
Shen and Vikalo BMC Bioinformatics 2012, 13:160
http://www.biomedcentral.com/1471-2105/13/160

METHODOLOGY ARTICLE Open Access

ParticleCall: A particle filter for base calling in
next-generation sequencing systems
Xiaohu Shen and Haris Vikalo*

Abstract

Background: Next-generation sequencing systems are capable of rapid and cost-effective DNA sequencing, thus
enabling routine sequencing tasks and taking us one step closer to personalized medicine. Accuracy and lengths of
their reads, however, are yet to surpass those provided by the conventional Sanger sequencing method. This
motivates the search for computationally efficient algorithms capable of reliable and accurate detection of the order
of nucleotides in short DNA fragments from the acquired data.

Results: In this paper, we consider Illumina’s sequencing-by-synthesis platform which relies on reversible terminator
chemistry and describe the acquired signal by reformulating its mathematical model as a Hidden Markov Model.
Relying on this model and sequential Monte Carlo methods, we develop a parameter estimation and base calling
scheme called ParticleCall. ParticleCall is tested on a data set obtained by sequencing phiX174 bacteriophage using
Illumina’s Genome Analyzer II. The results show that the developed base calling scheme is significantly more
computationally efficient than the best performing unsupervised method currently available, while achieving the
same accuracy.

Conclusions: The proposed ParticleCall provides more accurate calls than the Illumina’s base calling algorithm,
Bustard. At the same time, ParticleCall is significantly more computationally efficient than other recent schemes with
similar performance, rendering it more feasible for high-throughput sequencing data analysis. Improvement of base
calling accuracy will have immediate beneficial effects on the performance of downstream applications such as SNP
and genotype calling.
ParticleCall is freely available at https://sourceforge.net/projects/particlecall.

Background
The advancements of next-generation sequencing tech-
nologies have enabled inexpensive and rapid generation of
vast amounts of sequencing data [1-3]. At the same time,
high-throughput sequencing technologies present us with
the challenge of processing and analyzing large data sets
that they provide. A fundamental computational challenge
encountered in next-generation sequencing systems is the
one of determining the order of nucleotides from the
acquired measurements, the task typically referred to as
base calling. The accuracy of base calling is of essential
importance for various downstream applications includ-
ing sequence assembly, SNP calling, and genotype calling
[4].Moreover, improving base calling accuracymay enable

*Correspondence: hvikalo@ece.utexas.edu
Department of Electrical and Computer Engineering, University of Texas at
Austin, 1 University Station C0803, Austin, TX, 78712-0240, US

achieving desired performance of downstream applica-
tions with smaller sequencing coverage, which translates
to a reduction in the sequencing cost.
A widely used sequencing-by-synthesis platform, com-

mercialized by Illumina, relies on reversible terminator
chemistry. Illumina’s sequencing platforms are supported
by a commercial base-calling algorithm called Bustard.
While Bustard is computationally very efficient, its base-
calling error rates can be significantly improved by vari-
ous computationally more demanding schemes [5]. Such
schemes include work presented in [6-9]. Among the pro-
posed methods, the BayesCall algorithm [8] has been
shown to significantly outperform Bustard in terms of
the achievable base calling error rates. By relying on a
full parametric model of the acquired signal, BayesCall
builds a Bayesian inference framework capable of provid-
ing valuable probabilistic information that can be used

© 2012 Shen and Vikalo; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

https://sourceforge.net/projects/particlecall

Shen and Vikalo BMC Bioinformatics 2012, 13:160 Page 2 of 10
http://www.biomedcentral.com/1471-2105/13/160

in downstream applications. However, its performance
gains come at high computational costs. A modified ver-
sion of the BaseCall algorithm named naiveBayesCall
[9] performs base calling in a much more efficient way,
but its accuracy deteriorates (albeit remains better than
Bustard’s). Both BayesCall and naiveBayesCall rely on
expectation-maximization (EM) framework that employs
a Markov chain Monte Carlo (MCMC) sampling strat-
egy to estimate the parameters of the statistical model
describing the signal acquisition process. This parame-
ter estimation step turns out to be very time-consuming,
limiting practical feasibility of the proposed schemes.
Highly accurate and practically feasible parameter estima-
tion and base-calling remain a challenge that needs to be
addressed.
In this paper, we propose a Hidden Markov Model

(HMM) representation of the signal acquired by Illu-
mina’s sequencing-by-synthesis platforms and develop a
particle filtering (i.e., sequentialMonte Carlo) base-calling
scheme that we refer to as ParticleCall. When relying on
the BayesCall’s Markov Chain Monte Carlo implementa-
tion of the EM algorithm (MCEM) to estimate system
parameters, ParticleCall achieves the same error rate per-
formance as BayesCall while reducing the time needed
for base calling by a factor of 3. To improve the speed of
parameter estimation, we develop a particle filter imple-
mentation of the EM algorithm (PFEM). PFEM signifi-
cantly reduces parameter estimation time while leading to
a very minor deterioration of the accuracy of base call-
ing. Finally, we demonstrate that ParticleCall has the best
discrimination ability among all of the considered base
calling schemes.

Methods
In this section, we first review the data acquisition pro-
cess and the basic mathematical model of the Illumina’s
sequencing-by-synthesis platform. Then we introduce a
Hidden Markov Model (HMM) representation of the
acquired signals. Relying on the HMM model and parti-
cle filtering (i.e., sequential Monte Carlo) techniques, we
develop a novel base calling and parameter estimation
scheme and discuss some important practical aspects of
the proposed method.

Illumina sequencing platform
A sequencing task on the Illumina’s platform is preceded
by the preparation of a library of single-stranded short
templates created by performing random fragmentation
of the target DNA sample. Each single-stranded frag-
ment in the library is placed on a glass surface (i.e., the
flow cell [10]) and subjected to bridge amplification in
order to create a cluster of identical copies of DNA tem-
plates [11]. The flow cell contains eight lanes where each
lane is divided into a hundred of nonoverlapping tiles.

