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Abstract

from sequence alone are therefore of high importance.

Background: Alpha-helical transmembrane channel and transporter proteins play vital roles in a diverse range of
essential biological processes and are crucial in facilitating the passage of ions and molecules across the lipid
bilayer. However, the experimental difficulties associated with obtaining high quality crystals has led to their
significant under-representation in structural databases. Computational methods that can identify structural features

Results: We present a method capable of automatically identifying pore-lining regions in transmembrane proteins
from sequence information alone, which can then be used to determine the pore stoichiometry. By labelling
pore-lining residues in crystal structures using geometric criteria, we have trained a support vector machine
classifier to predict the likelihood of a transmembrane helix being involved in pore formation. Results from testing
this approach under stringent cross-validation indicate that prediction accuracy of 72% is possible, while a support
vector regression model is able to predict the number of subunits participating in the pore with 62% accuracy.

Conclusion: To our knowledge, this is the first tool capable of identifying pore-lining regions in proteins and we
present the results of applying it to a data set of sequences with available crystal structures. Our method provides a
way to characterise pores in transmembrane proteins and may even provide a starting point for discovering novel
routes of therapeutic intervention in a number of important diseases. This software is freely available as source
code from: http://bioinf.cs.ucl.ac.uk/downloads/memsat-svm/.
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Background

Transmembrane channel and transporter proteins are
found in the membranes of virtually all organisms and
play crucial roles in facilitating the passage of ions and
molecules across lipid bilayers. They are essential in
maintaining the cross-membrane electrochemical gradi-
ent that is essential for a wide variety of fundamental
biological processes, from oxidative phosphorylation to
signal transduction. For example, voltage-gated ion
channels are a class of channel protein that are espe-
cially critical for neuron and muscle function. They are
activated (i.e., opened) by local changes in electrical po-
tential difference causing an influx of cations, typically
sodium or potassium, which induces rapid and coordi-
nated membrane potential depolarisation in response to
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voltage change, therefore propagating the electrical sig-
nal between cells [1,2]. Voltage-gated calcium channels
behave similarly but have high permeability to calcium
ions when depolarised and are involved in additional
pathways including neurotransmitter release at pre-
synaptic nerve endings [3]. Aquaporins, members of the
major intrinsic protein (MIP) family, are channel pro-
teins that selectively conduct water and small uncharged
molecules, such as glycerol, across the membrane [4,5].
They are however completely impermeable to charged
species, a property critical for the conservation of the
membrane’s electrochemical potential. In mammals,
aquaporins are frequently located in the kidney where
they play an essential role in water reabsorption. Also
found in the kidney is the urea transporter, a specialised
channel capable of rapid and selective urea permeation.
The crystal structure bears many similarities to ion
channels although the presence of a constricted selectiv-
ity filter that can accommodate several dehydrated urea
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molecules in single file confers selectivity for urea [6].
Aside from ions and small molecules, other channels
and transporters mediate the transfer of a range of larger
biological molecules across the membrane including
proteins by the general secretory pathway (SEC) translo-
case family [7], double-stranded DNA by the septal
DNA translocator (S-DNA-T) family [8-10] and mRNA
via interactions between the nuclear mRNA exporter
(mRNA-E) family and the nuclear pore to facilitate
transport into the cytoplasm [11]. Channel and trans-
porter proteins are thus found in a diverse range of cell
types and occur as large families of related genes with
cell and tissue specific expression patterns. As can be
expected, due to their extensive functional diversity,
many common diseases including diabetes, hyperten-
sion, cardiac arrhythmias, angina pectoris and epilepsy
have been related to channel protein dysfunction, there-
fore transmembrane channels represent one of the most
important classes of protein for pharmaceutical inter-
vention [12,13].

