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Abstract

Background: Precise DNA-protein interactions play most important and vital role in maintaining the normal
physiological functioning of the cell, as it controls many high fidelity cellular processes. Detailed study of the nature
of these interactions has paved the way for understanding the mechanisms behind the biological processes in
which they are involved. Earlier in 2000, a systematic classification of DNA-protein complexes based on the
structural analysis of the proteins was proposed at two tiers, namely groups and families. With the advancement in
the number and resolution of structures of DNA-protein complexes deposited in the Protein Data Bank, it is
important to revisit the existing classification.

Results: On the basis of the sequence analysis of DNA binding proteins, we have built upon the protein centric,
two-tier classification of DNA-protein complexes by adding new members to existing families and making new
families and groups. While classifying the new complexes, we also realised the emergence of new groups and
families. The new group observed was where β-propeller was seen to interact with DNA. There were 34 SCOP folds
which were observed to be present in the complexes of both old and new classifications, whereas 28 folds are
present exclusively in the new complexes. Some new families noticed were NarL transcription factor, Z-α DNA
binding proteins, Forkhead transcription factor, AP2 protein, Methyl CpG binding protein etc.

Conclusions: Our results suggest that with the increasing number of availability of DNA-protein complexes in
Protein Data Bank, the number of families in the classification increased by approximately three fold. The folds
present exclusively in newly classified complexes is suggestive of inclusion of proteins with new function in new
classification, the most populated of which are the folds responsible for DNA damage repair. The proposed re-
visited classification can be used to perform genome-wide surveys in the genomes of interest for the presence of
DNA-binding proteins. Further analysis of these complexes can aid in developing algorithms for identifying
DNA-binding proteins and their family members from mere sequence information.
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Background
The driving forces for the cell to survive and regulate its
various processes are the specific interactions between
macromolecules. Protein-nucleic acid interactions are
important for many high fidelity cellular processes. Both
of these macromolecules are known to be involved in
various important mechanisms and processes of systems
biology- replication, transcription, translation, recombin-
ation, DNA-repair, DNA packaging etc. Therefore,
DNA-binding proteins serve as the key players in main-
taining cell viability and proliferation.
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Also, DNA-binding proteins constitute both
eukaryotic and prokaryotic proteomes. The interplay
between DNA and proteins is most fundamental inter-
action in biology and also has implications in the field
of medicine, pharmacology and biotechnology. The di-
verse function of DNA-binding proteins is accompanied
by the diversity in their sequences and structures.
Therefore, to elucidate and understand the mechanism

of any of the biological processes involving DNA-
binding proteins, it is necessary and useful to study the
nature of these nucleic acid-protein complexes formed
in order to accomplish the specific function [1]. There
have been many earlier attempts to study the nature of
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contacts between DNA and protein, example, H-bond
[2,3], and water mediated interactions [4].
In the past, apart from the concern in understanding

the interactions between the two macromolecules, inter-
est had also been focused on classifying DNA-protein
complexes. The classification based on the structures of
DNA-binding domains was first proposed by Harrison in
1991 [5]. Luscombe and coworkers (2000) classified the
DNA-protein complexes into 8 groups and 54 families
using the structures of DNA binding domain of the pro-
tein and on the basis of similarities of overall protein
folds, the complexes were classified into different groups.
In this existing classification, each group of proteins ex-
hibit similar DNA binding mode, but proteins in some
groups differ in terms of structure, mode of interaction
and wide range of recognition sequence [1]. Subse-
quently, in 2002, there was a classification which was
based on the analysis of the structural domains interact-
ing with DNA and then clustering these domains was
based on structural similarity [6]. Later, in 2006, there
was an attempt towards classifying DNA-protein com-
plexes, using descriptors characterizing DNA-protein
interactions like number of atomic contacts at major and
minor groove, buried surface area at the interface etc. [7].
All the approaches of classification, mentioned above,

were protein-centric in nature which implies that the
classification was based on the features of the protein
partner of the complex. However, in 2006, completely
new viewpoint of classification was proposed by Sen
et al. which was DNA-centric in nature and hence based
on the features of nucleic acid part of the complex. They
made an attempt to classify these complexes based on a
clustering approach that incorporates most of the key
structural parameters involved in recognition process [8].
In the present study, we have made an attempt to-

wards protein-centric classification of DNA-protein
complexes. To study the nature of these complexes, it is
important to understand the structure of the DNA-
binding domains present in proteins, namely from the
Protein Structure Data Bank (PDB) [9]. With the ad-
vancement in number and the resolution of structures of
DNA-protein complexes, it became important to revisit
the existing classification. The classification we propose
is based more on sequence similarity rather than struc-
tural alignments. Sequence-based approaches towards
understanding DNA-binding proteins will gear the
developed classification scheme and search algorithms
to search effectively in whole genomes, where mere se-
quence information is available. Re-examining the exist-
ing classification will play an important role in
understanding this important class of proteins known to
form complexes with DNA.
Firstly, PDB was queried for dsDNA-protein com-

