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Abstract

Background: Curation of information from bioscience literature into biological knowledge databases is a crucial
way of capturing experimental information in a computable form. During the biocuration process, a critical first
step is to identify from all published literature the papers that contain results for a specific data type the curator is
interested in annotating. This step normally requires curators to manually examine many papers to ascertain which
few contain information of interest and thus, is usually time consuming. We developed an automatic method for
identifying papers containing these curation data types among a large pool of published scientific papers based
on the machine learning method Support Vector Machine (SVM). This classification system is completely automatic
and can be readily applied to diverse experimental data types. It has been in use in production for automatic
categorization of 10 different experimental datatypes in the biocuration process at WormBase for the past two
years and it is in the process of being adopted in the biocuration process at FlyBase and the Saccharomyces
Genome Database (SGD). We anticipate that this method can be readily adopted by various databases in the
biocuration community and thereby greatly reducing time spent on an otherwise laborious and demanding task.
We also developed a simple, readily automated procedure to utilize training papers of similar data types from
different bodies of literature such as C. elegans and D. melanogaster to identify papers with any of these data types
for a single database. This approach has great significance because for some data types, especially those of low
occurrence, a single corpus often does not have enough training papers to achieve satisfactory performance.

Results: We successfully tested the method on ten data types from WormBase, fifteen data types from FlyBase and
three data types from Mouse Genomics Informatics (MGI). It is being used in the curation work flow at WormBase
for automatic association of newly published papers with ten data types including RNAi, antibody, phenotype,
gene regulation, mutant allele sequence, gene expression, gene product interaction, overexpression phenotype,
gene interaction, and gene structure correction.

Conclusions: Our methods are applicable to a variety of data types with training set containing several hundreds
to a few thousand documents. It is completely automatic and, thus can be readily incorporated to different
workflow at different literature-based databases. We believe that the work presented here can contribute greatly to
the tremendous task of automating the important yet labor-intensive biocuration effort.

Background

The phenomenal growth in bioscience literature has
posed a great challenge in information retrieval both for
general researchers and those whose task it is to extract
such information from the literature (biocuration) [1,2].
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Text mining for bioscience data is an active research
area and many tools are emerging [3-5].

Extensive work has been done on the categorization of
papers with experimental information and the extraction
or and retrieval of content from the text in biomedical
literature. The most extensively studied data types
involve protein-protein interaction [6,7]. Categorization
of other data types such as tumor, allele, gene expres-
sion and Gene Ontology (GO) terms, and so forth, have
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been reported [8,9]. Efforts to address different informa-
tion needs of diverse users in the biomedical field have
been made by using a multi-dimensional categorization
and annotation scheme through identifying contents and
classifying papers rich with multiple categories with suf-
ficient generality and applicability to diverse subject
areas [10-13].

Although some applications are starting to be incorpo-
rated into the biocuration workflow at some databases
[14,15], biocuration remains largely a manual effort.
Since 2002, text classification has been listed as one of
the tasks in several grand challenges [3,4,16], and many
machine-learning methods have been developed for this
task. Attempts have been made to automate text classifi-
cation but the performance is not yet satisfactory for a
fully automated curation process [6].

Various machine-learning methods have been success-
fully applied to text categorization, including naive Baye-
sian learning [17], neural networks [18], instance-based
learning [19], maximum entropy [20], and Support Vec-
tor Machines (SVM) [21]. SVM was first successfully
applied to text classification in 1991 [21] and has been
shown to perform better than other machine learning
methods in some cases, especially when there are few
training data [22,23]. Briefly, for a given data type, i.e.,
class, SVM learns a binary classifier from its positive
and negative training documents presented as data vec-
tors, by formulating and solving a quadratic optimiza-
tion problem. The classifier is defined by a hyperplane
with a maximum margin that separates the sample
space to a positive and a negative half space containing
positive and negative sample points respectively (Addi-
tional File 1, Figure S1). The process of applying SVM
to text classification includes the following steps: selec-
tion of features (words) to represent the documents;
construction of the training data vector where the ele-
ments of the vector are scores derived from the feature
usage in the documents, using a certain term (feature)
weighting scheme; learning a classifier by supplying the
training data vector into an SVM library with the cho-
sen SVM kernel function and parameters; and finally,
classifying a new document by converting it to a data
vector and feeding it into the classifier.

Both feature selection and term weighting schemes are
active research areas and various methods have been
developed [24-30]. The SVM algorithm, originated by
Vapnik [31], has been implemented in several libraries,
such as SVM-light [32] and LIBSVM [33], each with a
number of selections of kernel functions. However, it is
often not clear at the outset what method is most suita-
ble for each of the steps described above when applying
the SVM algorithm to a particular classification problem
[33], and experiments with each of these areas usually
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need to be conducted to find or develop the most suita-
ble method for each.

We describe here the successful application of an SVM
procedure for the identification of ten, fifteen, and three
different data types curated by WormBase, FlyBase, and
MGI, respectively (Additional File 1, Note S1A-B). This
method has been incorporated into the curation work-
flow at WormBase for the past two years. Moreover, we
demonstrate a simple automated procedure to combine
training papers of similar data types of different databases
to train a SVM for the identification of these data types
for a single database. This work is potentially very useful
as the amount of work necessary for any single database
to obtain a sufficient number of training papers for a spe-
cific data type, especially those that are found with low
occurrence in the literature, may take years.

Results and Discussion

Formulation of multi-class problem to categorize multiple
curation datatypes

Categorizing curation datatypes is a multi-class problem
in which more than two datatypes need to be classified.
SVM is a binary classifier; we converted the multi-class
problem of the curation datatype to a binary class pro-
blem using the one-versus-rest strategy (see Methods).