Typically, channel proteins contain a cavity (or pore)
which spans the entire molecule with an opening on
each side of the membrane. The pore often runs parallel
to transmembrane helices, forming the path along which
ions or molecules travel, with adjacent structural or
compositional features determining pore specificity. In
many ion channels for example, channel-lining trans-
membrane helices are enriched with charged residues,
thus facilitating passage of the cognate ion through the
channel. However, many membrane proteins that are
not ion channels contain charged residues within the
transmembrane region that are used to stabilise helix-
helix interaction, e.g. via formation of salt bridges, thus
the presence of charged residues alone cannot be used
to discriminate pore-forming regions. Nonetheless, by
taking advantage of a number of recent methods that
allow the identification of pore-lining residues in mem-
brane protein crystal structures, computational
approaches to automatically detect channels are feasible
and are likely to provide valuable insight into both struc-
ture and function. Pore-Walker [14] identifies the pore
centre and pore axis using geometric criteria, allowing
the biggest and longest cavity through the channel to be
detected. Pore features, including diameter profiles,
pore-lining residues, size, shape and regularity can then
be calculated.

Here, we present a novel method to automatically pre-
dict pore-lining helices in transmembrane proteins. By
using Pore-Walker to label pore-lining residues in a
training set of transmembrane protein structures, we
have employed a supervised learning approach to predict
the likelihood of a transmembrane helix being involved
in pore formation. Results from testing our method on a
crystal structure data set indicate that a prediction
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accuracy of 72% is possible. Using these predictions as
inputs for a support vector regression model, we also
show that it is possible to determine pore stoichiometry,
i.e. the number of subunits required to form the
complete pore, with 62% accuracy.

Methods

Data sets

In order to identify pore-lining residues, we used a high
resolution data set based on a previously described crys-
tal structure set [15,16], subsequently updated with re-
cent additions to the Orientation of Proteins in
Membranes (OPM) database [17] and homology reduced
at the 40% sequence identity level. Proteins that lacked
either an entry in the Transporter Classification Data-
base (TCDB) [18,19] or Gene Ontology (GO) biological
process terms [20] relating to transmembrane transport
were then removed. We then used Pore-Walker [14], a
fully automated method which detects and characterises
channels in transmembrane proteins from their 3D
structures, to identify any residues which were exposed
to the predicted pore. While other tools such as MOLE
[21], CAVER [22], HOLLOW [23] and MolAxis [24] are
capable of generating accurate representations of chan-
nels in molecular structures, the Pore-Walker algorithm
is specifically designed to detect channels and pores in
transmembrane proteins by incorporating the typical
geometry of membrane proteins, in which the protein’s
secondary structures, and therefore the channel, tend to
lie perpendicularly to the transmembrane plane. Add-
itionally, these four methods require a priori knowledge
of the channel location in order to calculate a route
from inside the protein to the outside environment. In a
number of cases, Pore-Walker either failed to complete
or incorrectly identified the transmembrane plane,
resulting in a predicted pore that ran approximately par-
allel to the membrane plane, while in other cases the
pore was completely misaligned with the structure.
Where a visual inspection revealed such erroneous pore
placement, or where pore placement disagreed with the
literature, the protein chain was removed from the data
set, resulting in a final training set of 52 chains from 49
protein complexes for which pore-lining residues were
identified.

Machine learning

We used a support vector machine (SVM) classifier to
discriminate between the two data classes—residues
within the transmembrane region that lined the pre-
dicted pore, and residues within the transmembrane re-
gion that did not. Input features were generated using
evolutionary information. For each sequence in our
training set, PSI-BLAST [25] was used to generate
position-specific scoring matrices. Two search iterations
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were performed against the UniRef90 database [26] with
a profile-inclusion E-value threshold of 1e-6. We applied
a sliding window approach to extract data from the
matrix using a window size of 15 centred on the target
residue, creating a feature vector of length 300, standar-
dising by Z-score to enable faster SVM convergence
(Equation (1)). Only residues from transmembrane
helices were used for training, with those predicted as
pore-lining labelled as positive examples or negative
otherwise. SVM-Light [27] was used for training with a
radial basis function kernel, in combination with a grid
search of trade-off and gamma parameters, optimising
performance using the Matthews Correlation Coefficient
(MCC). Stringent cross validation was performed using a
jack knife test with the target sequence, along with any
other sequences with greater than 25% sequence iden-
tity, excluded from training files.