plexes (see Methods) with resolution better than 3 Å.
We have built upon the existing groups and families of
DNA binding proteins in classification proposed by
Luscombe et al., 2000 and selected representatives of
each of the families which were also validated using
Jack-knifing (leave-one-out) approach. For each of the
representatives selected for different families, PSI-
BLAST [10] profiles were built using Jump Start PSI-
BLAST. The new complexes were individually used as a
query against the database of representatives’ profiles
using RPS-BLAST [11]. This helped to populate the
existing families. The left-out new complexes were clus-
tered and classified based on their biological function
and grouped according to the presence of the DNA
binding motif in the protein partner. As a result, we
were able to classify DNA binding proteins in to 174
families and nine groups.
This newly built two-tier classification where the group

indicates the type of DNA binding motif present in the
protein partner (except in the Enzyme group where group
name indicates that the protein possesses catalytic activity
upon binding to DNA) and the family level corresponds
to the functional role of the protein, can further be used
for performing genome–wide surveys in organism(s) of
interest for the presence of DNA-binding proteins.

Methods
Selection of DNA-protein complexes from PDB
PDB was searched for DNA-protein complexes having
resolution better than 3 Å. The complexes were further
filtered for having only double-stranded DNA (dsDNA)
and all single-stranded DNA (ssDNA), quadruple DNA
(it is higher order structure of nucleic acids which is G-
rich and forms four-stranded structure), nucleosomal
and previously classified complexes were removed.

Representatives’ selection for existing 54 families
For all the 54 families from Thornton’s group 2000 clas-
sification, representatives were selected and validated.
First the pairwise percentage identities were obtained be-
tween members of a family using ClustalX [12]. The
families having wide percentage identity distribution
were carefully analyzed for their representative selection
in terms of coverage of each family member as described
below. The statistical approach Jack-knifing (leave-one-
out approach) was used to validate the selection of
representatives in terms of its coverage for being able to
pick up all of its own family members. Best representa-
tive was selected by providing equal chance to every
family member to become the representative and then
observing its performance as measured by coverage over
its own family (other members of its family are able to
pick the representative(s) profile). Either a single mem-
ber or a combination of members is chosen so as to ob-
tain 100% coverage for a particular family.



Coverage of the member i
belonging to family F

¼ Number of members of family F picking member i profile
Total number of members in family F
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In families, where one member was not able to have
100% coverage over its family, more than one member
was selected as representatives. For all the selected repre-
sentatives, PSI-BLAST profiles were built using Jump-start
PSI-BLAST at stringent Evalue of 10-10, for 20 iterations,
where alignment of all family members including the rep-
resentative was also given as input for profile creation.
Also, the representatives that were selected were tested

for their performance by making their PSI-BLAST pro-
files against dummy database (a database having com-
pletely unrelated sequences which are non-DNA binding
in nature), so as to ensure that the representative profile
is powerful and it is not biased by other sequences,
included during profile creation, in its coverage. There-
fore, a dummy database helped us to make sure that
there were no additional members that might drift the
direction of sequence searches. If the selected best repre-
sentative(s) profile built against this dummy database
was still observed to have 100% coverage on its family, it
was selected as a true representative.

Classification of new complexes
The previously existing families were first populated
with new complexes with the help of RPS-BLAST, where
all profiles of representatives were assembled into a
database and the complexes individually were allowed to
pick a profile from this database using RPS-BLAST at an
E-value of 10-3. The single-profile pickers were easily
added to the respective family whereas the multiple- or
no- profile pickers were dealt with separately.
Multiple-profile pickers which were observed to be

ternary complexes were split into chains and added to
the respective families. No-profile pickers were clustered
using all-against-all BLAST approach and were added in
to new groups and families based on the DNA binding
motif and their biological function respectively. Figure 1
depicts the schematic of the overall methodology
adopted to classify the new protein-DNA complexes into
groups and families.

New families and their representatives
After the new classification was laid down, for each of
the newly formed families and the old families which
have undergone expansion in terms of addition of mem-
bers, new representatives were selected adopting the
same approach as mentioned above.
The best representative of newly formed families was

selected using Jack-knifing and phylogeny. The decision
to choose either of the one techniques was based on the
size of the family and also the distribution of the percent
identity plot within the family (Figure 2 depicts the
methodology of selecting the representatives). For two-
member families, both the members are allowed to be-
have as a representative and then both are assessed in
terms of their coverage for that particular family. If the
old representative is able to have 100% coverage on the
family, then it was retained as a new representative also.
In the case of multi-member families, the pairwise per-

centage identity distribution was observed first and in
the case of a narrow distribution, any one of the member
is assessed for its coverage (as narrow distribution im-
plies the members are nearly identical). Wide percent
identity distribution requires decision making for the
number of members in a given family. As Jack-knifing is
computationally intensive technique [N (N-1) profiles
creation for N members], families having <50 members
were subjected to Jack-knifing but if the members in
family are >50, first clustering was performed and repre-
sentative “seeds” from cluster(s) were chosen and indi-
vidually as well as in combination from different
clusters, were assessed for their coverage.