Feature selection

We observed that curatable information often resides in a
small portion of a document or a few sentences, and ratio-
nalized that the frequency of feature usage in a document
may not be of significant relevance. This observation was
thus taken into consideration for both feature selection in
representing the documents and the term weighting scheme
for constructing the data vector. We calculated Chi-square
scores and mutual information scores as described by Man-
ning et al. [24] for all the data types and found that the dif-
ferences between Chi-square scores of adjacent ranked
features were much larger than those of mutual informa-
tion. We thus think that Chi-square score is a much better
criterion for feature selection (data not shown). As shown
in Additional File 2, Table S1, many features of the top
Chi-square scores for a given data type, for example, RNAi
interference, are characteristic of this data type and the
same observation was made for other data types as well
(data not shown). Along the same line of reasoning, we
used a binary scheme to construct a data vector for each of
the documents in which a value of 1 is assigned if the fea-
ture is present and a value of 0 if not (see Methods).

Recall and precision measure in biocuration and
comprehensive SVM scheme

The performance of an SVM can be evaluated using a
testing set containing documents with known class
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labels. The commonly used evaluation metrics are recall
and precision: recall = TP/(TP+FN); precision = TP/(TP
+FP); where TP represents true positive, FN represents
false negative, and FP represents false positive. A high
precision value is normally more readily achievable than
high recall in SVM-based text classification [23] and a
high precision value has actually been preferred over a
high recall in some commonly studied areas such as
web page categorization efc. In biocuration, however,
the goal is to obtain the highest recall possible while
keeping the false positive rate reasonably low because, if
recall is not high enough, curators would need to exam-
ine all published papers for their data type to uncover
false negatives. On the other hand, curators would only
need to examine a subset of the papers, those identified
as positives, to eliminate potential false positives.

To achieve a high recall, we developed a 9-component
comprehensive SVM scheme with multiple SVMs using
the top 10, 25, 50, 75, 100, 150, 200, 300, and 400 Chi-
square score ranked features. We then applied this SVM
and calculated the final recall and precision by combin-
ing all the papers identified from these SVMs (see
Methods). This scheme increased the recall value by as
much as ~10% while only causing a tolerable decrease
in precision. This comprehensive SVM scheme was also
utilized to increase the confidence of the identification
(see Methods). Unless indicated otherwise, all the results
presented here were analyzed using this comprehensive
SVM scheme.

The recall and precision values of each single SVM
component as well as the comprehensive SVM analysis
were shown in Additional File 3, Table S2. In general,
for each component SVM, the recall value is lower than
the precision value, and the number of top ranked fea-
tures required to give the best recall varies in different
data types.

The comprehensive SVM analysis generally increased
recall and decreased the precision value in comparison
to the single component SVMs. The effects are more
prominent for some data types than others. For exam-
ple, in the case of RNAi data, the comprehensive SVM
achieved a recall of 0.99, whereas the recall of a single
SVM component is 0.91 and the worst recall of single
SVM is 0.85. On the other hand, the increase of recall
in comprehensive SVM is not so apparent for the anti-
body data type. The recall of the comprehensive SVM
for antibody is 0.94, which is a slight increase from 0.91,
the best recall of the single SVM components, and 0.88,
the worst recall of the single SVM components.

The decrease in precision in comprehensive SVM also
varies with different data types. For example, for the
RNAI data type, the precision of comprehensive SVM is
0.78, which is much lower than the best precision of
0.92 of a single component SVM and is also lower than
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the worst precision of 0.82 of a single component. On
the other hand, for the Mutant allele sequence data
type, the precision of the comprehensive SVM is 0.98,
not much of a decrease in comparison to both the best
and the worst precision of a single component SVM, 1
and 0.98, respectively.

It is not clear whether the same single component
SVM will give the highest recall in the testing set and
different batches of validation set; we do not have suffi-
cient validation sets to do a systematic evaluation. It is
thus generally more desirable to do comprehensive
SVM analysis to improve recall.

Automated data type identification for WormBase and
FlyBase curation

To test our method, we applied it to ten data types
(Additional File 1, Note S1A) of strong interest to
WormBase. A sufficient number of papers labeled with
these ten data types have accumulated between 1985 -
2009 by curators reading each new C. elegans paper and
indexing different data types; these labels were used in
constructing the training sets. Each paper underwent
comprehensive SVM analysis for each of the ten data
types (Table 1; Additional File 4, Table S3) and the per-
formance for each data type was evaluated by using a
testing set with papers from the same time period as
that of the training set, which is from papers curated at
WormBase between 1985 and 2009 (see Methods). Six
of the data types were also evaluated every one-two
weeks using new C. elegans papers, i.e. the validation
sets, over a six-month period (07/2009 - 12/2009) (see
Methods). The recall and precision values of these ten
data types from the testing set were in the range of 0.85
- 0.99 and 0.70 - 0.98, respectively. The recall and preci-
sion values from the validation sets agreed well with

Table 1 Evaluation results of ten WormBase data types
using the ten testing sets

Data types Recall (testing Precision (testing
set) set)
RNAI 0.99 0.78
Antibody 094 0.81
Phenotype 0.86 092
Gene regulation 0.88 0.70
Mutant allele sequence 093 0.98
Gene expression 0.95 0.88
Gene product interaction® NA NA
Overexpression 091 0.81
phenotype
Gene interaction 0.85 0.79
Gene structure correction 0.90 0.82

The SVM analysis was done using training/testing sets specified in Additional
File 4, Table S3 and Methods. *Gene product interaction does not have
enough labeled papers and no evaluation was done using the testing set.