In predicting pore stoichiometry, four features were
used to train a support vector regression (SVR) model:
sequence length, the number of pore-lining residues,
topology and the number of pore-lining helices, with the
target value set to the number of subunits contacting
the pore within the membrane region. Expressing the
fraction of pore-lining residues and pore-lining helices
explicitly did not improve performance. Since only a
small number of features and training examples were
used and therefore training was fast, feature values were
not standardised. As with SVM classification, a radial
basis function kernel was used with cross-validation car-
ried out using the same protocol. Predicted values were
rounded to the nearest integer and the total absolute
error across the whole data set was minimised in order
to optimise parameters.

Results and discussion
Pore-Walker analysis
Analysis of the data set revealed the largest represented
TCDB classes were 1.A (alpha-type channels, which
catalyse transport via facilitated diffusion), 2.A (porters,
which utilise a carrier-mediated process to catalyse uni-
port, antiport and/or symport) and 3.A (P-P-bond
hydrolysis-driven transporters, which drive the active
uptake or extrusion of solutes through the hydrolysis of
the diphosphate bond of ATP). Members of class 1.A
typically had the largest maximum pore diameter al-
though there were exceptions (e.g. where the crystal
structure was a ‘closed’ form). In other classes, full pore
opening would require some degree of conformational
change but in all cases Pore-Walker identified the largest
internal cavity from which a narrow path to the opposite
side of the membrane could be detected.

The 52 protein chains consisted of 333 transmem-
brane helices, containing a total of 6688 residues. Of
these residues, Pore-Walker identified 1815 within the
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membrane region as pore-lining, corresponding to 276
transmembrane helices with approximately 40% of resi-
dues in a typical helix orientated towards the pore. A
significant number of helices contained very few pore-
lining residues, therefore in assessing prediction of pore-
lining helices, we only included helices containing six or
more pore-lining residues, corresponding to approxi-
mately a quarter of a typical helix, resulting in a set of
151 pore-lining and 182 non-pore-lining helices. As can
be expected for residues with side chains orientated to-
wards a solvent environment, pore-lining helices showed
a slight enrichment with polar residues, comprising
19.5% of pore-lining helices, compared to 16.0% of non-
pore-lining helices. Most notable was the enrichment of
negatively charged aspartic and glutamic acid residues,
which constituted 2.1% of residues in pore-lining helices
but only 1.2% in helices that did not, and histidine,
which can carry a positive charge at physiological pH,
accounting for 1.2% of pore-lining residues compared to
0.5%. Pore-lining residue positioning within a helix typ-
ically displayed a degree of periodicity, with residues
often separated by 3 or 4 positions, corresponding to a
complete helical turn indicating that a single face of the
helix was orientated towards the pore. This patterning
was usually inconsistent over the full length of the helix,
suggesting chains did not form a series of ideal helices
packed in a tight bundle around the pore, and that helix
tilting, twisting or shielding by other helices may play
a role.

In order to address the imbalance between data
classes, we additionally included residues adjacent to
those detected by Pore-Walker in the positive training
set; we suggest the inclusion of these residues can be
accounted for by dynamics not captured within the crys-
tal structures. This resulted in a class ratio of 3464:3224,
which was adjusted to 1:1 by fine-tuning of the SVM
cost-factor parameter. Inclusion of these adjacent resi-
dues additionally led to a slight increase in per-residue
prediction performance (~0.05 MCC). We also
attempted including residues in the i+4 and i-4 posi-
tions to account for those directly above and below the
Pore-Walker identified residue in the helix, but this
resulted in lower overall performance.