Results and discussion
Dataset of DNA-protein complex structures
Structures of DNA-protein complexes solved using X-Ray
crystallography and resolution better than 3 Å were
obtained from PDB. From this dataset, the protein DNA
complexes having ssDNA or quadruple DNA was
excluded from this classification (see Methods). Some of
the complexes were ternary ones having two proteins and
DNA molecule; these were split into individual chains and
then considered for classification. Thornton and cowor-
kers classified 230 complexes in 2000 and now approxi-
mately a four-fold increase in the number of complexes
which needs classification was observed (1009 complexes).
As of February 2010, 1354 protein DNA complexes

were retrieved from PDB. Already classified complexes
(241 (including ternary complexes), [1]), ssDNA, quad-
ruple DNA complexes, ribonucleases, ATP-bound com-
plexes and tri/octa peptides bound to nucleic acid were
also removed. This resulted in a dataset of 1009 DNA-
protein complexes which need to be classified.
Further, it was observed that there were approximately

equal number of prokaryotic and eukaryotic complexes
(44% each) but only a very small percent 11% complexes
were from viruses (Figure 3).



Figure 1 Methodology. Schematic of the overall methodology for classifying new complexes using approaches like PSI-BLAST and RPS-BLAST.

Figure 2 Representative Selection. Schematic of the methodology for selecting reprsentatives of new families formed after classification. If the
percentage identity plot is narrow, any member of the family is assessed for its coverage, but if the distribution of percent identity is wide, the
decision of whether to perform Jack-knifing is dependent on the size of the family.
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Figure 3 Source of new nucleic acid-protein complexes. Source of the classified DNA-protein complexes (including previously classified
complexes). Prokaryotic and eukaryotic complexes were almost equal in percentages (44%) and small 11% of the total complexes were viral
DNA-protein complexes.
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Representatives of DNA-binding protein families
For all the existing 54 families in Thornton’s classifica-
tion [1], best representative was selected with the help of
Jack-knifing approach. For these 54 families, 59 repre-
sentatives were selected ensuring 100% coverage.
For 23 out of 54 Thornton’s families, which were

multi-membered families (>2 members), pairwise per-
centage identities were obtained using ClustalX. Figure 4
displays the percent identity distribution for these fam-
ilies in form of Box and whisker plot. For 10 families, a
narrow percentage identity range was observed and in
these families any one member was assessed for its
coverage. In all such cases, one member was observed to
Figure 4 Percentage Identity distribution for Thornton’s families. Pairw
families. (Red stars in front of the family name implies it has wide distributi
knifing for selecting the representative).
have 100% coverage for family. But for families having
wide percentage identity range (13 families), each mem-
ber was given a chance to behave as a representative and
later they were assessed for coverage over their family.
The total number of representatives selected for 54 fam-
ilies were 59 (Table 1), implying there was more than
one representative for some families. These families were
Homing endonuclease (2), Homeodomain (3), DNA
Polymerase T7 (2) and Transcription factor (2).
For all the 59 selected representatives, PSI-BLAST

profiles were again built against dummy database using
the earlier profile creation parameters (as described in
Methods). The sequences included in the dummy
ise percent identity distribution for 23 multi-member Thornton
on of percent identity and further the family was subjected to Jack-



Table 1 Representatives for previous families 54 existing
families (Thornton classification) representatives were
selected and were validated using Jack-knifing

Group Families Representative(s)

HTH

Cro & repressor 1LMB

Homeodomain 1FJL, 1HDD, 6PAX

LacI repressor 1WET

Endonuclease Fok1 1FOK

Gamma Delta resolvase 1GDT

Hin recombinase 1HCR

RAP1 family 1IGN

Prd paired domain 1PDN

Tc3 transposase 1TC3

Trp repressor 1TRR

Diptheria tox repressor 1DDN

Transcription factor IIB 1D3U

Interferon regulatory 2IRF

Catabolite gene activator protein 1RUO

Transcription factor 1CF7, 3HTS

Ets domain 1BC8

Zinc Co-ordinating

β-β-α zinc finger 1ZAA

Harmone Nuclear Receptor 2NLL

Loop sheet helix 1TSR

GAL4 type 1ZME

Zipper type

Leucine Zipper 1YSA

Helix loop helix 1AN2

Other-α Helix

Pappilomavirus 1 E2 2BOP

Histone 1AOI

EBNA1 nuclear protein 1B3T

Skn-1 transcription factor 1SKN

Cre Recombinase 1CRX

High Mobility Group 1QRV

MADS box 1MNM

β-Sheet

TATA box binding 1YTB

β-Hairpin/Ribbon

MetJ repressor 1CMA

Tus replication terminator 1ECR

Integration host factor 1IHF

Transcription Factor T-domain 1XBR

Hyperthermophile DNA 1AZP

Arc repressor 1PAR

Table 1 Representatives for previous families 54 existing
families (Thornton classification) representatives were
selected and were validated using Jack-knifing
(Continued)