The order of nucleotides in a DNA template is iden-
tified by synthesizing its complementary strand while
relying on reversible terminator chemistry [3]. Ideally,
in every sequencing cycle, a single fluorescently labeled
nucleotide is incorporated into the complementary strand
on each copy of the template in a cluster. The incorpo-
rated nucleotide is a Watson-Crick complement of the
first unpaired base of the template. In reversible termi-
nator chemistry, four distinct fluorescent tags are used
to label the four bases, and are detected by CCD imag-
ing technology. The acquired images are processed in
order to obtain intensity signals indicating the type of
nucleotide incorporated in each cycle. These raw sig-
nal intensities are then analyzed by a base-calling algo-
rithm to infer the order of nucleotides in each of the
templates.
Quality of the acquired raw signals is adversely affected

by the imperfections in the underlying sequencing-by-
synthesis and signal acquisition processes. The imperfec-
tions are manifested as various sources of uncertainties.
For instance, a small fraction of the strands being syn-
thesized may fail to incorporate a base, or they may
incorporate multiple bases in a single test cycle. These
effects are referred to as phasing and pre-phasing, respec-
tively, and they result in an incoherent addition of the
signals generated by the synthesis of the complemen-
tary strands on the copies of the template. Other sources
of uncertainty are due to cross-talk and delay effects in
the optical detection process, the residual effects that are
readily observed between subsequent test cycles, signal
decay, and measurement noise.

Overview of the mathematical model
To describe the signal acquired by the Illumina’s
sequencing-by-synthesis platform, a parametric model
was proposed in [8]. Basic components of the model are
overviewed below.
A length-L DNA template sequence is represented by

a 4 × L matrix S, where the ith column of S, si, is con-
sidered to be a randomly generated unit vector with a
single non-zero entry indicating the type of the ith base
in the sequence. We follow the convention where the
first component of the vector si corresponds to the base
A, the second to C, the third to G, and the fourth to
T and denote them as eA, eC , eG, eT . The goal of base-
calling is to infer unknown S from the signals obtained
by optically detecting nucleotides incorporated during the
sequencing-by-synthesis process.
Let p denote the average fraction of strands that fail to

extend in a test cycle. Phasing is modeled as a Bernoulli
random variable with probability p. Let q denote the
average fraction of strands which extend by more than
one base in a single test cycle. Pre-phasing is mod-
eled as a Bernoulli random variable with probability q.

Shen and Vikalo BMC Bioinformatics 2012, 13:160 Page 3 of 10
http://www.biomedcentral.com/1471-2105/13/160

Length of the synthesized strand changes from i to j
with probability

Pij =

⎧⎪⎪⎨
⎪⎪⎩
p, if j = i,
1 − p − q, if j = i + 1,
q, if j = i + 2,
0, otherwise.

Let P denote an (L + 1) × (L + 1) transition matrix
with entries Pij defined above, 1 ≤ i, j ≤ L + 1. The
signal generated over L cycles of the synthesis process is
affected by phasing and pre-phasing and can be expressed
as X = SH , where H = (Hi,j) is an L × L matrix with
entries Hi,j =[Pj]1(i+1), the probability that a synthesized
strand is of length i after j cycles. Here Pj denotes the jth
power of matrix P. The decay in signal intensities over
cycles (caused by DNA loss due to primer-template melt-
ing, digestion by enzymatic impurities, DNA dissociation,
misincorporation, etc.) is modeled by the per-cluster den-
sity random parameter λt ,

λt = (1 − dt)λt−1 + (1 − dt)λt−1εt , (1)

where εt ∼ N (0, σ 2
t) is a one-dimensional Gaussian

random variable and dt is the per-cluster density decay
parameter within [0, 1]. We represent the tth column of
H as ht and the tth column of X as xt . Incorporating the
decay into the model, the signal generated in cycle t is
expressed as

xt = λtSht , (2)

where xt = [
xAt xCt xGt xTt

]′ is the vector of signals gener-
ated in each of the optical channels. Assuming Gaussian
observation noise, the measured intensities at cycle t are
given by

yt = Ktxt +
∑

b∈{A,C,G,T}
xbt η

b
t , (3)

where Kt denotes the 4 × 4 crosstalk matrix describing
overlap of the emission spectra of the four fluorescent
tags, and ηAt , ηCt , ηGt , ηTt are independent, identically dis-
tributed (i.i.d.) 4 × 1 Gaussian random vectors with zero
mean and a common 4 × 4 covariance matrix �t .
Note that, due to typically small values of p and q,

the components of the vector ht around its tth entry
are significantly greater than the remaining ones. This
observation can be used to simplify the expressions (2)
and (3). In particular, let hwt denote the vector obtained
by windowing ht around its tth entry, i.e., by setting
small components of ht to 0. In general, we consider
l + r + 1 dominant components of ht centered at position

t, Ht−l,t ,Ht−l+1,t , . . . ,Ht,t , . . .Ht+r−1,t ,Ht+r,t , and then
expression (2) becomes

xt ≈ xwt = λtShwt = λt

r∑
i=−l

st+iHt+i,t . (4)

Finally, note that the signal measured in cycle t is empir-
ically observed to contain residual effect from the previous
cycle. The residual effect is modeled by adding αt(1 −
dt)yt−1 to yt , where the unknown parameter αt ∈ (0, 1).
Therefore, the model can be summarized as

λt|λt−1 ∼ N
(
(1 − dt)λt−1, (1 − dt)2λ2t−1σ

2
t
)
,

yt|yt−1, S, λt ∼ N
(
Ktxwt + αt(1 − dt)yt−1, ‖xwt ‖22�t

)
,

st ∼ Unif (eA, eC , eG, eT) ,
xwt = λtShwt

t = 1, 2, . . . , L

where ‖ · ‖2 denotes the l2-norm of its argument, and
where y0 = 0, λ0 = 1.