SVM classifier performance

Table 1 shows the cross-validated performance of the
SVM at predicting pore-lining residues and helices. Op-
timal SVM performance was achieved using a radial
basis function gamma value of 0.1 and a trade-off value
of 1. The ratio between the number of support vectors
in the final model and the number of training examples
was approximately 5:7, somewhat higher than the
equivalent value when discriminating between e.g. trans-
membrane helix and loop regions (2:5), reflecting both
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Table 1 SVM performance in predicting pore-lining residues, pore-lining helices and discriminating between

monomeric and multimeric pore stoichiometry

Classifier Precision Recall TPR FPR MCC Accuracy
Pore-lining residue SVM 0.64 0.54 0.69 039 0.30 65%
Pore-lining residue (naive) 0.53 0.23 0.23 0.21 0.03 51%
Pore-lining helix SYM 0.74 0.35 0.57 0.16 043 72%
Pore-lining helix (naive) 0.50 0.17 022 0.17 0.15 55%
Monomeric/multimeric pore stoichiometry SVR 0.88 049 092 0.11 0.80 90%

TPR: True positive rate. FPR: False positive rate. Pore-lining helices were identified by averaging the raw SVM scores for each participating residue, while a
threshold of 7 or more polar residues was found to be optimal for the naive method.

the relative difficulty of the predictive task and the small
size of the training set. To assess prediction of pore-
lining helices, the average raw SVM score was deter-
mined for residues forming the helix, and a slightly
elevated threshold (0.3) was used to optimally identify such
helices. At thresholds between 0 and 0.3, it appears that
incorrect pore-lining residue predictions are contribut-
ing excessively to the prediction of false positive pore-
lining helices, therefore this raised threshold in effect
helps to negate errors in the prior SVM prediction step
by reducing the false positive rate from 0.39 (threshold =
0) to 0.16 (threshold = 0.3). We defined transmembrane
helix boundaries using MEMSAT-SVM [15] predictions
performed under full cross validation, with the target se-
quence, along with any other sequences with greater
than 25% sequence identity, excluded from training files.
We required an overlap of 10 residues between pre-
dicted and known helices for correct predictions. Pre-
dicted helices that did not overlap with known helices
where recorded as false positives if predicted as pore-
lining, but were otherwise not recorded as true nega-
tives. In order to provide users with a measure of
likelihood in the range 0-1, average raw SVM scores
were then converted to Z-scores by subtracting the
mean and dividing by the standard deviation of scores
from the test set (Equation (1)). Z-scores were used to
calculate a posterior probability for each helix by fitting
against a standard logistic function. For comparison, we
also developed two naive classifiers that regarded all
polar residues as pore-lining, and helices as pore-lining
if they contained 7 or more polar residues. These naive
methods were also assessed using transmembrane helix
boundaries predicted by MEMSAT-SVM.

XU
z= 1
- 1)
Equation 1. Z-score calculation. x is the raw score, p is
the mean and o is the standard deviation.

Identifying pore-lining residues
Results indicate that, while the prediction of pore-lining
residues from sequence is generally challenging with a

maximum MCC of 0.30, our SVM-based method
improves significantly over naive approaches by up to an
order of magnitude. Chains where prediction accuracy
was highest included many ion channels, ammonium
transporters and members of the major intrinsic protein
(MIP) family. The homo-tetrameric calcium-gated potas-
sium channel MthK (PDB code 1LNQ, MCC 0.76) and
Na*/K" conducting channel (2AHY, MCC 0.52) fared
particularly well with the majority of pore-lining residues
correctly identified. False positive predictions were usu-
ally clustered close to the pore in in the Na*/K conduct-
ing channel while none were predicted in MthK
(Figure 1). Of the monomeric channels, the 12 trans-
membrane helix glycerol-3-phosphate transporter was
the best predicted with the majority of pore-lining resi-
dues correctly identified (1PW4, MCC 0.50), while the
ammonia channel and transporter predictions were also
impressive. In the case of the ammonia transporter
AmtB (1XQF), two phenylalanine side chains constrict
pore access from the periplasmic side, requiring con-
formational change for transient pore opening [28].
These highly conserved residues are correctly predicted
by the SVM as are the majority of those that line the
pore (MCC 0.49). Similar gating regions can be found in
transmembrane helices 3 and 5 of the molybdate trans-
porter ModB2C2 (20NK, MCC 0.49) which contain
clusters of highly conserved residues [29], many of
which are also correctly predicted (Figure 1). In general,
identifying pores within transporters was more difficult,
possibly due to the narrower and more frequently
obstructed translocation pathway, with the physico-
chemical properties of the pore-lining residues bearing
less resemblance to those lining the unobstructed water-
filled pores in channel proteins. In a number of the
worst performing targets, low conservation in multiple
sequence alignments was evident suggesting that evolu-
tionary information was not effectively captured.