Fang et al. BMC Bioinformatics 2012, 13:16
http://www.biomedcentral.com/1471-2105/13/16

those from the testing sets for all the data types except
the gene expression and gene regulation data types
whose precision values decreased from 0.98 to 0.55 and
0.88 to 0.49, respectively.

The number of papers in each batch varies depending
on how many papers on C. elegans were published in
the relevant time period. For example, for the five
batches validated for RNAi data, the number of papers
ranged from 19 to 88. The SVM performance for RNAi
data type among different batches varied little judging
by the standard deviation of recall and precision: recall
of these five batches is 0.98 +0.04 and precision is 0.81
+ 0.03. We also examined the precision value of SVM
analyses of six batches for gene expression data type.
These six batches ranged from 21 to 44 papers, and the
average precision value is 0.44 + 0.08. The performance
of a batch was not correlated with its size. For example,
the batch with the highest precision (0.59), and the
batch with the lowest precision (0.37), have about the
same number of papers, 21 and 22, respectively. The
precision of the largest batch with 44 papers is 0.45,
close to the average.

Several factors may contribute to the decrease in the
precision value from the validation set for gene expres-
sion and gene regulation data type, in comparison to
those from the testing set: Data type definitions may
change over time, and different vocabularies may be
used to describe data type-specific information as new
experimental methods are invented or old experimental
methods become obsolete. For example, when looking
at gene expression, Northern blotting was commonly
used in the past but is now less frequently used, having
been replaced by techniques such as reporter gene
expression and RT-PCR.

The training papers for gene expression and gene reg-
ulation, the data types whose validation set showed
much lower precision than the testing set, are obtained
from a collection of the past 14 years. We do not have
sufficient training papers to make large enough training
set for different period of time to examine the time
effect; this can be done more effectively at a later time
when significant number of newly labeled papers are
available for systematic comparison.

The SVM method does not take into account syno-
nym expansion; the change in the vocabulary of the
used terms might lead to decreased performance. This
type of change may be one of the reasons that the preci-
sion of the validation set for gene expression and gene
regulation data types are much lower than those from
the testing set. This problem can be addressed by utiliz-
ing generalized vector space models, or concept vector
space models that map terms into concepts, and the
document can then be categorized based on concepts
which accommodate terms from different times instead
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of terms that may change over time [34]. It has been
shown that the SVM performance in precision was sig-
nificantly increased especially in those cases with small
training sets after incorporating WordNet concepts for
mapping the terms [34].

We also applied the comprehensive SVM method to
fifteen data types from FlyBase (Additional File 1, Note
S1B). Table 2 and Additional File 5, Table S4 show the
results of five of these data types with high occurrence.
Their performances were similar to those of the Worm-
Base data types with recall in the range of 0.88 - 0.98
and precision in the range of 0.56 - 0.92.

SVM across organism-specific corpora

The same or similar types of data are often curated at
different biological databases such as the model organ-
ism database, or MODs. For some data types, the train-
ing set from one MOD may not be large enough to
achieve satisfactory performance. We thus explored the
possibility of utilizing training papers from one MOD to
help with the SVM analysis of similar data types in
another MOD. Both WormBase and FlyBase label
papers containing RNA interference (RNAi) data, albeit
using different criteria (Additional File 1, Note S1A-B).
WormBase has identified > 1400 papers indexed with
‘RNAT{’, while FlyBase has identified only 232 ‘RNA{’-
labeled papers.

One strategy for utilizing the large training set of C.
elegans papers to identify D. melanogaster papers that
contain the RNAi data type would be to remove C. ele-
gans specific features from the C. elegans RNAI feature
list. However, while some features such as “Fire”, the
surname of an author of a highly cited C. elegans RNAi
reference, seemed to be a likely candidate for removal,
others were not so readily apparent. Thus, manually
editing an existing features list could be a difficult and
time-consuming process.

We categorized the features of a data type to be either
organism-independent or organism-dependent. Those
organism-independent features found in C. elegans
RNAI papers could contribute to the SVM analysis of D.
melanogaster RNAi papers whereas those features only
found in C. elegans RNAIi papers probably would not

Table 2 Evaluation results of Five FlyBase data types
with high occurrence using the testing sets

Data type Recall  Precision
New mutant allele 098 0.56
Gene expression in wild-type background 0.96 092
Gene expresison in perturbed background 0.95 0.92
New transgenic allele 091 0.71
Physical interaction between macro-molecules 0.88 0.84

The SVM analysis was done using training/testing sets specified in Additional
File 5, Table S4 and Methods.
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contribute to the D. melanogaster RNAi SVM. We pos-
tulated that by pooling the training papers from Worm-
Base and FlyBase and then calculating the Chi-square
score for their features, the ranking of organism-inde-
pendent features would be more favorable than when
the Chi-square score was calculated using only Worm-
Base or FlyBase training papers alone. On the other
hand, those organism-dependent features would be less
favorable than those found using only WormBase or
FlyBase training papers alone. As shown in Additional
File 2, Table S1, the top-ranked, organism-specific fea-
tures such as “Fire” and “Timmons,” both author names
of a highly cited C. elegans RNAI reference, disappeared
from the top 400 features list of the combined training
set, whereas organism-independent features such as
RNAI, dsRNA, interference, etc. remained as top-ranked
features.