HiddenMarkov Model of DNA base-calling
In this section, we reformulate the statistical description
of the signal acquired by the Illumina’s sequencing-by-
synthesis platform as a Hidden Markov Model (HMM)
[12]. HMMs comprise a family of probabilistic graphi-
cal models which describe a series of observations by a
“hidden” stochastic process and are generally suitable for
representing time series data. Sequencing data obtained
from the Illumina’s platform is a set of time-series inten-
sities y1:L, motivating the HMM representation. HMMs
provide a convenient framework for state and parameter
estimation, which we exploit to develop a particle filter
base-calling scheme in the next section.
For the sake of convenience, we remove the dependency

between subsequent observations yt−1 and yt by defining
y′
t = yt −αt(1−dt)yt−1, t = 1, 2, . . . , L. Therefore, we can
write

y
′
t|S, λt ∼ N

(
Ktxwt , ‖xwt ‖22�t

)
. (5)

Components of y′
1:L are the observations of our HMM,

and depend on the underlying signals x1:L. Moreover, let
Swt denote the 4× (l+ r+1) windowed submatrix of S, i.e.,

Swt =[st−l st−l+1 . . . st . . . st+r] . (6)

Since xwt = λtShwt = λt
∑t+r

i=t−l siHi,t , it is clear that y
′
t

depends on λt and Swt . Therefore, we define the state of the
HMM to be the combination of λt and Swt – the per-cluster
density at cycle t and the collection of (l + r + 1) bases
around (and including) the base in position t, respectively.
The proposed HMM representation is illustrated in

Figure 1. The observation dynamics that characterize the

Shen and Vikalo BMC Bioinformatics 2012, 13:160 Page 4 of 10
http://www.biomedcentral.com/1471-2105/13/160

Figure 1 A hidden Markov model of the generated signal in
Illumina sequencing-by-synthesis platforms. An illustration of the
graphical HMM of the Illumina’s sequencing platform. The
observations y′ represent signal intensities after the removal of
residual effects. The states are the combinations of Swt and λt , which
represent a subsequence of the template centered at position t and
per-cluster density, respectively.

relationship between y′
t and the hidden states (Swt , λt) are

given by the distribution g(y′
t|Swt , λt). It is straightforward

to show from (5) that

g
(
y

′
t|Swt , λt

)
∼ N

(
Ktxwt , ‖xwt ‖22�t

)
. (7)

On the other hand, the state transition dynamics is
described by the transition probability between subse-
quent states, (Swt−1, λt−1) and (Swt , λt). Since Swt and λt are
independent, the transition probability is

f (Swt , λt|Swt−1, λt−1) = f1(Swt |Swt−1)f2(λt|λt−1). (8)

The second term on the right-hand side of (8),
f2(λt|λt−1), is known from the density decay model (1),

f2(λt|λt−1) ∼ N ((1 − dt)λt−1, (1 − dt)2λ2t−1σ
2
t).

For notational convenience, we use swt,1, . . . , s
w
t,l+r+1 to

denote the set of l+ r+ 1 column vectors of Swt . Note that
for k = 2, 3, . . . , l+ r+1, the column vectors swt−1,k in Swt−1
and the column vectors swt,k−1 in Swt actually represent the
same base. Therefore, the transition model between them
can be represent by a δ function as

p(swt,k−1|swt−1,k) = δ{swt,k−1=swt−1,k}

=
{
1, if swt,k−1 = swt−1,k ,
0, if swt,k−1 �= swt−1,k .

Let U({eA, eC , eG, eT }) denote a uniform distribution
on the support set of unit vectors ({eA, eC , eG, eT }).
We assume no correlation between consecutive bases
of the template sequence, i.e., swt,l+r+1 is generated

from U({eA, eC , eG, eT }). Therefore, f1(Swt |Swt−1) can be
written as

f1(Swt |Swt−1) =
(l+r+1∏

k=2
δ{swt−1,k=swt,k−1}

)
u

(
swt,l+r+1

)
,

where u(·) ∼ U({eA, eC , eG, eT }). Hereby, all the compo-
nents of the HMM are specified.

ParticleCall base-calling algorithm
The goal of base calling is to determine the order of
nucleotides in a template from the acquired signal y1:t .
This can be rephrased as the problem of inferring the
most likely sequence of states (Swt , λt) of the HMM in (7)-
(8) from the observed sequence y′

1:t (clearly, s1:L follows
directly from Swt). We assume that the parameters 	 =
{p, q, d1:L,α1:L, σ1:L,K1:L,�1:L} are common for all clusters
within a tile, and that they are provided by a parame-
ter estimation step discussed in the following section. In
this section, we introduce a novel base calling algorithm
ParticleCall which relies on particle filtering techniques
to sequentially infer (Swt , λt) and, therefore, recover the
matrix S.
In general, particle filtering (i.e., sequential Monte

Carlo) methods generate a set of particles with associ-
ated weights to estimate the posteriori distribution of
unknown variables given the acquiredmeasurements [13].
In the proposed HMM framework, we sequentially cal-
culate the posteriori distribution of the columns of S,
p(st|y′

1:t), t = 1, 2, . . . , L, and find the maximum a posteri-
ori (MAP) estimates of st by solving

ŝt = arg max
st∈{eA,eC ,eG ,eT }{p(st|y

′
1:t)}.