Other

ReI homology 1SVC

Stat protein 1BF5

Enzyme

Methyltransferase 6MHT

Endonuclease PvuII 3PVI

Endonuclease ecorV 1RVA

Endonuclease ecorI 1QPS

Endonuclease BamHI 3BAM

Enonuclease V 1VAS

Dnase I 2DNJ

DNA mismatch endonuclease 1CW0

DNA polymerase β 1BPY

DNA Polymerase I 2BDP

DNA Polymerase T7 1T7P,1CLQ

HIV Reverse Transcriptase 2HMI

Uracil DNA glycosylase 1SSP

3-Methyladenine DNA glycosylase1BNK

Homing endonuclease 1A73, 1BP7

TopoisomeraseI 1A31
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database were foetal deoxyhemoglobin, relaxin, subtili-
sin, chymotrypsin and human deoxyhemoglobin. The 59
new profiles built using dummy database were again
assessed for their coverage and all were still observed to
be best representatives.

Classification of new complexes
After performing the RPS-BLAST search for each of the
1009 new complexes against database of the family
representatives, 444 (~44%) complexes were observed to
pick single representative family profile, 118 (~12%)
were picking multiple profiles and 447 (~44%) com-
plexes did not pick profile of any of the representatives.
444 new complexes which were able to pick single

profiles from database of 59 profiles at Evalue 10-3 using
RPS-BLAST were added as new members of the existing
families and marked as representative associations in the
master table of classification [see Additional file 1]. 118
complexes were observed to pick more than one repre-
sentative’s profile, because of the existence of more than
one representative for a family and also 8 of them were
ternary complexes (i.e. two proteins bound to DNA [see
Additional file 2]. In the first case, when they were pick-
ing profiles of the representatives of the same family, the
complex was added to that particular family. Ternary
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complexes were split into different chains and the chains
were added to the respective families. There were a total
of 12 complexes which were ternary in nature, three
were in association with a representative and one was a
loner (defined later).
447 complexes, which did not pick any of the repre-

sentative profile, were checked for all pairwise associa-
tions among themselves. 369 of these were observed to
form 75 families and rest 78 did not associate with any
of the sequences and were termed as loners. For all these
75 families having 369 members, their functional anno-
tations were manually recorded by consulting the litera-
ture and the newly formed different families were
attributed a status within the existing eight groups and
are mentioned as pairwise association [see Additional
file 1]; 78 (loners) were likewise mentioned as ‘single-
membered families loners’ in master classification chart
[see Additional file 1], loners were classified into new
families by consulting literature and these references
[see Additional file 3] have been marked. The new fam-
ilies were named according to the biological function
performed by the respective members. While making
these new families in existing groups, one new group ‘β-
propeller’ was also realized. Presently, this group has sin-
gle family which in-turn has two members which are
DNA-bound complex of DNA damage repair protein
having a seven bladed β-propeller fold.

New families and their representatives
The sequence analysis based approach for DNA-protein
complexes, as described above, gave rise to classification
of DNA-binding proteins into nine groups and 174 fam-
ilies. 59 families (~33%) have only single member, 35
(20%) families have two members and 82 (~47%) families
are multi-member families. Figure 5 depicts the
Figure 5 Percentage distribution of single, two- and multi-membered
single-, two- and multi-member families in each of the nine groups. Total r
percentage distribution of single, two- or multi-member
families in each of the nine groups.
The proteins included in the same group exhibit same

DNA-binding motif and within the same family they have
similar functional roles. The new families were identified
by checking the associations of individual proteins with
every other protein or with the previously classified pro-
tein. The details about the families in nine different
groups and PDB codes of the members are recorded in
the classification chart [see Additional file 1].
The schematic of the classification represented in

Figure 6 highlights the different ways adopted to classify
DNA-protein complexes. Table 2 summarizes the modi-
fications performed in Thornton’s families after associ-
ation of new members. The listed families have been
marked up appropriately as renamed or split or merged,
as the case may be.
The following are some examples explaining the modi-

fications made to the existing families in order to add
the new members:

Renaming
While performing classification, six previously recog-
nised families were renamed - Cro and repressor (HTH
group), Diphtheria tox repressor (HTH group), Hor-
mone nuclear receptor (Zn co-ordinating group), Gal4
(Zn co-ordinating group), Cre recombinase (Other
α-helix group) and ReI homology (Other α-helix group).
The names in parentheses indicate their modified names.
Table 2 lists these families with their new name incurred
upon classification.
Diphtheria tox repressor family was previously having

diphtheria tox iron dependent repressor [13], which is
known to regulate the toxin coding tox gene in Coryne-
bacterium diphtheriae. This family was renamed to iron
families in new classification. Percentage distribution of number of
epresents the distribution in all the groups collectively.