Identifying pore-lining helices

By using the average raw SVM score to identify pore-
lining helices, performance is markedly improved com-
pared to identification of pore-lining residues with a
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Figure 1 Prediction of pore-lining residues from sequence mapped onto native crystal structures. Homotetrameric calcium-gated
potassium channel MthK (left, 1LNQ) bottom-up view; no false positives were predicted. Homodimeric molybdate transporter ModB2C2 (centre,
20NK) top-down view. Homotetrameric AMPA-subtype glutamate receptor (3KG2, right) bottom-up view. The pore identified by Pore-Walker is
shown by yellow spheres, while residues correctly predicted as pore-lining are shown in green (true positives), incorrectly predicted as pore-lining
are shown in orange (false positives), correctly predicted as non-pore-lining are shown in grey (true negatives) and incorrectly predicted as non-

pore-lining are shown in magenta (false negatives).

MCC of 0.43 and precision/recall values of 0.74 and
0.35. This represents an overall accuracy of 72% al-
though the test set does display a slight bias towards
negative examples (151:182). The performance increase
compared to a naive approach requiring an optimal
threshold of at least 7 polar residues to identify pore-
lining helices (MCC 0.15, accuracy 55%) is also substan-
tial. Seven targets had all their helices correctly identified,
including two 6-transmembrane helix aquaporin pro-
teins (1798, 3C02) although in the cases of such
proteins with re-entrant helices, these regions were not
included in the prediction. An attempt to include re-
entrant helices resulted in lower overall performance, in
part due to the difficulty in accurately predicting the lo-
cation of these features. Cross-validated topology

prediction was correct in 39 cases (75%), with a total of
5 over-predicted and 12 under-predicted in the remain-
der of cases. These results are lower than MEMSAT-
SVM benchmark results most likely due to the difficulty
in predicting pore-lining helices that contain a higher
fraction of polar residues than average.

In 30 cases (58%), at least 75% of helices were cor-
rectly identified. These included a number of large
monomeric targets with complex topologies such as the
12 transmembrane helix multiple-drug resistance trans-
porter NorM (B3MKT) and ApcT transporter (3GIA)
proteins where only two helices are misclassified in each
case (Figure 2), while the 11 transmembrane helix am-
monia transporters Amt-1 (2B2F) and Rh50 (3B9W)
have one and two misclassified helices respectively. A

Figure 2 Prediction of pore-lining helices from sequence, mapped onto native crystal structures. Homotetrameric potassium channel
Kir3.1 (left, 2QKS); both helices in each subunit are correctly classified. Monomeric 12 transmembrane helix multiple-drug resistance transporter
NorM (right, 3MKT); 10 out of 12 helices are correctly classified—one false positive and one false negative are predicted. The pore identified by
Pore-Walker is shown in yellow spheres, while helices correctly predicted as pore-lining are shown in green (true positives), incorrectly predicted
as pore-lining are shown in orange (false positives), correctly predicted as non-pore-lining are shown in grey (true negatives) and incorrectly
predicted as non-pore-lining are shown in magenta (false negatives). In both cases, all transmembrane helices were correctly predicted by

MEMSAT-SVM.
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range of multimeric targets including potassium,
mechanosensitive and amiloride-sensitive cation chan-
nels had all helices correctly identified (Figure 2).