Our algorithm relies on a sequential importance sam-
pling/resampling (SISR) particle filter scheme [14] to
calculate p(Swt , λt|y′

1:t). Different choices and approxima-
tion methods of proposal densities are considered in
[15-17]. We directly use the transition (8) as the pro-
posal density. This sequential importance sampling suf-
fers from degeneracy and the variance of the importance
weights will increase over time. To address the degener-
acy problem, a resampling step is introduced in order to
eliminate samples which have small normalized impor-
tance weights. Common resampling methods include
multinomial resampling [14], residual resampling [18]
and systematic resampling [19,20]. We measure degen-
eracy of the algorithm using the effective sample size
Keff and, for the sake of simplicity, employ multinomial
resampling strategy. If we denote the number of parti-
cles by Np and associated weights by w, then Keff =
(
∑Np

k=1(w
(i)
t)2)−1 and resampling step is used when Keff

is below a fixed threshold Nthreshold . Nthreshold of size

Shen and Vikalo BMC Bioinformatics 2012, 13:160 Page 5 of 10
http://www.biomedcentral.com/1471-2105/13/160

O(Np) is typically sufficient [14]. In our implementation,
we set Nthreshold = Np/2.
We omit further details for brevity and formalize the

ParticleCall algorithm below.

Algorithm 1 ParticleCall base-calling algorithm

1. Initialization:
1.1 Initialize particles:
for i = 1 → Np do

Sample each column of the submatrix Sw,(i)1 from
U({eA, eC , eG, eT });
Sample λ

(i)
1 from a Gaussian distribution with

mean 1, and the variance calculated using
Bustard’s estimates of λ in the first 10 test cycles.

end for
1.2 Compute and normalize weights for each particle

according to w(i)
1 ∝ g(y′

1|Sw,(i)1 , λ(i)
1) as in (7).

2. Run iteration t(t ≥ 2):
2.1 Sampling:
for i = 1 → Np do

Sample Sw,(i)t , λ(i)
t ∼ f (·, ·|Sw,(i)t−1 , λ

(i)
t−1) according

to (8).
end for
2.2 Update the importance weight

w(i)
t ∝ w(i)

t−1g
(
y′
t|Sw,(i)t , λ(i)

t

)
.

2.3 Normalize the weights. Calculate the posteriori
probability of st and obtain the estimate ŝt .

2.4 Resampling:
if Keff =

(∑Np
k=1(w

(i)
t)2

)−1 ≤ Nthreshold then

Draw Np samples {S̄w,(j)t , λ̄(j)
t , j = 1, . . . ,Np} from

{Sw,(i)t , λ(i)
t , i = 1, . . . ,Np} with probabilities

proportional to {w(i)
t , i = 1, . . . ,Np}.

Assign equal weight to each particle, w̄(i)
t = 1/Np.

end if

Since Swt in the HMM states are discrete with a finite
alphabet, and the transitions of Swt and λt are indepen-
dent according to (8), it is possible to Rao-Blackwellize
the ParticleCall algorithm. Rao-Blackwellization is used to
marginalize part of the states in the particle filter, hence
reducing the number of needed particles Np [16]. We
marginalize the discrete states Swt and reduce the hid-
den process to λt , while relying on the particle filter to
calculate p(λ1:t|y′

1:t).
The original posterior distribution of the states can be

expressed as

p
(
λ1:t , Sw1:t|y′

1:t
) = p

(
Sw1:t|y′

1:t , λ1:t
)
p

(
λ1:t|y′

1:t
)
.

Since p(λ1:t|y′
1:t) ∝ p(y′

t|y′
1:t−1, λ1:t)p(λt|λ(i)

t−1), where
λ

(i)
t−1 is a sample from p(λ1:t−1|y′

1:t−1), we can state the
Rao-Blackwellized ParticleCall algorithm as below.

Algorithm 2 Rao-Blackwellized ParticleCall algorithm

1. Initialization:
1.1 Initialize particles:
for i = 1 → Np do

Sample λ
(i)
1 from a Gaussian distribution with

mean 1, and the variance calculated using Bustard’s
estimates of λ in the first 10 test cycles.

end for
1.2 Compute and normalize weights for each particle

according to w(i)
1 ∝ g(y′

1|λ(i)
1) ∝ ∑

Sw1
g(y′

1|Sw1 , λ(i)
1).

1.3 Calculate the discrete distribution p(Sw1 |y1, λ(i)
1) for

each i.
2. Run iteration t(t ≥ 2):
2.1 Sampling:
for i = 1 → Np do

Sample λ
(i)
t ∼ f (·|λ(i)

t−1).
end for
2.2 Update the importance weight

w(i)
t ∝ w(i)

t−1g(y′
t|y′

1:t−1, λ
(i)
1:t). and normalize the

weights.
2.3 Resample if Keff ≤ Nthreshold
2.4 Update p(Swt |y′

1:t , λ
(i)
1:t)

for i = 1 → Np do
Update p(Swt |y′

1:t , λ
(i)
1:t) using p(S

w
t−1|y′

1:t−1, λ
(i)
1:t−1)

and λ
(i)
t .

end for

In step 2.2 of Algorithm 2, the quantity g(y′
t|y′

1:t−1, λ
(i)
1:t)

can be obtained by marginalizing over discrete states Swt
and Swt−1,

g
(
y′
t|y′

1:t−1, λ
(i)
1:t

)

=
∑
Swt

p
(
y′
t|y′

1:t−1, Swt , λ
(i)
1:t

)
p

(
Swt |y′

1:t−1, λ
(i)
1:t

)

=
∑
Swt

p
(
y′
t|Swt , λ(i)

t

) ∑
Swt−1

[
p

(
Swt |Swt−1, y

′
1:t−1, λ

(i)
1:t

)