Figure 6 Schematic of the Classification. The circles represent the entire pool of DNA-protein complexes. Within the circles, ovals are the
different groups of DBP; orange stars are the existing families within groups. These groups vary in their size in terms of number of families
present and also the number of members within each family. After our classification, one new group was realized (red oval), also the new
members were added to existing families (shaded orange ovals) and also new families were realized as represented by blue stars.
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dependent repressors to include iron dependent regula-
tor (IdeR), from Mycobacterium tuberculosis which is
known to be the functional homolog of diphtheria tox
repressor [14].
Table 2 Modifications in previous families

Group

Before classification

HTH

Cro & repressor

Diptheria tox repressor

Zinc Co-ordinating

Harmone Nuclear Receptor

GAL4 type

Zipper type

Leucine Zipper

Other-α Helix

Cre Recombinase

Other

ReI homology

Enzyme

DNA polymerase β

DNA Polymerase I

DNA Polymerase T7

Uracil DNA glycosylase

The previously recognised 54 families were split, renamed or merged while classific
below have been marked appropriately if they were renamed or split or merged. 17
recognised families which are not listed did not get change and were populated w
Splitting and merging
Previously existing families, like leucine zipper and Ura-
cil DNA glycosylases, were split into subfamilies. Leu-
cine zipper was observed to have two subfamilies bzip1
Existing Families

After classification

Renamed to Cro and cro like

Renamed to iron dependent repressor

Renamed to Nuclear receptors

Renamed to Gal 4 and Gal 4 like

Has subfamilies bzip1 and bzip2

Renamed to Site specific recombinases

Renamed to Ig fold like Transcription factor

Merged and splitted into DNA Polymerase A, B, C, X and Y

Has 3 subfamilies Human UDG, Xenopus UDG and T. thermophilus UDG

ation in order to populate them with the new members. The families listed
% of the families underwent these treatment. (Rest of the previously
ith new members).
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and bzip2. In enzymes group, uracil DNA glycosylase
family was split into three subfamilies based on the
source of the enzyme, human, Xenopus or Thermus
thermophilus.
In the previous classification, DNA polymerases were

classified in three families- DNA Pol DNA Pol I and T7
DNA Pol. After new classification, these three families
were merged and then split to form five sequence-based
families [15], DNA polymerase A, B, C, X and Y.
In contrast to the number of existing families in differ-

ent groups, the maximum fold change in terms of in-
crease in number of families was observed to undergo a
five-fold increase in the Enzyme group. However, in
groups HTH, β-sheet and ‘Other’, an approximately
three-fold increase in the number of families was
observed. Three groups, Zinc coordinating, Zipper type
and Other α-helix, were not observed to experience sig-
nificant increase in the number of families during the
re-classification in comparison to the number of previ-
ously existing families. Figure 7 shows the total number
of families within each group before and after our
classification.
The new families were also examined for their folds as

ascribed to them by SCOP 1.75 [16], and the folds were
recorded [see Additional file 1]. Although SCOP is a
highly updated database, we realised that ~30% of the
entries (PDB IDs) were not included in SCOP 1.75 due
to newer PDB entries. 34 SCOP folds were common to
both new and old classification and they experienced an
Figure 7 Distribution of number of families in different groups in bot
before and after new classification. The highest increase was observed to b
group.
expansion in the number of complexes. The fold change
in these 34 common folds is represented in Figure 8.
The number of members, belonging to both old and
new classification possessing each of the common 34
folds is summarised [see Additional file 4]. The top three
folds, experiencing maximum expansion in terms of
members possessing them, were Histone, Homing endo-
nuclease and DNA/RNA Polymerase - truly reflecting
the maximum increase in the number of members and
families in enzymes group. Therefore, expansion in the
existing families was seen to a maximum extent in the
families of enzyme group which have property to bind to
DNA and then carry out an enzymatic activity.
Also, there were 28 folds which were present only in

new complexes, suggesting emergence of structures of
complexes performing new functions (Figure 9). The
proteins possessing DNA-repair function is present ex-
clusively in the newly classified complexes like Y-family
DNA polymerases which are known to bypass a lesion
in DNA, DNA glycosylases and MutS DNA-repair
proteins.
It was observed that for all the groups, in total, there

were 57 single-member, 35 two- member and 82 multi-
member families. New representatives were also selected
for these 174 new families. For 57 single-member fam-
ilies, the member itself was a representative. In two-
member families, equal chance to each member was
given to become a representative and the one having
100% coverage was selected as representative. For multi-
h old and new classification. Total number of families in each group
e the five-fold increase in the total number of families in Enzyme



Figure 8 Common SCOP folds in old and new classification34 common folds in both old and new classification complexes. Number of
members possessing these folds expanded in new classification compared to old classification. The fold increase in the number of members with
each of these 34 folds is plotted. Maximum fold increase of 27 was observed in Histone family.

