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Abstract

Background: Although genome-scale expression experiments are performed routinely in biomedical research,
methods of analysis remain simplistic and their interpretation challenging. The conventional approach is to compare
the expression of each gene, one at a time, between treatment groups. This implicitly treats the gene expression
levels as independent, but they are in fact highly interdependent, and exploiting this enables substantial power gains
to be realized.

Results: We assume that information on the dependence structure between the expression levels of a set of genes is
available in the form of a Bayesian network (directed acyclic graph), derived from external resources. We show how to
analyze gene expression data conditional on this network. Genes whose expression is directly affected by treatment
may be identified using tests for the independence of each gene and treatment, conditional on the parents of the
gene in the network. We apply this approach to two datasets: one from a hepatotoxicity study in rats using a PPAR
pathway, and the other from a study of the effects of smoking on the epithelial transcriptome, using a global
transcription factor network.

Conclusions: The proposed method is straightforward, simple to implement, gives rise to substantial power gains,
and may assist in relating the experimental results to the underlying biology.

Background
Although genome-scale expression experiments are per-
formed routinely in biomedical research, understanding
the data they generate remains amajor challenge. A widely
used approach to relate such data to biology is gene set
enrichment analysis [1]. This shifts focus from the regu-
lation of individual genes to the regulation of gene sets,
i.e. pre-defined sets of genes that share a common bio-
logical function or feature such as chromosomal location.
One motivation for the approach is that if genes in a set
are closely related, they can be expected to have simi-
lar expression patterns, and exploiting this may increase
power. Another is that analysis at the level of individ-
ual genes may often be difficult to interpret biologically,
whereas higher-level analyses hopefully allow a more
coherent picture of the involved biological processes to
emerge. Many methods of gene set enrichment analysis
have been proposed (see [2] for a useful survey) and there
exists a burgeoning literature on the topic. Very com-
monly, gene sets are defined on the basis on gene ontology
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[3] or pathway membership [4], using resources such as
the Kyoto Encyclopedia of Genes and Genomes [5].
Recently there has been intense interest in methods that

build on the information in biological networks, that is to
say, methods that exploit the topology rather than just the
set of genes in the network. We briefly summarize some
of the methods proposed.
One approach extends gene set enrichment analysis by

defining scores that build on network topology. For exam-
ple, gene set scores that can be expressed as sums of pair-
wise weights between genes in the set may be modified
by weighting gene pairs by the inverse of their path dis-
tance in the network [6]. Significance tests using the scores
are then constructed, to assess whether the pathway is
regulated. Similarly, scores that take the proximity of dif-
ferentially expressed genes in the pathway into account
have been proposed [7,8].
Another approach makes explicit use of network mod-

els for the expression data. In [9], fold changes are
discretized into two levels: differentially expressed or
equally expressed, and a Markov random field model (an
undirected graphical model) for the fold changes whose
parametrization utilizes pathway topology is adopted.
Bayesian inference is used in which prior distributions for
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the parameters are assumed and posterior distributions
derived using Gibbs sampling. These are used to iden-
tify differentially expressed genes. A similar approach has
recently been proposed to relate genes/markers to disease
for genome-wide association studies [10]. As an alterna-
tive to Gibbs sampling, which is computationally intense,
the Bayesian score criterion [11] can be used as an approx-
imation to the posterior probability of the network, and
the significance of the pathway may be assessed on the
basis of a randomization test of the score [12].
An alternative network-based approach [13] represents

a network as a directed acyclic graph to which a latent
variable (or random effect) for each gene representing its
baseline level is added, allowing a mixed effect model for
the expression levels to be derived. This allows inference
to be based on linear mixed effect model techniques. For
example, tests of treatment effect on a node set can be
derived as Wald tests, making use of standard approxima-
tion methods.
Methods exploiting pathway structure have also been

proposed for other, related purposes. For classification,
knowledge of an undirected gene network has been used
to develop classifiers of gene profiles by performing a
spectral decomposition of the expression profiles with
respect to the eigenfunctions of the graph [14]. For pre-
diction, a modified Lasso algorithm using a penalty func-
tion that takes pathway structure into account has been
proposed [15]. Similarly, a modified boosting algorithm
which incorporates the pathway structure has been pro-
posed [16].
In the following section we describe a simple way to

incorporate a known network or pathway into the analysis
of gene expression data. This entails augmenting the net-
work with a discrete node, representing the treatment or
class variable. We show that this leads to a simple mod-
ification of conventional differential expression analysis.
The augmented network contains a discrete as well as
multiple continuous (Gaussian) nodes: networks contain-
ing both types of node are usually called hybrid networks.
With a few recent exceptions [17-20], hybrid networks
have been little used in network biology. They may be
useful, for example, when modeling expression data from
comparative experiments (with discrete design variables)
or when seeking to integrate such data into a wider bio-
logical context (with discrete genotypic or phenotypic
information). Since hybrid networks may be unfamiliar to
some readers we describe the framework carefully in the
next section, but stress that no novel theory is involved.