×p
(
Swt−1|y′

1:t−1, λ
(i)
1:t

)]
, (9)

where p(y′
t|Swt , λ(i)

t) is the observation density, p(Swt−1|
y′
1:t−1, λ

(i)
1:t) = p(Swt−1|y′

1:t−1, λ
(i)
1:t−1) due to the indepen-

dence of the state transitions, and p(Swt |Swt−1, y′
1:t−1, λ

(i)
1:t) =

Shen and Vikalo BMC Bioinformatics 2012, 13:160 Page 6 of 10
http://www.biomedcentral.com/1471-2105/13/160

p(Swt |Swt−1) due to the Markov property and the indepen-
dence of the state transitions.
In step 2.4 of Algorithm 2, the update equation is

obtained as

p
(
Swt |y′

1:t , λ
(i)
1:t

)
∝ p

(
Swt , y′

t , λ
(i)
t |y′

1:t−1, λ
(i)
1:t−1

)
=

∑
Swt−1

[
p

(
y′
t , Swt , λ

(i)
t |y′

1:t−1, Swt−1, λ
(i)
1:t−1

)

×p
(
Swt−1|y′

1:t−1, λ
(i)
1:t−1

)]
=

∑
Swt−1

[
p

(
y′
t|Swt , λ(i)

t , y′
1:t−1, Swt−1, λ

(i)
1:t−1

)

× p
(
Swt , λ

(i)
t |y′

1:t−1, Swt−1, λ
(i)
1:t−1

)
×p

(
Swt−1|y′

1:t−1, λ
(i)
1:t−1

)]
= p

(
y′
t|Swt , λ(i)

t

)
p

(
λ

(i)
t |λ(i)

t−1

)
×

∑
Swt−1

p
(
Swt |Swt−1

)
p

(
Swt−1|y′

1:t−1, λ
(i)
1:t−1

)
(10)

Parameter estimation
To determine the set of parameters 	 needed to run the
proposed ParticleCall base calling algorithm, one could
rely on the MCMC implementation of the EM algorithm
(MCEM) proposed in [8]. In section Results and discus-
sion, we demonstrate the performance of the ParticleCall
algorithm that relies on the MCEM parameter estima-
tion scheme. Note, however, that the MCMC sampling
strategy employed by MCEM requires a lengthy burn-
in period and a very large sample size to perform the
expectation step. Therefore, the MCEM parameter esti-
mation scheme is computationally rather intensive and
requires significant computational resources if it is to be
used for processing large sequencing data sets. As an alter-
native, we develop an EM parameter estimation scheme
which relies on the proposed HMM and uses samples
generated by a particle filter to evaluate the expectation
of the likelihood function. We refer to this algorithm as
the particle filter EM (PFEM). The speed and accuracy of
the proposed scheme is practically sound for use in next
generation sequencing platforms.

Assumptions on parameters
Recall that the set of parameters needed to run Particle-
Call is 	 = {p, q, d1:L,α1:L, σ1:L,K1:L,�1:L}. The phasing
and prephasing parameters p and q are assumed to be the
same for each sequencing lane and are estimated using
the same procedure as Bustard (see, e.g., [8]). The remain-
ing parameters are assumed to be cycle-dependent and
need to be estimated for each tile. The cycle-dependency
assumption on the parameters can lead to a substantial

improvement in the base-calling accuracy [5]. In order to
avoid over-fitting, we assume that parameters remain con-
stant within a short window of cycles and then change to a
different set of values. To track the changes in the param-
eters, we first divide the total read length L into several
non-overlapping windows and then perform our param-
eter estimation window-by-window. To further reduce
the number of parameters and improve the estimation
efficiency, we assume that the parameters d1:L and σ1:L
are uniformly distributed over an interval and incorpo-
rate them into the hidden states of the HMM model.
Therefore, only the mean and variance of these param-
eters, i.e., dmean, dvar , σmean, and σvar need to be esti-
mated. Computational results demonstrate that these two
assumptions does not affect the accuracy of base-calling.

Particle filter EM algorithm
In the early sequencing cycles, effects of phasing and
prephasing are relatively small. Therefore, we may ignore
phasing and prephasing to facilitate straight-forward
computation of the initial estimates of the remaining
parameters. In particular, the signal generated in the early
cycles t is approximated as

xt = λtst . (11)

Replacing (2) by (11) leads to a simplified model that
allows for straightforward base calling and inference of the
parameters by means of linear regression. We use these
values to obtain the estimates of dmean, dvar , σmean, and
σvar , and to initialize the remaining parameters α, K , �,
in the particle filter EM parameter estimation procedure.
The parameter estimation is performed window-by-

window and is conducted using n reads randomly chosen
from a tile (in our experiments, we use n = 200). Assume
the window length is w, and denote the window index
by m. The particle filter EM (PFEM) algorithm finds
parameters for one window and then uses these values to
initialize the search for parameters in the next window.
We illustrate the procedure for the first window here (the
same procedure is repeated in the following windows). Let
	i

1 = {αi,Ki,�i} denote the set of parameters for window
1 in the ith iteration of the EM scheme. The estimate of
	i

1 is given by

	i
1 = argmax

	1
L1

(
	i−1

1

)
, (12)

where L1(i−1
1) = ∑n

j=1 L1,j(
i−1
1) is the sum of the log-

likelihood functions over the reads in the training set.
The log-likelihood function for each read, L1,j(i−1

1), is
obtained as

L1,j(i−1
1) = logP(y1:w|	i−1

1)

= E
[
logP(y1:w, s1:w, λ1:w|	i−1

1)
]
, (13)

Shen and Vikalo BMC Bioinformatics 2012, 13:160 Page 7 of 10
http://www.biomedcentral.com/1471-2105/13/160

Table 1 Comparison of ParticleCall with different Np

Method Np error rate base-calling time (min)

