other prediction types) generally do not
get significantly worse when applying the LSCFG sam-
pling approach with inside values disturbed according to
mep(prob) for any percentage prob € (0,1) or according
to the more intense relative disturbance variant fep(prob)
for moderate values prob € (0,1) (of up to about prob =
0.75).

Moreover, comparing the discussed CSPgeq results for
the LSCFG variant to the corresponding ones for the con-
ventional SCFG approach, we get additional evidence that
the length-independent sampling method reacts stronger
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to relative disturbances in the underlying ensemble dis-
tribution for a given sequence than its length-dependent
counterpart. As already mentioned, this is due to the fact
that the ensemble distribution considered in the length-
dependent case is much more centered due to the more

Table 4 Comparison of sampling quality for 5S rRNAs
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explicit (length-dependently trained) grammar parame-
ters, such that randomly generated errors on particular
probabilities carry less weight.

Now, let us consider the three remaining specific val-
ues CSOfreq; CSpum and DSpyym that can eventually be

(a) CSPfreq values (for selection principle MP struct.)

Approach Errors Shape level
0 1 2 3 4 5
SCFG — 0.0000 0.0026 0.0052 0.0131 0.0366 0.7110
mep (0.5) 0.0000 0.0009 0.0026 0.0113 0.0287 0.7128
mep (0.99) 0.0000 0.0026 0.0044 0.0095 0.0227 0.6919
fep (0.5) 0.0000 0.0017 0.0043 0.0113 0.0374 0.6954
fep (0.99) 0.0000 0.0000 0.0000 0.0017 0.0096 0.5474
LSCFG — 02141 04256 04744 0.4900 0.9408 0.9843
mep (0.5) 02141 04256 04744 0.4900 0.9408 0.9843
mep (0.99) 0.1941 04221 04761 04892 0.9452 0.9852
fep (0.5) 02124 04248 04726 0.4883 0.9417 0.9852
fep (0.99) 0.0209 0.3029 03725 04186 0.8529 0.9809
(b) CSPgreq values (for selection principle MF struct.)
Approach Errors Shape level
0 1 2 3 4 5
SCFG — 0.0000 0.0026 0.0052 0.0131 0.0357 07128
mep (0.5) 0.0000 0.0009 0.0026 0.0122 0.0305 0.7180
mep (0.99) 0.0000 0.0026 0.0044 0.0105 0.0235 0.6902
fep (0.5) 0.0000 0.0017 0.0043 0.0113 0.0383 0.6971
fep (0.99) 0.0000 0.0000 0.0000 0.0035 0.0200 0.5439
LSCFG — 0.2002 04256 04700 0.4866 0.9417 0.9861
mep (0.5) 0.1332 0.3960 04439 04587 0.9434 0.9869
mep (0.99) 0.0365 0.3630 04308 0.4491 0.9304 0.9861
fep (0.5) 0.0801 0.3847 0.4404 0.4561 0.9400 0.9861
fep (0.99) 0.0035 0.1497 0.2106 0.3325 0.5440 0.9730
(c) CSPyreq values (for selection principle MEA struct.)
Approach Errors Shape level
0 1 2 3 4 5
SCFG — 0.0000 0.0000 0.0000 0.0000 0.0261 03821
mep (0.5) 0.0000 0.0000 0.0000 0.0000 0.0209 0.3698
mep (0.99) 0.0000 0.0000 0.0000 0.0000 0.0122 0.3003
fep (0.5) 0.0000 0.0000 0.0000 0.0000 0.0252 0.3438
fep (0.99) 0.0000 0.0000 0.0000 0.0000 0.0026 0.0444
LSCFG — 0.1062 0.3891 04291 04378 0.9051 0.9835
mep (0.5) 0.1010 0.3751 04134 04239 0.8921 0.9782
mep (0.99) 0.0392 0.3429 0.3986 04213 0.8712 0.9791
fep (0.5) 0.0740 0.3839 04239 04387 0.8877 0.9791
fep (0.99) 0.0017 0.1358 0.1863 0.2942 0.4970 0.9634
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Table 4 Comparison of sampling quality for 5S rRNAs (Continued)

(d) CSPgyeq values (for selection principle Centroid)

Approach Errors Shape level
0 1 2 3 4 5

SCFG — 0.0000 0.0000 0.0000 0.0000 0.0104 0.1097
mep (0.5) 0.0000 0.0000 0.0000 0.0000 0.0104 0.1062

mep (0.99) 0.0000 0.0000 0.0000 0.0000 0.0078 0.0827

fep (0.5) 0.0000 0.0000 0.0000 0.0000 0.0061 0.0932

fep (0.99) 0.0000 0.0000 0.0000 0.0000 0.0009 0.0078

LSCFG — 0.0966 0.2916 03238 03316 0.8703 0.9686
mep (0.5) 0.0879 03142 03516 03621 0.8625 0.9686

mep (0.99) 0.0322 0.2924 03377 0.3595 0.8294 0.9651

fep (0.5) 0.0662 03194 03551 0.3638 0.8512 0.9695

fep (0.99) 0.0017 0.1053 0.1471 0.2219 04831 0.9339

Tables record specific values related to shapes of predictions and sampled structures, obtained from our 55 rRNA database. All results were computed by 10-fold

cross-validation procedures, using sample size 1000 and minye] = mingy, = 1.