Methods
Themodel framework
We suppose that data from a gene expression study are
available, in the form of an N × p data matrix X = {xg :
g ∈ V }, where N is the number of observations and V is

a set of p genes, together with an N × 1 vector T contain-
ing the treatment group information. The key assumption
we make is that the steady state (or unperturbed) distribu-
tion of the gene expression levels follows a given Bayesian
network model, specified in the form of a DAG (directed
acyclic graph) G = (V ,E), where E is a set of directed
edges between the nodes inV . This network is assumed to
have been obtained from external sources, as we illustrate
below.
Under such a model, the joint distribution of the data

X = {xg : g ∈ V } factorizes into a product of conditional
distributions

f (X) =
∏
g∈V

f
(
xg | xpaG (g)

)
(1)

where paG(g) is the parents of node g ∈ V in G, that is, the
set of nodes with an arrow to g in G. One of the strengths
of Bayesian network methodology is the freedom to use
any univariate models for the conditional distributions.
In this paper we assume Gaussian models, in which the
conditional distributions are linear regressions of xg with
covariates given by the variables xpaG (g): the Gaussian
assumption is not critical for the approach, as we further
discuss below.
Another strength of the methodology is the ability to

read from the graph which conditional independences
hold under the model, using the property of d-separation
[21,22]. For disjoint variable sets U ,V ,W ⊆ V we write

xU ⊥⊥ xV |xW
to mean that xU and xV are conditionally independent
given xW .
To model the effect of the treatment or class variable

T , we add a node labeled T to V , and suppose that the
treatment directly affects a set of genes VT ⊆ V . Thus we
consider DAGs of the form

G(E) = (V ∪ {T},E ∪ ET )

where ET is a set of additional edges of the form (T , g) for
g ∈ VT . We suppose that the object of the analysis is to
find (i.e., estimate) VT .
We assume that G(E) defines a Bayesian network model

for (X,T). Since G(E) contains both discrete and Gaussian
nodes, it is a hybrid Bayesian network [23]. From (1) we
have that

f (X′) =
∏

y∈V∪{T}
f
(
xy | xpaG(E)(g)

)

= f (xT )

⎡
⎣∏
g∈V

f (xg | xpaG(E)(g))

⎤
⎦ (2)
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Comparing (1) with (2) we see two changes: firstly, a
term f (xT ) = Pr(xT ) is introduced. Since we usually
condition on T this term is of little interest. Secondly,
for those genes g in VT we need to let the conditional
distribution of xg depend on xT as well as xpaG (g). The
simplest way to do this is to include an additive treat-
ment effect term, corresponding to a simple shift in the
conditional distributions, so that the coefficients of the
remaining covariates xpaG (g) do not depend on the treat-
ment. This implies that the treatment may affect the mean
gene expression values but not their covariances. In some
applications it may be more appropriate to let the coef-
ficients vary by treatment, by specifying treatment by
covariate interactions, but in the following we assume
additive treatment effects.
Maximum likelihood estimates under the model (2) can

be obtained by maximizing the likelihood for each factor
separately: since these are all standard models, this is eas-
ily done. The likelihood ratio test (or deviance) statistic
for testing G(E0) under G(E1) when E0 ⊆ E1 is 2(l̂0 − l̂1),
where l̂0 and l̂1 are the maximized log-likelihood values
under G(E0) and G(E1). Under G(E0) the deviance has an
asymptotic χ2

f distribution where f is the difference in the
number of parameters of the two models.
An important special case occurs when E0 and E1 differ

by one edge only, sayT → g. Observe that in (2), removing
(T , g) only affects the component f (xg | xpaG(E)(g)). Thus a
test for the removal of the edge T → g from G(E1) is a
test of

xg ⊥⊥ xT |xS versus xg �⊥⊥ xT |xS (3)