As shown in Table 3 and Additional File 6, Table S5,
SVM analysis using a training set containing 170
WormBase RNAi and 170 FlyBase RNAi papers effec-
tively increased the recall from 0.81, obtained using the
FlyBase training papers alone, to 0.99, while the preci-
sion value remained as high as 0.99, indicating that this
pooling strategy worked well. A large training set con-
taining 773 WormBase RNAi papers gave a much lower
recall of 0.85 but the same precision value of 0.99 for
the same FlyBase testing papers.

Performance measure for data type of low occurrence
(unbalanced class distribution)

Many data types have low occurrences, i.e., the number
of documents containing the specific data type (i.e. posi-
tive set) is much smaller than those not containing the
specific data type (i.e. negative set) in the document set
of interest. This situation is often referred to as an
unbalanced class distribution. For these data types the
precision measure was inadequate as the precision value
could be affected by the size of the negative set [35].
The precision value could be very low while in fact the
percentage of false positive identification was not high
at all. For example, for a data type with a 1% occur-
rence, if 2 of 100 papers were classified as positive of
which one is true positive and the other is false positive,
this would result in a recall of 1 and a very low false
positive rate of 1%. Due to the unbalanced class

Table 3 Evaluation results of FlyBase RNAi data type
using FlyBase or/and WormBase training papers

Training dataset Recall Precision
FlyBase RNAi 0.81 1.00
WormBase production RNAi 0.85 0.99
FlyBase+WormBase RNAI 0.99 0.99
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distribution, the precision value would only be 0.5. The
number of papers that would need to be examined to
uncover the true positives is only two after the SVM
analysis, while 100 papers would be needed to uncover
the true positives without SVM analysis. Therefore the
precision value reflects neither the false positive rate nor
the effectiveness of SVM in improving the curation effi-
ciency. If the same recall and false positive rate occurred
in a balanced class distribution with 50 as positive and
50 as negative, the precision value would be a much
higher value (0.98) which is more in line with the false
positive rate and the effectiveness of SVM in increasing
curation efficiency. We thus focus on the “filtering
term”, FT = 100 * (predicted positive papers)/(total
papers) = 100*(TP + FP)/(total papers) i.e., FT = (TP
+FP)/(TP+FP+TN+FN). For the above example, FT =
100%*(1+1)/100 = 2%, a better indicator of the improve-
ment in the curation efficiency by filtering out negative
papers. The lower the FT value, the lower the fraction
of papers that need to be examined after filtering by the
SVM analysis and thus the higher the improvement in
curation efficiency.

SVM results of data types of low occurrence

Table 4 and Additional File 7, Table S6 show the SVM
results of nine data types from FlyBase. Table 5 and
Additional File 8, Table S7 show the SVM results of
three data types used for the text classification task at
the Genomic Track of the Text Retrieval Conference
2005 (GT TREC 2005), which were originally curated by
Mouse Genomics Informatics (MGI) [36]. These data
types have unbalanced class distributions whose percen-
tage in the total document set were in the range of ~1-
10%. It has been reported that a large negative training
set can have adverse effects on performance [21,37-39],
and several approaches, including modifying either the
data distribution or the classifier, or a combination of
both, have been applied to deal with this problem
[21,37-39] (http://research.microsoft.com/pubs/70007/tr-

Table 4 Evaluation results of nine FlyBase data types
With low occurrence using the testing sets

Data type Recall Filter term (%)
Initial characterization of a gene 097 + 0.05 180+13
Use of expression marker 0.95 + 0.06 225+23
Transfection of DNA/RNA 0.94 + 0.04 7616
New phenotype (characterization) 093 + 0.05 199 + 2.1
Renaming of a gene 091 +0.10 109 + 26
New cis-regulatory elements 0.88 + 0.05 81+22
Gene model modification 0.88 + 0.08 171 £ 35
Genome feature sequence mapping 0.87 + 0.09 109 + 26
Merge of gene reports 0.86 + 0.06 137 £53

The SVM analysis was done using training/testing sets specified in Additional
File 6, Table S5 and Methods.

The SVM analysis was done using training/testing sets specified in Additional
File 7, Table S6 and Methods.
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Table 5 Evaluation results of three data types with low
occurrence from MGI using the testing sets

Data type Recall Filter term (%)
Mutant Phenotype allele 098 + 0.01 126 £ 1.2
Embryologic expression 094 + 0.04 1M4+£17
Tumor biology 0.90 + 0.08 34+ 16

The SVM analysis was done using training/testing sets specified in Additional
File 8, Table S7 and Methods.

2003-34.pdf). We found that a large negative training set
could have both positive and negative consequences: on
the one hand, it could increase precision while on the
other hand, it could decrease recall (data not shown).
An optimum ratio of positive to negative training sets
(PN ratio) could be found for each data type to give the
highest recall possible while keeping the false positive
rate reasonably low, i.e., a reasonably low filter term
(FT) value. As shown in Tables 4 and 5, the recall values
for these data types were in the range of 0.86 + 0.06 to
0.98 + 0.01 and the filter term (FT) values were between
3.4 £ 1.6% to 22.5 = 2.3%. The use of the optimum PN
ratio effectively increased recall values of these data
types from a range of 0.32 - 0.7 to a range of 0.87 - 0.97
while FT values were kept under ~20%.