used to assess the overall quality of generated sample
sets rather than the accuracy of corresponding selected
predictions. Basically, the obtained CSOfeq and CSpum
results for tRNAs and 5S rRNAs (as reported in Tables S7e
to S7f and Tables S8e to S8f), respectively, show a similar
picture and thus yield similar conclusions as the corre-
sponding CSPgeq values discussed above. As a conse-
quence to the fact that for larger relative error percentages
prob, for the less intensive disturbance variant defined
by mep(prob) and especially for the more grave version
implied by fep(prob), the resulting values for CSOfeq
and CSpym usually get smaller, the corresponding DSyum
values inevitably increase with growing disturbance influ-
ences imposed by mep(prob) and especially fep(prob) (see
Tables S7g and S8g). This actually means that the diversity
within the generated sample sets generally gets greater as
the overall sampling quality (with respect to occurrences
of the correct structure in the sample) decreases, which
could be fully expected.

Conclusions
In this article, we performed a comprehensive experimen-
tal analysis on the effect of disturbances in the ensemble
distribution for a given sequence to the quality of cor-
responding sets of candidate structures generated with
the (L)SCFG based statistical sampling method studied
in [23,24]. Basically, two different levels of errors were
considered for randomly creating disturbances on all
inside values for a given input sequence according to the
underlying grammar model: relative and absolute ones.
During our analysis (on the basis of trusted sets of
tRNA and 5S rRNA data), we immediately observed that
even incorporating only rather small absolute errors into
(all or particular instances of the) inside values causes

problematic disturbances of the resulting sampling prob-
abilities that generally lead to the generation of useless
sample sets. This can be assumed to be due to the fact that
the installation of absolute errors usually makes it impos-
sible for the employed sampling strategy to identify which
ones of the considered inside probabilities for a given
input sequence must originally (i.e., in the exact case) have
been equal or unequal to zero, which inevitably results
in a misguided behavior of the strategy, as it is no longer
ensured that it creates only reasonable substructures for a
considered sequence fragment.

However, both SCFG approaches (length-dependent
and traditional one) behave rather resistant to distur-
bances of the needed conditional sampling probabilities
that are caused by generating (moderate) relative errors
on all (and also only on particular) inside values for a
given input sequence. In general, even large relative errors
seem to have no enormous negative impact on both the
predictive accuracy and the overall quality of generated
sample sets. That is, the reaction of the (L)SCFG based
statistical sampling algorithm to the relative disturbances
is fair enough to still obtain meaningful structure pre-
dictions (especially if the most likely structure of the
sample is selected as predicted folding, in strong anal-
ogy to conventional SCFG based DPAs), and the overall
quality of the resulting sample sets is still acceptable such
that they might often also be used for further appli-
cations (like, e.g. probability profiling for specific loop
types).

Consequently, it seems reasonable to believe that the
needed sampling probabilities do not necessarily have
to be computed in the exact way, but it may proba-
bly suffice to only (adequately) approximate them. In
fact, the worst-case time complexity of any particular
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(L)SCFG based sampling method could potentially be
reduced by developing a suitable approximation proce-
dure (or at least an adequate heuristic method) for the
computation of the needed sampling probabilities, where
an appropriate approximation ratio (or at least an accept-
able ratio of correctly and incorrectly computed zero
values) should be attempted to ensure that the sampling
quality remains sufficiently high, as indicated by the exper-
imental disturbance analysis results discussed within this
article.

Endnotes

& All references starting with Sm are references to the
supplementary material available at http://wwwagak.
informatik.uni-kl.de/research/publications/.

b Note that the function max(min(x, 1),0) = min(max(x,
0), 1) ensures that the resulting value is still a probability,
i.e. a real value from [0, 1].

¢ Note that prob € (0,1] is must be preliminary chosen
and is then assumed to be fixed. This effectively facilitates
the study of disturbances of different magnitudes.

4 In general, longer words tend to be generated with
smaller probability since we have to apply more grammar
rules, each implying a factor (typically) less than 1 to the
probability.

¢ If those decisions are not revised by employing back-
tracking procedures, see the description of the modifica-
tions incorporated into the sampling algorithm in order
to deal with such situations as given in Section Resulting
Modified Sampling Strategy.

f Note that the positive predictive value is often called
specificity, although this measure formally obeys to a
slightly different definition.

& This is due to the fact that the probability of a particu-
lar folding of a given RNA sequence (i.e., the probability
of the corresponding derivation tree) depends only on
the considered set of grammar parameters (transition and
emission probabilities).

h Note that we here assume sensitivity as a function of
PPV is an ROC curve, although correctly an ROC curve is
sensitivity as a function of specificity.

I Note that the corresponding standard deviations on sen-
sitivity values and PPV are recorded in Additional file 1:
Tables S4 and S6; these allow for a reader to acknowledge
which values are different and which ones are identi-
cal/close.

Additional file
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