ParticleCall (via MCEM) 400 0.0126 46

800 0.0124 88

1200 0.0124 130

ParticleCall (via PFEM) 400 0.0128 46

800 0.0125 91

1200 0.0125 133

Rao-Blackwellized ParticleCall (via MCEM) 100 0.0128 103

200 0.0125 190

300 0.0124 287

400 0.0124 386

ParticleCall is run using parameters obtained via the MCEM parameter estimation scheme as well as via the PFEM parameter estimation algorithm proposed in this
paper. Rao-Blackwellized ParticleCall is run using parameters via the MCEM parameter estimation scheme.

where the expectation is taken with respect to
P(s1:w, λ1:w|y1:w,	i−1

1). We rely on an SISR particle
filtering scheme to generate equally weighted sample
trajectories from P(s1:w, λ1:w|y1:w,	i−1

1). Based on (7)
and (8), we calculate logP(y1:w, s1:w, λ1:w|	i−1

1) for these
samples and compute their average to approximate the
expectation in (13). The maximization (12) is performed
by solving equations obtained after taking gradients of
L1(i−1

1) over the parameters and setting them to 0. In
our experiment, the PFEM parameter estimation scheme
performs 30 EM iterations and uses 600 samples from the
particle filter for each window.

Results and discussion
The proposed method is evaluated on a data set obtained
by sequencing phiX174 bacteriophage using Illumina
Genome Analyzer II with the cycle length 76. This is
a short genome with a known sequence which enables
reliable performance comparison of different base-calling
techniques. We tested ParticleCall and several other algo-
rithms on a tile containing 77337 reads, and present the
results here. All the codes are written in C and the tests
are run on a desktop with an Intel Core i7 4-core 3GHz
processor.

Performance of ParticleCall
The base calling error rates are computed by aligning
the reads to the reference genome and evaluating fre-
quency of mismatches. Reads that could not be aligned
to the reference with at least 70% matches are discarded.
Note that the error rates and speed of the proposed Par-
ticleCall algorithm and the parameter estimation scheme
are affected by the parameters l, r, particle number Np,
and parameter estimation window length w. We ran

ParticleCall with l = r ∈ {1, 2, 4}. Increasing l and r
beyond l = r = 1 did not affect the performance while
it significantly slowed down the algorithm. This is due
to small values of the phasing and prephasing probabil-
ities, which are estimated to be p = 3.54 × 10−8 and
q = 0.00335. Therefore, in the remainder of the paper, we
set l = r = 1. The accuracy of base-calling for different
Np is shown in Table 1. As seen there, for the original Par-
ticleCall algorithm, Np = 800 leads to high performance
with reasonable speed. Rao-Blackwellized ParticleCall can
achieve the same accuracy with fewer particles (in partic-
ular, Np = 300); however, its effective running time is 3
times that of the original ParticleCall with the same per-
formance. This is because the Rao-Blackwellization steps
in (9) and (10) require evaluating a sum over all possible
Swt (43 = 64 for our choice l = r = 1), resulting in a
fairly large number of basic operations needed to calcu-
late exact distribution of the discrete variables. Therefore,
for further performance comparisons, we rely on the orig-
inal ParticleCall algorithm (formalized as Algorithm 1).
Table 2 shows the ParticleCall base calling error rate and
parameter estimation times for different window lengths
w. In the remainder of the paper, we set w = 5 as it

Table 2 ParticleCall parameter estimation

parameter estimation

Window lengthw base-calling error rate time (min)

4 0.0125 50

5 0.0125 39

6 0.0127 29

7 0.0130 25

ParticleCall base-calling error rate and the parameter estimation time of the
proposed PFEM parameter estimation algorithm.

Shen and Vikalo BMC Bioinformatics 2012, 13:160 Page 8 of 10
http://www.biomedcentral.com/1471-2105/13/160

Table 3 Comparison of error rates and speed

base-calling parameter estimation

Method error rate time (min) time (min)

Bustard 0.0152 2 (total)

Rolexa 0.0170 35 (total)

naiveBayesCall 0.0132 21 1139

BayesCall 0.0124 231 1139

ParticleCall

(via MCEM) 0.0124 88 1139

ParticleCall

(via PFEM) 0.0125 91 39

The base-calling error rate and the running times of different algorithms.
ParticleCall is run using parameters obtained via theMCEMparameter estimation
scheme as well as via the PFEM parameter estimation algorithm proposed in this
paper. For Bustard and Rolexa, only the total running times are reported.

leads to desirable performance/speed characteristics of
the algorithm.

Performance comparison of different algorithms
The error rates and speed of the proposed ParticleCall
algorithm are compared with those of BayesCall, naive-
BayesCall, Rolexa, and Bustard. We run ParticleCall both
with parameters provided by the computationally inten-
sive MCEM algorithm as well as with those inferred
by the PFEM parameter estimation scheme proposed in
this paper. The results are reported in Table 3. Note

that Rolexa generally outputs the so-called IUPAC codes,
unlike all the other considered algorithms which provide
sequences of nucleotides A, C, G, and T. To allow a
comparison, we enforce Rolexa to output sequences of
nucleotides as well. The comparison of per-cycle error
rates is shown in Figure 2. It can be seen from Table 3 and
Figure 2 that ParticleCall, BayesCall and naiveBayesCall
all have improved base-calling accuracy compared to
Bustard. BayesCall is highly accurate but relatively slow
– it requires approximately 4 hours to complete base-
calling for one tile of the data. naiveBayesCall significantly
improves base-calling speed over BayesCall but it does so
at the expense of incurring higher error rate. Our Parti-
cleCall base-calling algorithm has the same accuracy as
BayesCall, while being roughly 3 times faster. Figure 2
shows that both ParticleCall and BayesCall are more accu-
rate than naiveBayesCall in the early cycles and improve
over Bustard in all cycles. Note that Bustard outperforms
Rolexa, which is consistent with the results in [5]. More-
over, we see from Table 3 that performing parameter esti-
mation via the MCEM algorithm proposed in [8] requires
19 hours, while the particle filter implementation of the
EM estimation scheme proposed in this paper takes only
39 minutes. As evident from Table 3, running ParticleCall
with parameters obtained by the PFEM scheme leads to
only a minor performance degradation compared to run-
ning it with parameters obtained by theMCEMalgorithm.
Running ParticleCall base calling along with the PFEM
parameter estimation scheme takes about 2 hours per tile,