where S = paG(g). That is, it is a test of the hypothesis, say
Hg , that xg is conditionally independent of xT given the
parents of g in G. It is natural to evaluate such a test in the
conditional distribution of xg given xS∪{T} [22, p.110-2].
This follows a linear regression model for xg with covari-
ates xS and a discrete term for xT , and so to testHg we test
whether the coefficient(s) of the discrete term are zero in
this model. This is a classical F-test (or when T is binary,
a t-test) which is valid in small samples under the usual
distributional assumptions. Since it does not depend on
which other edges are in E1, we can associate each edge
T → g with an F-test. This is in contrast to, for exam-
ple, variable selection in linear models where evidence for
the presence or absence of a term depends on which other
terms are taken to be present in the model.
Testing the conditional independence of each gene and

treatment, given the parents of the gene in the network
can be regarded as a simple modification of conventional
methods for differential expression analysis that are based
on tests of marginal independence between treatment

and genes. To compare and contrast the conditional and
marginal approaches, consider the two models relating a
treatment T to the expression levels of two genes, g1 and
g2 shown in Figure 1. Conditioning increases power when
there is a direct treatment effect, and reduces type II error
when there is an indirect but no direct effect, so making
the inference more precise.
Note also that the marginal approach can be regarded

as the special case of the conditional approach that occurs
when G = (V ,∅), so that paG(g) = ∅ for all g ∈ V .
Since multiple hypotheses are tested, use of conven-

tional significance level thresholds would inflate the false
positive rate. Many approaches to correct for multiplicity
are available [24]. When the number of genes in the net-
work is large, control of the false discovery rate may be
desirable. However, when the number of genes is small,
most methods for control of false discovery rate per-
form badly [25], and other methods have been suggested
[26,27]. One option is to use a classical multiple test pro-
cedure such as Holm’s step-down procedure [28], as we
illustrate in the next section.

Results
In this sectionwe describe two applications of themethod.

Hepatotoxicity and the PPAR pathway
Here we describe the analysis of data taken from a hepato-
toxicity study in rats (Rattus norvegicus) available from the
Gene Expression Omnibus [29], a public data repository
under the auspices of the National Center for Biological
Information. The study has ID GSE24363.
The stated objective of the study was to use microar-

ray gene expression data acquired from the liver of
rats exposed to hepatotoxicants to build classifiers for
prediction of liver necrosis. In the study 418 rats were
exposed to one of eight compounds (1,2-dichlorobenzene,
1,4-dichlorobenzene, bromobenzene, monocrotaline,

Figure 1 Comparison of marginal and conditional tests.
Comparison of conditional and marginal tests for two models. Under
(a), where T has a direct effect on g2, T �⊥⊥ g2 and T �⊥⊥ g2 | g1, but the
conditional test will generally have greater power than the marginal
test, since using g1 as a regressor will explain some proportion of g2’s
variation. Under (b), where T does not have a direct effect on g2,
T �⊥⊥ g2 but T ⊥⊥ g2 | g1. Hence the conditional null hypothesis
holds, and the Type II error of the conditional test is less than α, the
Type I error of the test. In contrast, the marginal hypothesis is more
likely to be rejected, and the Type II error is inflated.
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N-nitrosomorpholine, thioacetamide, galactosamine, and
diquat dibromide). All eight compounds were studied
using standardized procedures, i.e. a common array plat-
form (Affymetrix Rat 230 2.0 microarray), experimental
procedures and data retrieving and analysis processes.
For each compound, four to six male, 12 week old F344
rats were exposed to a zero dose, low dose, mid dose(s) or
a high dose of the toxicant and sacrificed at 6, 24 or 48 hrs
later. At necropsy, liver was harvested for RNA extraction,
histopathology, and clinical chemistry assessments.

For simplicity we use the subset of data from the study
pertaining to 1,2-dichlorobenzene, and compare active
with control treatments (ignoring the effects of dose and
exposure time). The preprocessing steps are described on
the GEO website. In all there were 46 arrays in the subset:
12 animals were in the control group, and 34 animals were
exposed to active drug.
Peroxisome proliferator-activated receptors (PPARs) are

a group of nuclear receptor proteins that function as tran-
scription factors, playing essential roles in the regulation
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Figure 2 Augmented PPAR pathway. An inferred PPAR pathway showing the effects of treatment (multiplicity-adjusted p-values less than 0.05).
Transcription factors are shown in red.
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of cellular differentiation, development, and metabolism
of higher organisms. Several types have been identified,
denoted PPAR-α, PPAR-δ and PPAR-γ . The signalling
pathway controlling the expression of the PPARs and
their targets has been well-studied. We are interested in
studying the effects of the hepatotoxicant on this pathway.
We obtained a copy of the KEGG [5] PPAR signalling