TE-IDF (Term of Frequency Inverse Document Fre-
quency) is one of the most commonly used term
weighting schemes in information retrieval and text
mining. We compared SVM analyses using the follow-
ing three different feature selection methods and term
weighting schemes: TE-IDF weighting on all features,
TE-IDF weighting on Chi-square score ranked fea-
tures, Boolean weighting on Chi-square score ranked
features using the RNAi data type. The results were
evaluated using two testing sets and two validation
sets, respectively. The two testing sets differ in the
ratio of the negative set of the positive set, one with a
1:1 and the other with a 2:1 ratio, as do the two vali-
dation sets. Because the TF-IDF weighting scheme
without feature selection is CPU-intensive with large
datasets, these comparisons were done using small
training and testing sets (Additional File 9, Table S8,
Additional File 10, Table S9; Additional File 11, Table
S10; and Additional File 12, Table S11), which were
constructed by randomly selecting papers from the
positive and negative labeled pools. All the different
schemes used the same training, testing and validation
sets.

The reason we used different ratios to evaluate the
results is that we are interested to know how different
ratios might affect the evaluation of results. This issue
arises because in the curation process, we need to do
text categorization of newly published papers on a fre-
quent basis. The ratio of the positive papers over the
negative papers in such short period of time could vary

Page 6 of 12

batch by batch for any data type and it could differ
from the ratio of the training set.

As shown in Additional File 9, Table S8, Additional
File 10, Table S9, Additional File 11, Table S10, and
Additional File 12, Table S11, Boolean and TF-IDF
weighting schemes that combine Chi-Square score
ranked feature selection have similar recall, > 0.9. By
contrast, TF-IDF weighting schemes using all features
(without the feature selection step) have very poor
recall, between 0.08 - 0.61. As shown in Additional File
9, Table S8, the TE-IDF weighting scheme that com-
bines Chi-Square feature selection has similar precision
as that of the Boolean one when using the testing set
with the ratio of negative over positive set of 1:1. In the
testing set with a 2:1 ratio of negatives to positives and
both the validation sets, a TF-IDF weighting scheme
that combines Chi-Squared score ranked feature selec-
tion has much lower precision than the Boolean weight-
ing scheme that combines a Chi-Squared score ranked
feature selection. As shown in Additional File 10, Table
S9, in the validation set with a 1:1 ratio of negatives to
positives, the precision of the TF-IDF one is 0.61
whereas the Boolean one is 0.72. As shown in Addi-
tional File 11, Table S10, in the testing set with a 2:1
ratio of negatives to positives, the precision of the TF-
IDF one is 0.54 whereas the Boolean one is 0.64. As
shown in Additional File 12, Table S11, in the validation
set with a 2:1 ratio of negatives to positives, the preci-
sion of the TF-IDF one is 0.45, whereas the Boolean one
is 0.59. The TF-IDF weighting scheme that combines all
features gives similar precision values as those of the
Boolean weighting scheme that combines Chi-Square
score ranked feature selection in all four evaluation sets.

The precision values of the SVM analysis using the
TF-IDF weighting scheme are 0.10-0.15 lower than that
using the Boolean weighting scheme in three out of four
cases reported here. This difference may be due to the
fact that the ratio of negative over positive papers in a
small pool of new papers can deviate from that of the
training set. The TF-IDF may also cause inappropriate
scaling for some features; consequently some features
with strong predicting power may be given less favour-
able score than those with weak predicting power,
thereby undermining the performance [40]. The ratio of
negative papers over the positive papers in each batch of
new papers varies and is difficult to predict ahead of
time. We think that the Boolean weighting scheme that
combines Chi-Square score ranked feature selection
maybe a more suitable method than the TF-IDF weight-
ing scheme that combines Chi-Square score ranked fea-
ture selection for the categorization of experimental
datatypes in a curation process where a small pool of
new papers usually need to be analyzed in a timely
manner.
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Numerous machine-learning methods have been used
by various groups that participated in the text categori-
zation task in the GT TREC 2005 challenge [8]. The
methods included regularized linear classifier [41], logis-
tic regression [42], pattern-based learning [43], nalve
Bayes learning [44], theme detection [45], K-nearest
neighbor [43-45], Rocchio-based classifier [45], SVM
[42,44-47], as well as others. Several groups have used
SVM in their studies on these data types and have
reported different performances. The differences in per-
formance might arise from the use of different feature
selection strategies and other procedures in their SVM
analysis [36]. One of the SVM method submitted to
TREC 2005 has an overall high performance in a com-
parison with all the other methods submitted [48]. We
did a side-by-side comparison of our method and those
methods submitted to the GT TREC 2005 for the cate-
gorization of the Mutant Phenotype Alleles, Embryologic
Expression and Tumor Biology data types [8,48] origin-
ally curated by MGI. As shown in Additional File 10,
Table S9, our method showed equivalent or better
results for all the three data types than both the best
performance among various methods and a SVM
method submitted to the GT TREC 2005. In compari-
son to the best performance among various methods
submitted to GT TREC 2005 [48], our method achieved
similar recall for all three data types and a 1.3- and 2.4-
fold increase in precision for the Mutant phenotype
allele and the Tumor biology data type, respectively. In
comparison to the SVM method submitted to the GT
TREC 2005 [48], our method gave a higher recall value,
0.94 + 0.04, compared to 0.82, and a similar precision
value for the Embryologic expression data type. For the
other two data types, our method gave similar recall but
more than 2-fold increase in precision. Furthermore,
our method is relatively simple when compared to most
of the methods submitted to GT TREC 2005, which
involved multiple steps or required expert domain
knowledge in feature selection or document preproces-
sing etc. Our method does not require any data type
specific manual input or sophisticated manipulation at
any step, is completely automated, and can be readily
applied to different data types.