0 10 20 30 40 50 60 70 80
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Cycles

E
rr

or
 r

at
e

Bustard
Rolexa
naiveBayesCall
BayesCall
ParticleCall(via MCEM)
ParticleCall(via PFEM)

Figure 2 Per-cycle error rates of ParticleCall, BayesCall, naiveBayesCall, Rolexa and Bustard. The figure compares the per-cycle error rates of
different base-calling algorithms. ParticleCall and BayesCall are the most accurate ones.

Shen and Vikalo BMC Bioinformatics 2012, 13:160 Page 9 of 10
http://www.biomedcentral.com/1471-2105/13/160

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0.964

0.966

0.968

0.97

0.972

0.974

0.976

0.978

0.98

0.982

0.984

Error tolerance ε

D
(ε

)

Bustard
BayesCall
naiveBayesCall
ParticleCall(via MCEM)
ParticleCall(via PFEM)

Figure 3 Discrimination ability D(ε) of quality scores vs error tolerance. The figure shows the percentage of correctly called bases under
different error tolerance ε .

which is 9 times faster than the total time required by the
less accurate naiveBayesCall.

Quality scores
Quality scores are used to characterize confidence in the
outcome of the base-calling procedures. They are com-
puted as part of the analysis of the acquired raw data and
may be used to filter out reads of suspect quality, or to
shorten the reads if the quality scores of individual bases
fall below certain thresholds. They can also provide con-
fidence information for downstream analysis including
sequence assembly and SNP and genotype calling. Fre-
quently used are the so-called phred quality scores, which
were originally developed to assess the quality of the
conventional Sanger sequencing and automate large-scale
sequencing projects. Phred scores are also often provided
by the algorithms used for base-calling in next genera-
tion sequencing platforms. Formally, the phred score for a
called base in the cycle t, ŝt , is defined as

Qphred(ŝt) = −10 log10 P(ŝt �= st).

Essentially,Qphred(ŝt) is the scaled logarithm of the error
probability. Higher quality scores imply smaller probabil-
ity of the base-calling error. For the proposed ParticleCall
algorithm, probability of correctly calling a base can be
obtained from the posteriori probability as

P(ŝt �= st) = 1 − p
(
st|y′

1:t
)
.

Quality scores can be used to compare the discrimi-
nation ability of different algorithms. The discrimination
score D(ε) at error tolerance ε is defined as the ratio of
the correctly called bases having P(ŝt �= st) < ε (i.e.,
the quality score higher than −10 log10(ε)) to all called
bases. Figure 3 compares the discrimination ability of Par-
ticleCall, BayesCall, naiveBayesCall and Bustard. It shows
that for a reasonable error tolerance ε, ParticleCall with
parameters obtained through MCEM has better discrim-
ination ability than BayesCall, naiveBayesCall and Bus-
tard, while ParticleCall with parameters obtained through
PFEM has discrimination ability close to naiveBayesCall
and better than other algorithms. In other words, when a
small cutoff error tolerance ε is set and all the bases with

Table 4 de novo assembly results

ParticleCall ParticleCall

Coverage Bustard Rolexa naiveBayesCall BayesCall via MCEM via PFEM

N50 Max N50 Max N50 Max N50 Max N50 Max N50 Max

5X 271 607 259 565 278 604 292 629 299 637 289 632

10X 1169 1750 971 1557 1180 1731 1269 1831 1316 1900 1341 1865

15X 3624 3823 2885 3170 3726 3908 3466 3741 3742 3935 3697 3918

20X 4694 4744 4529 4614 4756 4816 4827 4875 5102 5116 4795 5039

The maximum contig length and N50 length of de novo assembly using Velvet. The average values over 200 experiments are shown in the table.

Shen and Vikalo BMC Bioinformatics 2012, 13:160 Page 10 of 10
http://www.biomedcentral.com/1471-2105/13/160

quality scores below ε are considered invalid, ParticleCall
provides the most accurate results among the considered
base-calling schemes.

Effects of improved base-calling accuracy on de novo
sequence assembly
In shotgun sequencing, a long target sequence is oversam-
pled by a library of randomly fragmented copies of the
target, and the overlaps between short reads obtained by a
high-throughput platform are used to assemble the target.
In de novo assembly, the target is reconstructed without
consulting any reference [21,22]. Performance of assem-
bly algorithms highly depends on the accuracy of base
calling. To demonstrate the effects of base-calling accu-
racy on assembly, we apply the Velvet assembly algorithm
[22] on reads provided by Bustard, Rolexa, naiveBayesCall,
BayesCall, and ParticleCall. In particular, we randomly
subsample the set of reads provided by each of the base
calling algorithms to emulate 5X, 10X, 15X, and 20X cov-
erage. Then we run Velvet on each of the subsets, and
evaluate commonly used metrics that quantify the qual-
ity of the assembly procedure. Specifically, we evaluate the
maximum contig length and the N50 contig length. The
described procedure is repeated 200 times to obtain aver-
age values of these two quality metrics. The results are
shown in Table 4. As can be seen there, ParticleCall pro-
vides the largest N50 and maximum contig length among
all of the considered base calling schemes, for all of the
considered coverages.