pathway for Rattus norvegicus using the SPIA package
[30]. All edges correspond to transcription factor/ target
gene relations. Excluding genes that are not present on
the array, we obtain a DAG with 78 nodes and 287 edges,
which is used in the analysis.
To examine the effect of treatment on the network, the

network-based tests of xT ⊥⊥ xg |xpa(g) for each gene g
were compared to marginal t-tests, that is, of xT ⊥⊥ xg .
In both cases, to correct for multiplicity we use Holm’s
step-down procedure [28] to obtain simultaneous (i.e.,
multiplicity-adjusted) p-values, denoted {p̃g , g ∈ V }. If we
reject precisely those hypotheses Hg for which p̃g < α,
the family-wise error rate is controlled, i.e. the probabil-
ity that this procedure results in any false rejections is less
or equal to α. This is true irrespective of which hypothe-
ses in H = {Hg , g ∈ V } are true or false. Here false
rejections equate to false edge inclusions. This is a cau-
tious approach, that aims to identify the edges which are
certainly present in E: see [31].
Using the network-based tests, p̃ < 0.05 for seven genes,

but none using the marginal tests. Figure 2 shows the aug-
mented PPAR pathway showing the seven genes affected
by treatment. Using the same criteria, the marginal anal-
ysis detects no treatment effects. Thus in this example,
conditioning on the parents of each gene in the network
results in a substantial increase in power.

The effects of smoking
Here we describe the analysis of data taken from a study of
the effects of cigarette smoke on the human oral mucosal
transcriptome [32]. These are available from the Gene
Expression Omnibus [29]: the study has ID GSE17913. In
all 40 current smokers and 40 age- and gender- matched
never smokers participated in the study, the primary
objective of which was to determine the effects of smoking
on gene expression in oral epithelial cells. One subject was
excluded from the analysis due to poor data quality. For
further information on the study and data preprocessing
we refer to [32] and [29].
Here we use the data to characterize the effect of smok-

ing on gene expression, making use of a global transcrip-
tion network constructed using information on human
transcription factors (TFs) and their putative target genes
(TGs) obtained from the TRANSFAC database [33]. Using
the GSEABase package [34] we downloaded data on 95919
(TF,TG) pairs for in all 615 putative TFs and 8945 putative
TGs. Of these, the expression levels of 7932 genes were

recorded in the GSE17913 study. The (TF,TG) pairs for
these genes generate a directed graph, say G0, with 7932
nodes (of which 191 are TFs), and 61982 edges. Since some
TFs are targets of other TFs, G0 contains cycles. The sub-
graph G1 of G0 induced by the TFs has 191 nodes and 2711
edges. We derived an acyclic subgraph of G1 by omitting
edges with the least strength of evidence, in the follow-
ing way. To derive a measure for the strength of evidence
for each edge in G1, we fit a linear regression model for
the expression of each gene, including its parents in the
network as covariates, and use standard significance tests
for zero coefficients as a measure of strength of evidence.
Starting with the null graph we added edges, ordered in
terms of decreasing strength of evidence (increasing p-
value), that do not generate cycles. This resulted in an
acyclic subgraph of G1, say G2, with 191 nodes and 2110
edges. We then added the nodes and edges in G0 but not
in G1 to G2, resulting in a DAG, say G, with 7932 nodes and
61381 edges.
We applied the method to G, correcting for multi-

plicity using the method of [35]. Figure 3 compares the
adjusted p-values from the analysis with the correspond-
ing adjusted values from the marginal analysis not exploit-
ing the network topology. Clearly the conditional tests
have substantially greater power. The numbers of genes
satisfying the false discovery rate at 1%, 2.5% and 5%
were 123, 254 and 478 respectively. In comparison, for a
marginal analysis the corresponding numbers were 25, 60
and 162.
It is instructive to relate the differentially expressed

genes to the network topology. For purposes of illus-
tration we consider the 254 genes that satisfy the false
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discovery rate at 2.5%, of which 10 are transcription fac-
tors. The subnetwork of G induced by these 254 genes has
one connected component with 107 genes, the remainder
being isolated nodes. Figure 4 displays the connected sub-
network, which contains all 10 transcription factors. Thus
the analysis has identified a highly connected transcrip-
tional module that is strongly affected by smoking.