We showed that our method can be applied to the
three data types of MGI giving high recall (Additional
File 13, Table S12), and thus might save curation time
(measured by the FT term). However, a direct compari-
son of our method and those methods in TREC 2005 is
difficult because we used a different set and number of
papers for training and testing (Additional File 10, Table
S9) than those used by TREC 2005 participants. As indi-
cated earlier, the PN ratio affects precision value. In the
TREC 2005 systems, the number of negative training
papers is much larger than that of the positive papers:
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this disparity may adversely affect precision. We think
that this factor may need to be taken into consideration
when evaluation schemes are designed.

Previously we developed a combinatorial Boolean key-
word search using Textpresso [44] to identify papers
that contained the RNAi data type (G. Schindelman, J.
Chan, and P. Sternberg, unpublished results) with a
recall of 0.96 and precision of 0.61. This was obtained
after eight iterations of refining keywords in the search
query and subsequent manual examination of false
negative and false positive articles. This process requires
expert domain knowledge for a specific data type and
time consuming manual effort, unlike the SVM method
which is completely automatic with a given training set
and can be readily used for different data types. Further-
more, for those data types without a sufficient set of
specific keywords, this approach may not be applicable.

Once documents have been classified for data type
identification, a subsequent task in biocuration is extrac-
tion of the information of interest. While attempts to
automate fact extraction can be undermined by high
false positive rates, we have observed that the false posi-
tive rate in text extraction of Gene Ontology Cellular
Component data by a category-based semi-automatic
text extraction approach using Textpresso [14] is signifi-
cantly decreased when extraction is performed on only
those papers identified as containing gene expression
data by SVM (K. Van Auken, R. Fang, J. Chan, H.-M.
Miiller, and P. Sternberg, unpublished results). We
expect that a filtering step provided by SVM analysis
will have the same effect on other text extraction meth-
ods, as well.

Conclusions

Although the SVM algorithm has been successfully
applied to text classification for nearly 20 years, its use
in categorizing bioscience literature has been limited to
specific cases [49]. We present here a methodology for
its successful application for a broad range of data types
as specified by the following three main points. First,
Chi-square scores appear to be a suitable criterion for
feature selection in the classification of diverse data
types in biocuration. Second, training papers of similar
data type from different databases (such as different
MODs) can be pooled to train SVM for successful iden-
tification of a similar data type for different databases.
This is especially useful for those data types of low
occurrence as it could take a long period of time for
each individual database to collect sufficient training
papers. Third, for data types with unbalanced class dis-
tribution, desirable performance can be achieved by
using a suitable PN ratio that could be readily imple-
mented for different data types. Most studies concerning
data with wunbalanced class distribution have
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concentrated on those cases with extremely unbalanced
class distribution, and there has not been much sys-
tematic study of how different levels of unbalance in the
class distribution may affect SVM performance in differ-
ent application fields. We have observed that PN ratio
affected performance even with some data types of rela-
tively high occurrence and that the composition of the
negative training set also has effects on the performance
(data not shown). A systematic and thorough examina-
tion in the future may provide more insight for better
utilization of SVM algorithms for text classification. The
method presented here can be readily adopted by differ-
ent biological databases for automatic identification of
papers of diverse data types, thereby greatly reducing
time spent on an otherwise laborious and demanding
task [49,50]. We anticipate that the work and observa-
tions described herein will help not only biological data-
bases with their curation, but also text mining
researchers to improve existing, or develop better, text
classification algorithms.

Methods

Document pre-processing

For those data types from WormBase, WormBase IDs
and PMIDs of papers for use in training/test sets or new
incoming papers were obtained from WormBase or an
in-house curation status tracking database (J. Chan and
P. Sternberg, unpublished data). For those data types
from FlyBase, FlyBase IDs and PMIDs of labeled papers
were provided by FlyBase. The negative examples for
both WormBase and FlyBase were a collection of papers
labeled as not containing any of the curatable data
types. The negative set for a particular data type was
then constructed by combining this negative set of
papers and papers that are positive for all other data
types. This negative set is not ideal as the true negative
set should be all the C. elegans papers minus the papers
of the particular data type under consideration. For data
types from the GT TREC 2005, PMIDs of positive and
negative sets were obtained as indicated at the website
(http://ir.ohsu.edu/genomics). Papers were downloaded,
and converted to full text versions, including references,
using a wrapper Perl script of the pdf to text conversion
library pdftotext [51,52].

An SVM classification scheme for multi-class curation
datatypes

The categorization of curation data types is a multi-
class problem in which more than two data types need
to be classified. A paper is labeled as containing a data
type if it contains only the data of the given data type
or if it contains the data of the given data type and
any other data types. SVM is a binary classifier, and to
use this efficient method, we converted the multi-class
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problem of the curation data type to a binary class
problem using the one-versus-rest strategy. For exam-
ple, to categorize RNAIi data type, we run SVM analy-
sis to classify RNAi and non-RNAi papers. For the
gene expression data type, we run SVM analysis to
classify gene regulation and non-gene regulation
papers and so forth. Every paper is analyzed for every
data type. A paper can have a single label if it only
contains one data type of curation interest, or it can
have multiple labels if it contains more than one data-
types of interest.

Construction of training and testing set

For the ten data types from WormBase, training and
testing sets were constructed according to the numbers
listed in Additional File 4, Table S3 using a labeled
paper collection in the period of 1985 - 2009 at Worm-
Base. Briefly, for those data types with a sufficient num-
ber of labeled positive papers, the datasets were split
into training and testing sets by the following procedure:
the positive and negative labeled papers were sorted
accorded according to their WormBase PaperID, which
was assigned on a chronological order. Those with odd
order number are assigned to the training pool and
those with even order number were assigned to the test-
ing pool. In this well controlled experiment, where the
testing set is very similar to the training set, we could
quickly evaluate whether the training set is large enough
to achieve good performance and whether SVM works
for a particular data type at all. Once this was estab-
lished, we could evaluate the results using real-life
examples, which are the current papers to see whether
this method is applicable to our curation process. For
those data types with a limited number of labeled posi-
tive papers, a small fraction of papers were randomly
selected for testing and the remaining were used for
training.