Predicting pore stoichiometry

Input features for the pore stoichiometry SVR were
based on topology predicted by MEMSAT-SVM, and
predicted pore-lining residues and helices as outlined
above, all under full cross-validation, with output values
rounded to the nearest integer. The model correctly pre-
dicted the pore stoichiometry for 32 targets (62%) with a
Pearson correlation coefficient of 0.72 and average error
of 0.75 subunits. Proteins forming monomeric pores in
almost all cases contain three or more pore-lining heli-
ces and were generally easiest to identify, with only three
false positive predictions. On this basis, proteins forming
monomeric pores can be discriminated from those form-
ing multimeric pores in 90% of cases. Of the 27 multi-
meric targets, 9 (33%) have their stoichiometry correctly
determined including a number of tetrameric cation
channels and various dimeric transporters including the
multidrug ABC transporter SAV1866 (2HYD), molyb-
date transporter ModB2C2 (20NK), maltose transport
system permease protein malFG (2R6G) and the hetero-
hexameric proton translocating formate dehydrogenase
(IKQG chain B) (Figure 3). In a number of cases where
stoichiometries of three or more subunits were observed
in native structures, predictions differed by only a single
subunit including the homotrimeric ATP-gated P2X4
ion channel (3H9V), predicted as tetramer, and the
homotetrameric potassium channel NaK (2AHY) which
was predicted as a pentamer. Under-prediction of pore-
lining helices appears to have a significant effect on the
prediction of pore stoichiometry, as 8 out of 11 cases are
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incorrect when no pore-lining helices are predicted
(Table 2).

Conclusions

We have developed a novel method capable of automat-
ically detecting pores in alpha-helical transmembrane
proteins using sequence information alone. Validation of
this approach by testing on a data set of 52 protein
chains has demonstrated that pore-lining helices can be
detected with an accuracy of 72% and a precision as high
as 0.74. While these results are encouraging, the low
number of chains in the training set is likely to have lim-
ited SVM performance since small data sets reduce tol-
erance to errors and the ability of SVMs to develop large
generalisation bounds. Additionally, the use of crystal
structures to determine pore-lining residues neglects the
inherent dynamic nature of membrane proteins which
exhibit significant conformational flexibility. Transpor-
ters, in particular, undergo conformational changes
within the membrane region to transport the substrate
across the bilayer, and this may account for the relative
difficulty in identifying pore-lining residues compared to
channel proteins, where the gating mechanism usually
lies at the membrane/solvent interface, while causing la-
belling errors when analysing the structure using Pore-
Walker. A more suitable approach might be to extract
structures at regular intervals during molecular dynamic
simulations before analysis with Pore-Walker, and per-
haps excluding transporters unless both open and closed
conformations are available. SVR prediction of pore stoi-
chiometry suggests that discrimination between mono-
meric and multimeric pores is possible with a high
degree of accuracy. However, predicting the exact stoi-
chiometry of multimeric pores remains a challenge with

Figure 3 Correctly predicted stoichiometries of three multimeric pore complexes. Bottom-up view of the heterodimeric maltose

transporter malFG (left, 2R6G chain F), homotetrameric inward rectifier potassium channel KirBac1.1 (centre, 1P7B) and heterohexameric formate
dehydrogenase (right, TKQG chain B). Stoichiometry relates to the pore-lining membrane region only—extramembranous chains or those that do
not line the pore are excluded. Complexes are coloured by chain, with the Pore-Walker predicted location of the pore shown by yellow spheres.
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Table 2 Pore-lining residue, pore-lining helix, topology and pore stoichiometry results for all targets

Target Per-residue MCC Pore-lining helices Topology Pore stoichiometry
Observed Predicted Correct Over/Under Observed Predicted