Discussion
We have described a simple way to exploit network infor-
mation in the analysis of gene expression data, using

tests for the conditional independence of each gene and
treatment given the parents of the gene in the network.
This method can be regarded as an extension of conven-
tional methods of gene expression analysis, that takes the
network structure into account. We demonstrated using
two examples that the method can result in a substantial
increase in power.
In a related approach to the analysis of genetics of gene

expression data [36], when relating amarker to the expres-
sion of a gene, all expression levels were considered as
potential regressors; model selection methods were used
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to choose the regressors for each marker-gene pair. This
is in contrast to the method proposed here, in which
an external biological network determines the regressors.
We remark that if the regressors for a gene under study
include some that are causally downstream of the gene,
this may dilute or remove evidence of a direct marker
effect on the expression of the gene.
As described above, some authors [9,12] incorporate a

dichotomous treatment into a network by letting the net-
work nodes represent discretized fold changes rather than
expression levels. We prefer our approach for several rea-
sons. Firstly, the use of fold changes does not appear to be
biologically motivated. For example, as we discuss below,
it is expected that the mRNA abundance of a transcription
factor affects the mRNA abundance of its target genes,
but there seems no reason for this to be true for the cor-
responding fold changes. Secondly, our framework allows
direct and indirect treatment effects to be distinguished,
and thirdly, it may easily be extended to handle multi-
ple treatment variables, although we do not consider such
extensions here.
The approach builds on some assumptions that may

or may not be unwarranted. The key assumption is
that the steady state distribution of the gene expression
levels follows a given Bayesian network. Gene regula-
tion is extremely complex and as yet imperfectly under-
stood, so such an assumption can at best be tentative.
We have illustrated the approach using two networks,
one based on a signalling pathway and the other con-
structed using transcription factor/target gene data. Bio-
chemical pathways represent phenomena occurring at
the protein level, which are not necessarily reflected
at the transcript level: see Figure 5. Thus caution is
required when using such pathways as models for gene
expression data.

As we have described the method, it assumes that the
expression data are Gaussian distributed, but this is not
critical. Expression data from microarrays are typically
taken to be Gaussian after log transformation [37,38].
Other technologies such as RNA-seq generate discrete
count data that are better modeled using Poisson or neg-
ative binomial distributions [39]. This can be handled in
the current framework by using the appropriate univariate
conditional models in (2). What is essential in our context
is the availability of an appropriate test for (3), that is, for
the conditional independence of treatment and the level of
expression of a gene, given the expression levels of its par-
ents in the network. If the correct form of the conditional
distribution is in doubt, a permutation test may be used.
An assumption, implicit in both the marginal and the

network-based analyses, is that the treatment variable
is causal rather than reactive in respect to the gene
expression data. Ideally the treatment should represent a
randomized intervention, allowing secure causal interpre-
tations, but gene expression studies are rarely random-
ized. In poorly designed studies, treatment allocation may
be confounded with other factors [40]. When this is true,
the interpretation of edges T → g as representing effects
of treatment is compromised. The hepatotoxicity study
described above is an example of a well-designed study
in which treatment represents an non-randomized inter-
vention that is orthogonal to other sources of variation.
It is reasonable to interpret treatment effects as causal in
such studies. In observational studies, such as the study
of the effects of smoking described above, allocation to
treatment group (i.e., the process leading to an individual
becoming a smoker or non-smoker) could in principle be
determined by factors that also influence gene expression,
so jeopardizing the interpretation of edgesT → g as treat-
ment effects. In the actual study, however, it is natural to

Figure 5 A hypothetical signalling pathway. The figure shows a hypothetical signaling pathway adapted from [41], containing two transcription
factors, a protein kinase and a protein phosphatase. Three levels are shown: DNA, mRNA and proteins, as well the expected transcription network. At
the transcript level, gene 1 affects gene 2 which affects gene 5, but gene 2 does not affect genes 3 or 4. If proteins 3 and/or 4 are rate-limiting, this
will be reflected in the dependences shown as dotted arrows.
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interpret edges in terms of the effects of tobacco smoke on
epithelial cells.
Similar remarks apply to the use of the terms direct

effects and indirect effects: a causal interpretation of these
may be unwarranted.
Finally, it is assumed that the treatment affects the

parameters of the network but not its topology. In some
applications this may not be appropriate. For example,
interventions affecting chromatin structure may alter the
accessibility of DNA binding sites and hence patterns of
regulatory control due to transcription factors.

Conclusions
A straightforward way to exploit network information in
the analysis of gene expression data is to assume that
the network models the steady state distribution of the
gene expression levels, and that the treatment affects the
parameters but not the topology of the network. In this
framework, genes whose expression is directly affected by
the treatment may be identified using tests for the con-
ditional independence of each gene and treatment given
the parents of the gene in the network. This method can
be regarded as an extension of conventional methods of
gene expression analysis that takes network structure into
account. It is simple to implement, gives rise to substan-
tial power gains, and may give insight into the biological
processes involved.
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