For the five data types with high occurrences from
FlyBase, training and testing sets were constructed
according to the numbers listed in Additional File 5,
Table S4. Both positive and negative training and testing
sets were randomly selected from their respective
labeled pools. For the nine data types with low occur-
rences from FlyBase and three data types with low
occurrence from MGI, due to the limited number of
positive labeled papers, a small portion (10-45 papers)
was randomly selected to make up the positive testing
set and the remaining larger portion was kept to make
up the positive training set. To avoid possible bias
caused by the small testing set, ten different positive
training testing sets were constructed by such random
selection process. The negative training and testing sets
were constructed in similar fashion. The results shown
are the average of these ten data sets.
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To construct the training and testing set with different
positive:negative (PN) ratio of positive training set over
negative training sets for the three MGI data types, the
one positive training set was constructed by randomly
select positive papers from the positively labeled papers.
For the same positive training set, different number of
negative papers were randomly selected so that the ratio
between the positive and the negative training set are
1:1, 1:1.5, 1:2, 1:3, 1:6. Comprehensive SVM analysis was
then conducted on each of the training/testing pair and
only the best performing are reported in Table 5 and
Additional File 8, Table S7.

Construction of validation set for WormBase data types
Validation data set for WormBase SVM analysis were C.
elegans papers published over a six months period (07/
2009 - 12/2009). To identify whether a paper is C. ele-
gans paper, a key word containing elegans were used to
search all the abstracts on PubMed and those abstract
returned were then manually examined to determine
whether the publication is new research on C. elegans.
For those publications with new research work on C.
elegans, their full pdf files were then manually down-
loaded. The SVM analysis on our curation production
line where the validation sets were taken from was nor-
mally done on ~ bi-weekly and sometimes monthly
basis. The number of papers in each batch varies
depending how many C. elegans papers were published
in that time period and it could range from ~20 - ~100.
Supplementary material was also analyzed since experi-
mental information is sometimes mentioned in the sup-
plementary material but not in the full text.

Feature selection and the construction of data vectors
For each pair of the positive and negative training sets
for each data type, their features were extracted and the
corresponding Chi-square scores were calculated as
described by Manning et al [24]. Nine feature lists con-
sisting of the top 10, 25, 50, 75, 100, 150, 200, 300, 400
features respectively were constructed for each data
type. A data vector for each document with each feature
list was constructed using a binary scheme where 1 was
assigned if the feature from the feature list was present
in the document and 0 if not.

Filtering Term (FT)

For data types with low occurrence, i.e., the number of
documents containing the specific data type (i.e. positive
set) is much smaller than those documents not contain-
ing the specific data type (i.e. negative set) in the docu-
ment set of interest, the precision measure was
inadequate as it can neither reflects the false positive
rate nor the effectiveness of SVM in improving the
curation efficiency. We thus define a filtering term, FT
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= 100 * (positive papers)/(total papers) = 100*(TP +
FP)/(total papers) = (TP+FP)/(TP+FP+TN+EN). This fil-
tering term reflects the improvement of curation effi-
ciency of SVM analysis by filtering out the negatives
identified by SVM. The lower the FT term, the fewer
papers are in the positive pool and fewer false positive
papers need to be examined.

SVM library

We chose LIBSVM [33] as it includes a utility for data
set scaling, 5-fold cross-validation, and the optimization
of SVM parameters (http://www.csie/ntu.edu.tw/~clin/
libsvm). The Radial Basis Function (RBF) kernel was
used as recommended by the LIBSVM user guide
(http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.
pdf). Some users have noted that LIBSVM is very slow
with large datasets, whereas SVM-Light has performed
well with very large datasets [32] (http://svmlight.joa-
chims.org). For our work, all datasets were in the small-
to-medium range.

Confidence of comprehensive SVM

We assigned an empirical confidence scheme where a
confidence level of low, medium, and high was given if
a paper was found to be positive in 1-3, 4-6, or 7-9
SVMs respectively. A cutoff at high, medium, or low
level can be applied to obtain the most desirable combi-
nation of recall and precision value for the users. The
higher the cut-off is, the higher the precision and the
lower the recall is respectively.

Computer programs
All programs were written in Perl and Python and are
available for download (Additional File 14, easySVM.tar.

gz).

Additional material

Additional file 1: Figure S1. Diagram of a linear Support Vector
Machine; Note S1. Definition of Data Types.

Additional file 2: Table S1. Top 400 Chi-square score ranked
features for the RNAi data type. Top 400 Chi-square score ranked
features and their corresponding Chi-square scores for the RNAi data
type determined using an RNAI training set of 773 positive and 2543
negative WormBase papers, an RNAJ training set of 170 positive and
1100 negative papers, an RNAI training set of 170 positive and 1044
negative FlyBase papers, and an RNAI training set of 170 positive FlyBase
+ 170 positive WormBase papers and 1044 negative FlyBase + 1100
negative WormBase papers are listed under the following columns
respectively: Feature_773WB (Features using 773 WormBase RNAJ training
papers); x°_773WB (Chi-square scores using 773 WormBase RNAi training
papers); Feature_170WB (Features using 170 WormBase RNAI training
papers); X2_17OV\/B (Chi-square scores using 170 WormBase RNAJ training
papers); Feature_170FB (Features using 170 FlyBase RNAI training papers);
x°_170FB (Chi-square scores using 170 FlyBase RNAI training papers);
Feature_170WB+170FB (Features using 170 WormBase + 170 FlyBase
RNAI training papers); x°_170WB+170FB (Chi-square scores using 170
WormBase + 170 FlyBase RNAI training papers). Those Features in bold
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red are examples of organism-dependent features and those features in
bold blue are examples of organism-independent features. Chi-square
scores were calculated as described by Manning et al. [24]