Figure 9 SCOP folds only in new classification28 folds present only in newly classified complexes. The fold exhibited by maximum
number of newly classified complexes are those which are involved in DNA damage repair functions like Lesion bypass DNA Polymerase, MutS
domain, Glycosylase. Numbers represent the respective names of SCOP fold in the Figure 1. ATP-dependent DNA ligase DNA-binding domain, 2.
Cryptochrome/photolyase FAD-binding domain, 3. DNA-clamp, 4. Double-stranded β-helix, 5. GCM domain, 6. Hcp1-like, 7. Metallo-dependent
phosphatases, 8. Phage replication organizer domain, 9. SPOC domain-like, vWA-like, 10. Thioredoxin fold, 11. Type II DNA topoisomerase ,12.
DNA-binding domain of intron-encoded endonucleases, 13. Phospholipase D/nuclease, 14. Replication modulator SeqA, C-terminal DNA-binding
domain, 15. SMAD MH1 domain, 16. UDP-Glycosyltransferase/glycogen phosphorylase, 17. N-terminal domain of MutM-like DNA repair
proteins, 18. P-loop containing nucleoside triphosphate hydrolases, 19. SAM domain-like, 20. SRF-like, 21. Zinc finger design, 22. Origin of
replication-binding domain, RBD-like, 23. Ribonuclease H-like motif, 24. PUA domain-like, 25. DNA-glycosylase, 26. Putative DNA-binding domain,
27. DNA-repair protein MutS, domain III, 28. Lesion bypass DNA polymerase (Y-family).
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member families, the pairwise percentage identity distri-
bution in the form of box-plot is represented in
Figure 10. Out of 82 multi-member families, 32 were
observed as having narrow percent identity distribution,
Figure 10 Pairwise percentage identity distribution for new families.
families of group HTH, the following are the family names 1. *Cro and Cro
*Iron Dependent repressor 7. *Transcription factor IIB/IIA 8. NarL transcriptio
Interferon regulatory factor 13. *Catabolite gene activator protein 14. Trans
Transcription activator BMRR (B). Boxplot for pairwise percent distribution f
type, Other α-helix, β-sheet, β-hairpin/ribbon and Other. The following are
*Zinc-coordinating-Nuclear Receptors 3. *Zinc-coordinating-Loop-sheet-hel
7. *Zipper-type-Helix-loop-helix 8. 8Other α-helix -histone 9. *Other α-helix
Other α-helix -MADS box 12. *Other α-helix -CUT domain 13. *β-sheet-TATA
replication terminator 16. *β-hairpin-Integration host factor 17. *β-hairpin-H
β-hairpin-Omega Repressor 20. *β-hairpin-SRA Domain 21. *Other-Ig fold lik
bzip1 and bzip2 boxplots are different but they are subfamilies of single Le
multi-member families of group enzymes. The following are the family nam
4. *Endonuclease ecorI 5. Endonuclease BamHI 6. *Enonuclease V 7. *Dnase
3-Methyladenine DNA glycosylase 11. *Homing endonuclease 12. *Topoiso
endonuclease 16. *Endonuclease III and MutY 17. *DNA Photolyase 18. α-g
8-oxoguanine DNA glycosylase 22. ALKA 23. Phi 6 RNA Pol 24. β-Glucosyltr
phosphodiesterase 27. Relaxase TrwC 28. *Nuclease-Colicin 29. Endonuclea
Restriction Endonuclease HinP1I 34. ABH2 35. Restriction endonuclease Sgr
Polymerases 39. *Family Y Polymerases 40. *DNA Ligase 41. *Family C polym
name implies it has wide distribution of percent identity and further the famil
whereas 50 families (marked with star Figure 10) were
having wide distribution of percentage identity. For 47
families, leave-one-out approach was adopted to find best
representative. There were three families (out of 50) with
(A). Boxplot for pairwise percent distribution for 18 multi-member
like 2. *Homeodomain 3. LacI repressor 4. Hin recombinase 5. *RAP1 6.
n factor 9. *Tn5 Transposase 10. *MutS 11. *Tetracycline Repressor 12.
cription factor 15. *Ets domain 16. *Z-α domain 17. *Forkhead TF 18.
or 20* multi-member families of group Zinc co-ordinating, Zipper
the family names- 1. *Zinc-coordinating-β-β-α-zinc finger 2.
ix 4. *Zinc-coordinating-gal4 5. *Zipper-type-bzip1 6. *Zipper-type-bzip2
-Site specific recombinases 10. *Other α-helix -High mobility group 11.
box-binding 14. *β-hairpin-MetJ repressor 15. β-hairpin-Tus