TE12_A 0.04 4 2 1 0 1 1
1FFT_A 0.28 3 3 0 3 1 1
1KQG_B -042 1 0 0 0 6 6
1KQG_C 0.03 2 0 1 0 6 5
1L7V_B 0.63 2 2 0 1 2 1
1LDI_A 041 5 2 1 0 1 3
1LNQ_A 0.76 1 0 1 0 4 4
1P7B_A 052 1 1 1 0 4 4
1PW4_A 0.50 7 3 1 0 1 1
1R3J_C 0.54 1 0 1 0 4 6
1TOY_A 031 6 2 0 -4 1 1
1XL6_A 0.51 1 1 1 0 4 4
IXME_A 0.27 3 3 1 0 1 1
1XQF_A 0.52 5 4 0 -1 1 1
1Z98_A 035 3 3 1 0 1 1
1ZLL_E 0.00 1 0 0 0 5 3
2AHY_A 0.52 1 0 1 0 4 5
2B2F_A 049 4 3 0 -2 1 1
2BGY_A 0.15 1 1 1 0 5 2
2BGY_E 037 1 1 1 0 5 2
2C3E_A -0.10 6 3 0 -2 1 1
2C8L_A 037 4 3 1 0 1 1
2D57_A 0.28 4 3 1 0 1 1
2F2B_A 0.05 3 1 1 0 1 3
2GFP_A 0.24 6 2 1 0 1 1
2HYD_A 022 4 1 0 =1 2 2
20AR_A 0.00 1 1 1 0 5 3
20AU_A 0.1 1 0 1 0 7 4
20NK_C 049 3 1 1 0 2 2
2QFI_A 0.26 2 1 1 0 2 3
2QKS_A 044 1 1 1 0 4 4
2QTS_A 0.50 1 1 1 0 3 5
2R6G_F 033 2 1 1 0 2 2
2R6G_G 0.07 3 1 1 0 2 1
2RDD_B -0.61 1 0 0 0 3 5
2W2E_A 038 4 3 1 0 1 1
2ZW3_A -0.36 1 0 1 0 6 3
3B8C_A 045 5 3 1 0 1 1
3BOW_A 046 5 4 1 0 1 1
3BEH_A 022 1 0 0 =1 4 2
3C02_A 037 4 4 1 0 1 1
3DDL_A 0.1 4 2 1 0 1 1
3DHW_A 0.20 2 1 1 0 2 2
3EAM_A 030 1 0 0 -1 5 3
3GIA_A 032 4 3 1 0 1 1

3HOV_A 0.13 2 1 1 0 3 4
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Table 2 Pore-lining residue, pore-lining helix, topology and pore stoichiometry results for all targets (Continued)

3HD6_A 0.50 4 4 1 0 1 1
3K3F_A 044 4 2 1 0 1 1
3KG2_A 037 1 1 0 1 4 1
3MKT_A 0.32 5 4 1 0 1 1
300R_B 0.1 5 0 1 0 1 1
3P5N_A 0.10 4 3 1 0 1 1

A correct topology (requiring the correct number and placement of all transmembrane helices but not N-terminus) is indicated by 1, and otherwise 0. Over/Under
corresponds to the number of over-predicted or under-predicted transmembrane helices.

only a third of cases successful. Again, the relatively lim-
ited training set is likely to be a hindrance while a more
diverse range of input features, perhaps including global
estimates of solvent accessibility and lipid exposure, may
improve performance.

Despite these challenges, the successful identification
of pores and channels in uncharacterised membrane pro-
tein sequences, as well as estimates of their stoichiometries,
may be of substantial biochemical and pharmacological
significance. A large number of channelopathies, diseases
caused by disturbed function of ion channel subunits,
have already been identified and tools to characterise
pores in disease-related proteins may provide valuable
insight into routes of therapeutic intervention. From a
structural modelling perspective, both identification of
pore-forming regions and complex stoichiometry may
provide important insight into quaternary structure geom-
etry and assist de novo methods in modelling such regions
so that they are solvent accessible rather than lipid em-
bedded. Furthermore, site-directed mutagenesis of pre-
dicted pore-lining residues may allow modification of
substrate specificity, providing valuable insight into pro-
tein design.

Availability

Pore-identification has been integrated into our trans-
membrane topology predictor MEMSAT-SVM and is
available as source code from the URL below and is free
for non-commercial use. All data sets are also available,
and cross-validation SVM model files are available on
request. The software has been tested on a Linux operat-
ing system. In order to compile and run, the gcc com-
piler, Perl interpreter and NCBI tools are required.

http://bioinf.cs.ucl.ac.uk/downloads/memsat-svm/.
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