Additional file 3: Table S2. Comparison of recall and precision of
single SVM component and comprehensive SVM. This table shows
the results of SYM analyses using top 10, 25, 50, 75, 100, 150, 200, 300,
400 Chi-Square score ranked features respectively and the
comprehensive results of these SYM analyses. The runs with the best and
worst recalls were highlighted in blue, bold and green, bold, respectively,
and the results of the comprehensive SYM were highlighted in red, bold.

Additional file 4: Table S3. Evaluation results of ten WormBase data
types using the validation sets. The SYM was done in the same way as
that in Table 2. Those recall values labeled by * were estimated by
examining the false negatives in twenty randomly selected negatives
after SVM analysis. Recall and precision values from the validation sets
were the average of the results from the validation batches listed which
were conducted on a weekly to bi-weekly basis on the new incoming
papers over a six month period (07/2009 - 12/2009).

Additional file 5: Table S4. Evaluation results of five FlyBase data
types with high occurrence using the testing sets. This table extends
Table 2 with several additional columns, showing further information of
the data set used in the SVM analysis.

Additional file 6: Table S5. Evaluation results of FlyBase RNAi data
type using FlyBase and/or WormBase training papers. This table
extends Table 3 with several additional columns, showing further
information of the data set used in the SVM analysis.

Additional file 7: Table S6. Evaluation results of nine FlyBase data
types with low occurrence using the testing sets. This table extends
Table 4 with additional columns, showing further information of the
datasets used in the SVM analysis.

Additional file 8: Table S7. Evaluation results of three data types
with low occurrence from MGI using testing set. This table extends
Table 5 with several additional columns, showing further information of
the datasets used in the SVM analysis.

Additional file 9: Table S8. Comparison of comprehensive SVM
analysis using TF-IDF weighting scheme with all features (without
feature selection), TF-IDF weighting scheme that combines Chi-
Square score ranked feature selection and Boolean weighting
scheme that combines Chi-Square score ranked feature selection:
first testing set. The same training and testing sets were used for all
three analysis schemes. The training set consists of 289 positive and 289
negative papers that were randomly selected from the positive and
negative labeled pools, respectively. The results were evaluated using
two testing sets and two validation sets (Tables S9-S11). This Table shows
the results of the first testing set with 124 positive and 124 negative
papers. All the positive and negative testing and validation sets were
randomly selected from their respectively labeled pools as described in
Methods.

Additional file 10: Table S9. Comparison of comprehensive SVM
analysis using TF-IDF weighting scheme with all features (without
feature selection), TF-IDF weighting scheme that combines Chi-
Square score ranked feature selection and Boolean weighting
scheme that combines Chi-Square score ranked feature selection:
first validation set. The same training and testing sets were used for all
three analysis schemes. The training set consists of 289 positive and 289
negative papers that were randomly selected from the positive and
negative labeled pools, respectively. The results were evaluated using
two testing sets and two validation sets (Tables S9-S11). This Table shows
the results of the first validation set with 49 positive and 49 negative
papers. All the positive and negative testing and validation sets were
randomly selected from their respectively labeled pools as described in
Methods.

Additional file 11: Table S10. Comparison of comprehensive SVM
analysis using TF-IDF weighting scheme with all features (without
feature selection), TF-IDF weighting scheme that combines Chi-
Square score ranked feature selection and Boolean weighting
scheme that combines Chi-Square score ranked feature selection:
second testing set. The same training and testing sets were used for all

three analysis schemes. The training set consists of 289 positive and 289
negative papers that were randomly selected from the positive and
negative labeled pools, respectively. The results were evaluated using
two testing sets and two validation sets (Tables S9-S11). This Table shows
the results of the second testing set with 62 positive and 124 negative
testing papers. All the positive and negative testing and validation sets
were randomly selected from their respectively labeled pools as
described in Methods.

Additional file 12: Table S11. Comparison of comprehensive SVM
analysis using TF-IDF weighting scheme with all features (without
feature selection), TF-IDF weighting scheme that combines Chi-
Square score ranked feature selection and Boolean weighting
scheme that combines Chi-Square score ranked feature selection:
second validation set. The same training and testing sets were used for
all three analysis schemes. The training set consists of 289 positive and
289 negative papers that were randomly selected from the positive and
negative labeled pools, respectively. The results were evaluated using
two testing sets and two validation sets (Tables $9-S11). This Table shows
the results of the validation set with 49 positive and 98 negative
validation papers, respectively. All the positive and negative testing and
validation sets were randomly selected from their respectively labeled
pools as described in Methods.

Additional file 13: Table S12. Comparison of our SVM classification
results with those from TREC 2005. This table compared the
performance using our Boolean weighting scheme that combines the
Chi-Square ranked feature selection SVM method with that of the best
performed machine learning method and a SVM method from TREC
2005 for Mutant phenotype allele, Embryologic expression and Tumor
biology data types from MGI.

Additional file 14: easySVM.tar.gz. This file contains instructions, code
and samples set for text categorization described here. Please read the
file named INSTRUCTION under the directory easySVM after
decompressing the tar ball before running the analyses.
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