yperthermophile DNA-BP 18. *β –hairpin-Arc repressor 19.
e TF 22. *Other-Seq A*Total number of plots are 21 in Figure 9(B) as
ucine zipper family (C). Boxplot for pairwise percent distribution for 43
es- 1. Methyltransferase 2. Endonuclease PvuII 3. Endonuclease ecorV
I 8. *HIV reverse transcriptase 9. *Uracil-DNA glycosylase 10.
merase I 13. T7 RNA Pol 14. N4 RNA Pol 15. HincII restriction
lucosyl transferase 19. *Helicase 20. *Thymine DNA-glycosylase 21.
ansferase 25. *Endonuclease VIII and MutM 26. Human tyrosyl-DNA
se IV 30. Excisionase (Xis) 31. ISHp608 Transposase 32. AlkB 33.
AI 36. *Family A Polymerases 37. *Family B Polymerases 38. *Family X
erases 42. Mtaq 1 methylase 43.* DAM(Stars in front of the family

y was subjected to Jack-knifing for selecting the representative).
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wide percentage identities with >50 members- Family A
DNA Pol, Family X DNA Pol and Family Y DNA Pol,
where clustering was performed followed by assessing
the representative from every cluster both individually
and in combination to assess its coverage.

Old vs. new representatives
While selecting the new representatives, care was taken
to retain the previously chosen representative, if it
showed 100% coverage for the family including the
newly added members. As a result, it was observed that
75% (for 38 families out of 51) of the previously chosen
representatives were retained as family representatives
even after adding the new members [see Additional file 5].
In total, 191 representatives were identified for 174
families [see Additional file 6].

Conclusions
Protein nucleic acid complexes form the most vital inter-
acting macromolecular pairs existing in the biological
cell. It governs number of cellular processes and hence
helps in maintaining the normal physiological state of
the cell.
Here, we have investigated the existing DNA-protein

complexes in the PDB (Feb2010) and provided a system-
atic two-tier protein-centric classification for them. To
achieve this, we have looked upon and studied the exist-
ing classification [1]. But due to nearly exponentially in-
creasing growth of PDB [17], there is a need to revisit
the existing classification.
The main features of the classification we propose are:

1. The number of complexes classified is ~5 times
(1009 vs. 230) more than the number of DNA-
protein complexes classified previously. There were
approximately equal number of complexes from
prokaryotic as well as eukaryotic sources, but only
little above 11% of the complexes were having viral
proteins.

2. It is a two-tier classification at group and family level.
At the first level, group defines the DNA-binding
motif present except in the Enzyme group, where
any protein with the capability to bind to DNA and
exhibiting enzymatic activity was placed. At the
family level, proteins were grouped on the basis of
their biological function by checking associations of
individual proteins with each other or with the
previously classified protein.

3. A new group ‘β-Propeller’ is brought in, presently
having only one family- DDB1-DDB2, which plays a
role in UV DNA damage recognition using its seven
bladed β-propeller [18].

4. The number of families has increased to ~3 times
(174 vs. 54) by virtue of the increase in the number
of DNA-protein complexes deposited in PDB (a 60%
increase with respect to increasing entries of DNA-
bound protein complexes in PDB). There was a five-
fold increase in the number of families in Enzyme
group alone and this was accompanied by a large
increase in the number of complexes (number of
complexes in Enzymes group increased to 714 from
Thornton’s 113) in Enzyme group after our
classification. ~67% families have more than one
member in the new classification. This indicates
some groups are growing fast in terms of the family
numbers faster than the others, which can be
explained due to several reasons. Firstly, this can be
due to the higher utilisation of some DNA-binding
motifs over the other: for example, helix-turn-helix
motif is most frequently represented motif. However,
the group of Enzymes has more families due to the
diverse nature of biological function performed by
the proteins which possess catalytic activity upon
binding DNA. Secondly, there are some specific
motifs like Zipper type which are meant to perform
not-so-diverse functions so the numbers of families
in such groups tend to be less. There is also an
inherent bias or preference for certain structure
targets that affects the number of families in the
group. For example, presently in the field more
emphasis is on DNA-repair proteins, proteins with
implications in diseases etc.

While performing classification, 17% of the existing
families were observed to have undergone either split-
ting or renaming in order to make add more complexes
to the family (Percentage marked, Table 2). The analysis
of folds present in complexes of old and new classifica-
tion reflected that maximum fold increase was in His-
tone and then in folds which are present in enzymes like
Homing endonuclease-like, DNA/RNA Polymerase and
DNA-breaking and rejoining.
There were also new folds observed which were

present only in new complexes. This is suggestive of the
growth of PDB over a year of 10 years, both in terms of
number of complexes and the folds present in the struc-
tures which are getting deposited. The folds which were
noted to appear only in the new classification were ones
known to perform function of DNA damage repair like
DNA glycosylase, Lesion bypass DNA Polymerase
(Y-family) and Mut S domain.
The classification of DNA-binding proteins will provide

a very useful insight in exploring further the sequence-
to-structure-to-function paradigm, also about the inter-
action between protein and its respective DNA partner
to govern and fine-tune the effecter function of the cell.
The current classification will help to understand the
given complex of interest in terms of to which group
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(DNA-binding motif ) and family (biological function) it
belongs to.
Unlike the structure-based classification by Thornton