Conclusions
In this paper we presented ParticleCall, a particle filtering
algorithm for base calling in the Illumina’s sequencing-by-
synthesis platform. The algorithm is developed by relying
on an HMM representation of the sequencing process.
Experimental results demonstrate that the ParticleCall
base calling algorithm is more accurate than Bustard,
Rolexa, and naiveBayesCall. It is as accurate as BayesCall
while being significantly faster. Quality score analysis of
the reads indicates that ParticleCall has better discrimi-
nation ability than BayesCall, naiveBayesCall and Bustard.
Moreover, a novel particle filter EM (PFEM) parame-
ter estimation scheme, much faster than the existing
Monte Carlo implementation of the EM algorithm, was
proposed. When relying on the PFEM scheme, Particle-
Call has near-optimal performance while needing much
shorter total parameter estimation and base calling time.

Author’s contributions
Algorithms and experiments were designed by Xiaohu Shen (XS) and Haris
Vikalo (HV). Algorithm code was implemented and tested by XS. The
manuscript was written by XS and HV. Both authors read and approved the
final manuscript.

Acknowledgements
This work was funded by the National Institute of Health under grant
1R21HG006171-01.

Competing interests
The authors declare that they have no competing interests.

Received: 14 March 2012 Accepted: 9 July 2012
Published: 9 July 2012

References
1. Shendure J, Ji H: Next-generation DNA sequencing. Nat Biotechnology

2008, 26:1135–1145.
2. Metzker M: Emerging technologies in DNA sequencing. Genome

Research 2005, 56:1767–1776.
3. Bentley D:Whole-genome re-sequencing. Curr Opin Genet Dev 2006,

16:545–552.
4. Nielsen R, Paul JS, Alvrechtsen A, Song YS: Genotype and SNP calling

from next-generation sequencing data. Nature Reviews 2011,
12:443–451.

5. Ledergerber C, Dessimoz C: Base-calling for next-generation
sequencing platforms. Briefings in Bioinformatics 2011, 12:489–497.

6. Rougemont J, Amzallag A, Iseli C, Farinelli L, Xenarios I, Naef F:
Probabilistic base calling of solexa sequencing data. BMC
Bioinformatics 2008, 9:431.

7. Erlich Y, Mitra P, Delabastide M, McCombie W, Hannon G: Alta-Cyclic: a
self-optimizing base caller for next-generation sequencing. Nat
Methods 2008, 5:679–682.

8. Kao W, Stevens K, Song Y: BayesCall: A model-based base-calling
algorithm for high-throughput short-read sequencing. Genome
Research 2009, 19:1884–1895.

9. Kao W, Stevens K, Song Y: naiveBayesCall: an efficient model-based
base-calling algorithm for high-throughput sequencing. Journal of
Computational Biology 2011, 18:365–377.

10. Fedurco M, Romieu A, Williams S, et al: BTA, a novel reagent for DNA
attachment on glass and efficient generation of solid-phase
amplified DNA colonies. Nucleic Acids Res 2006, 34(3):e22.

11. Turcatti G, Romieu A, Fedurce M, et al: A new class of cleavable
fluorescent nucleotides: synthesis and optimization as reversible
terminators for DNA sequencing by synthesis. Nucleic Acids Res 2008,
36(4):e25.

12. Eddy S: HiddenMarkov models. Current Opinion in Structural Biology
1996, 6(3):361–365.

13. Doucet A, Wang X:Monte Carlo methods for signal processing: A
review in the statistical signal processing context. IEEE Signal
ProcessingMagzine 2005, 22:152–170.

14. Cappé O, Moulines E, Rydén T: Inference in hiddenMarkovmodels. New
York: Springer Verlag ; 2005.

15. Pitt M, Shephard N: Filtering via simulation: Auxiliary particle filters.
Journal of the American Statistical Association 1999, 94:590–599 .

16. Doucet A, Godsill S, Andrieu C: On sequential Monte Carlo sampling
methods for Bayesian filtering. Statistics and computing 2000,
10(3):197–208.

17. Kim S, Shephard N, Chib S: Stochastic volatility: likelihood inference
and comparison with ARCHmodels. The Review of Economic Studies
1998, 65(3):361–393.

18. Liu J, Chen R: Sequential Monte Carlo methods for dynamic systems.
Journal of the American statistical association 1998, 93:1032–1044.

19. Kitagawa G:Monte Carlo filter and smoother for non-Gaussian
nonlinear state space models. Journal of computational and graphical
statistics 1996, 5:1–25.

20. Carpenter J, Clifford P, Fearnhead P: Improved particle filter for
nonlinear problems. In Radar, Sonar and Navigation, IEE Proceedings-,
Volume 146, IET; 1999:2–7 .

21. Butler J, MacCallum I, Kleber M, Shlyakhter I, Belmonte M, Lander E,
Nusbaum C, Jaffe D: ALLPATHS: de novo assembly of whole-genome
shotgunmicroreads. Genome Research 2008, 18(5):810–820.

22. Zerbino D, Birney E: Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome research 2008, 18(5):821–829.

doi:10.1186/1471-2105-13-160
Cite this article as: Shen and Vikalo: ParticleCall: A particle filter for base
calling in next-generation sequencing systems. BMC Bioinformatics 2012
13:160.

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Illumina sequencing platform
	Overview of the mathematical model
	Hidden Markov Model of DNA base-calling
	ParticleCall base-calling algorithm
	Algorithm 1
	Algorithm 2

	Parameter estimation
	Assumptions on parameters
	Particle filter EM algorithm

	Results and discussion
	Performance of ParticleCall
	Performance comparison of different algorithms
	Quality scores
	Effects of improved base-calling accuracy on de novo sequence assembly

	Conclusions
	Author's contributions
	Acknowledgements
	Competing interests
	References