and coworkers, that formed a strong platform for the
current study, we have now adopted a pure sequence-
based classification strategy owing to the large number
of structural entries added on. Also, due to strong struc-
tural convergence and fine-tuned sequence changes in
and near the ligand-binding site, simple structural com-
parisons may be insufficient in some cases. To compare
our approach with the structural alignment methods, we
are highlighting an example where it is difficult to decide
the cut-off RMSD value for a particular family [see Add-
itional files 7, 8 and 9], wherein all neighbouring families
which are reported to have same SCOP fold i.e. DNA/
RNA binding three-helical bundle.
We performed a case study on Homeodomain family

belonging to Helix-turn-helix group. All pairwise struc-
tural alignments for 34 members in Homeodomain fam-
ily was performed using rigid-body superposition and
the pairwise RMSD values are depicted in Additional file 7
(7 entries out of 34 were heterodimers and for them
chains were split and then the structural alignment was
performed, resulting in overall 41 chains and 820 pairwise
alignments). For PDB ID 1JGG (marked in green, [see
Additional file 7]), RMSD with five of its own classified
family members was observed to be >2 Å. The RMSD
value of 2 Å was also observed for 1JGG, in a non-specific
manner, with representative for another family Trp Re-
pressor (HTH group, same SCOP as Homeodomain),
1TRR. Also, RMSD of 2.1 Å was observed between 1JGG
and 1TC3 (Representative for family TC3 transposase
family, HTH group and have same SCOP fold as Homeo-
domain) (Additional file 9). This exemplifies that RMSD
values as a result of structural alignment can pose a diffi-
culty in deciding a cut-off value for a particular family
and may not be a useful single determinant for association
of new entries to previously existing protein structural en-
tries. On the other hand, if we compare it with our
profile-based approach using RPS-BLAST, 1JGG was
observed to associate specifically only to the profile of
Homeodomain proteins namely 1FJL (at E-value 3e-8) and
1HDD (at E-value 6e-13) [see Additional file 8]. By
observing the structural alignment and RMSD values
alone for above mentioned pairs, it becomes difficult
to identify a particular family member (all RMSD
values > =2.5 Å (47 pairwise RMSD) are marked in
red [see Additional file 7]).
Next, we applied RPS-BLAST to associate large num-

ber of gene products with our database of sequences of
proteins that bind to DNA. Where simple approaches
like PSI-BLAST was not able to identify associations to
DNA-protein families, RPS-BLAST and HMM methods
provide unique associations when run on the whole
genome of Arabidopsis thaliana [see Additional file 10].
We also hope that such searches can be extended to
sequence-centric databases like genomes of model
organisms in the future.
In future, this classification can aid in performing sev-

eral genome-wide studies which can be performed in
various genomes of interest to study the expansion or
disappearance of a particular family in specific lineage.
This will provide an insight into various modes of regu-
lation existing in different lineages at the level of pro-
teins known to interact with DNA. Also, utilizing the
various features of all DNA-binding proteins, SVM-
based machine learning algorithms can be developed to
predict whether a sequence of interest exhibits DNA-
binding property or not. We can make even more spe-
cific predictions, such as given protein sequence belongs
to which particular group and family can be identified
by extracting the family specific features. Also, classifica-
tion can be extended to include sequence families of
DNA binding proteins which will aid in complete under-
standing of the features of this class of proteins. It will
also be worthwhile to build classification schemes for
other proteins which are involved in governing cellular
integrity and its function.
Additional files

Additional file 1: Master table of the classification. Association of
additional and new members to pre-existing families.

Additional file 2: List of references that describe ‘loners’ protein-
DNA complex [19-92].

Additional file 3: Ternary protein-DNA complexes.

Additional file 4: The number of complexes in both old and new
classification possessing each of the common 34 folds.

Additional file 5: New vs. Old representatives. 38/51* cases where
old representative was still observed to have 100%coverage on the family
even after addition of new members. *The number of old families here is
54 but here it is taken as 51 as the three polymerase families (T7 DNA
Pol, DNA Pol β and DNA Pol I) were split in the new classification.

Additional file 6: Representatives for new families. New families with
their selected representatives (validated using Jack-knifing).

Additional file 7: Pairwise RMSD values obtained using MATT for all
members of Homeodomain family belonging to HTH group.

Additional file 8: RPS-BLAST alignment of new member of
Homeodomain family (1JGG) with Homeodomain representatives
(1HDD and 1FJL).

Additional file 9: Structural superposition using MATT. Structural
alignment for 1JGG (Homeodomain new member) with 1TRR (Trp
Repressor representative), 1TC3 (Tc3 transposase representative) and
6PAX (Homeodomain representative)].

Additional file 10: Unique hits obtained by profile-based methods.
Some examples of DNA-binding proteins identified using only profile-
based searches are observed during genome-wide survey in Arabidopsis
thaliana.
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