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Abstract

Background: Chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-Seq) is the most
frequently used method to identify the binding sites of transcription factors. Active binding sites can be seen as
peaks in enrichment profiles when the sequencing reads are mapped to a reference genome. However, the profiles
are normally noisy, making it challenging to identify all significantly enriched regions in a reliable way and with an
acceptable false discovery rate.

Results: We present the Triform algorithm, an improved approach to automatic peak finding in ChIP-Seq
enrichment profiles for transcription factors. The method uses model-free statistics to identify peak-like distributions
of sequencing reads, taking advantage of improved peak definition in combination with known characteristics of
ChIP-Seq data.

Conclusions: Triform outperforms several existing methods in the identification of representative peak profiles in
curated benchmark data sets. We also show that Triform in many cases is able to identify peaks that are more
consistent with biological function, compared with other methods. Finally, we show that Triform can be used to
generate novel information on transcription factor binding in repeat regions, which represents a particular
challenge in many ChIP-Seq experiments. The Triform algorithm has been implemented in R, and is available via
http://tare.medisin.ntnu.no/triform.
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Background
Chromatin immunoprecipitation combined with high-
throughput sequencing (ChIP-Seq) is currently the
method of choice for genome-wide mapping of binding
sites for transcription factors (TFs) on DNA [1-3]. This
is achieved by using DNA fragmentation after DNA-
binding proteins have been cross-linked to the genome.
The fragmentation is followed by selection of fragments
bound by the TF of interest, using an antibody targeting
this factor. The selected genomic fragments are then
released, sequenced, and mapped to a reference genome.
There, the genomic locations bound by the TF will be
enriched with matching sequencing reads.
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An essential step in the analysis of ChIP-Seq data is
the genome-wide identification of enriched regions. Sev-
eral software tools have been developed to perform this
task [4,5], but benchmarking has demonstrated that
there is room for improvement in the existing
approaches [6]. There are alternative definitions of what
constitutes a peak, and useful characteristics of ChIP-
Seq profiles may not be fully utilized. A typical example
is the shift property [7], which occurs because the full
sequence fragments, typically with an average length
around 200 bp, are sequenced for only 25–50 bp from
each side. Other examples are the use of independent
control samples [8], separation of overlapping enrich-
ment profiles [9,10], or optimal use of statistical
approaches to separate signal from noise [11]. Our con-
clusion in a previous study [6] was that different pro-
grams focus on different characteristics of the ChIP-Seq
data, but that no program takes all the characteristics
into account. Though several programs achieve a high
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coverage of true enrichment profiles, the trade-off has
often been an intolerably high false discovery rate (FDR).
A major limitation in the development of improved

approaches has been the lack of proper benchmarks to
compare the performance of different methods [12]. Be-
cause of this, different strategies for performance evalu-
ation have been used, the most common being motif
occurrences in the proximity of the ChIP-Seq peaks
[4,5,8,13], and overlap with experimentally confirmed
qPCR sites [4,5]. However, both evaluation methods
have important limitations [6,12], and when looking at a
limited number of binding regions, the preferred evalu-
ation method remains visual assessment of local enrich-
ment profiles in a genome browser. To compensate for
the lack of benchmarks in ChIP-Seq analysis, we have
previously manually curated a benchmark data set based
on visual inspection of ChIP-Seq profiles from three dif-
ferent TFs: NRSF (also known as REST), SRF, and MAX
[6]. Individual regions were visually assessed relative to
relevant criteria, including peak-like shape, peak shift,
lack of signal in control sample, and motif occurrence in
peak region, and the regions were classified either as real
peaks or as noise or artifacts. The idea was that such a
benchmark can be used to evaluate and improve both
new and existing efforts for the automatic analysis of
ChIP-Seq data for TFs.
In this study, we present an improved approach for

automatic identification of peaks in ChIP-Seq enrich-
ment profiles, called the Triform method. Triform uses
robust genome-wide statistical tests to detect three dif-
ferent forms of peak-like enrichment profiles, taking ad-
vantage of the profile characteristics mentioned above.
Overfitting is precluded by the fact that Triform is based
on model-free statistical tests and uses a minimal num-
ber of preset parameters based on the general properties
of the ChIP-Seq data sets. The Triform algorithm is
model free in the sense that it relies on the Hoel test
[14] which is fully nonparametric, i.e. free from any
assumed relationships or fitted parameters. In particular,
the Hoel test is free from any assumed background
model and is therefore more robust than model-based
tests, which depend on locally uniform background
models and fitted background parameters. When eval-
uated on the benchmark data set of peak profiles,
Triform outperformed both newly developed and pre-
viously evaluated programs for the automatic detec-
tion of enrichment profiles, for all three TFs studied.
The good performance of Triform was further con-
firmed using tests on motif enrichment in significant
peak regions.
Since TFs often co-regulate genes that are involved

in specific biological processes, we would expect such
processes to be overrepresented in the annotation of
genes associated with regions for TF binding from the
ChIP-Seq experiment. We therefore used statistical
overrepresentation analysis on peak sets from the main
peak-finding programs that are compared here, and
showed that peak sets from Triform in most cases give
the most significant overrepresentation of relevant anno-
tation terms.
To illustrate the potential of improved peak finding to

generate novel information, we further analyzed the
DNA sequence motifs identified de novo within the
Triform SRF peak regions. In addition to the canonical
SRF motif, we discovered a significant co-occurrence of
SRF, ELK1, and NFY motifs within LTR/ERV1/MER57
repeats, and these particular repeats were significantly
co-located with genes associated with cancer. This ex-
emplifies how optimal identification of peak regions
may generate novel information.
Results and discussion
The Triform algorithm
The main problem with peak finding in ChIP-Seq data
for TFs is the reliable differentiation between peaks and
noise. Many algorithms define a peak as a region of sig-
nificantly elevated coverage of sequencing reads. Conse-
quently, such algorithms tend to accept false positives in
the form of noisy plateaus, i.e., wide regions of elevated
coverage lacking a distinctive core sub-region and lack-
ing a well-defined shift between coverage profiles on op-
posite strands. Such regions are expected to be present,
to some extent, in any ChIP-Seq data set.
The Triform algorithm defines a peak as a region with

a significantly negative mean second derivative of the
coverage profile, using model-free test statistics devel-
oped by Hoel [14]. Such regions have inherently limited
width, peak sub-regions are directly identified, and these
sub-regions can be used to test for well-defined shifts
between overlapping profiles on opposite strands. The
test can also handle overlapping peaks. Consequently,
the Triform algorithm is able to reject false positive
noisy plateaus, thereby increasing specificity with little
or no loss of sensitivity. This is used in combination
with other important features and data, in particular
control data and biological replicates. Additional sequen-
cing of control data emulating tag enrichment profiles
created without targeting any specific TF has become
standard in ChIP-Seq, and may be used to improve the
separation of true peaks from noise and artificial enrich-
ment. The same is true for biological replicates.
Calculation of model-free test statistics for local peak-like
forms on each strand
At each strand location x the raw ChIP-Seq coverage
C xð Þ is formally regarded as a Poisson variate with par-
ameter λ xð Þ ¼ E C xð Þ½ �. The formal Poisson model leaves
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the Poisson parameter unspecified and does not assume
homogeneity across technical replicates, but does imply
that any summation of independently measured Poisson
variates yields another Poisson variate.
For read width w and fixed parameter δ > w (see

Table 1), the three coverage values C x� δð Þ;C xð Þ;f
C xþ δð Þg at any location x are formally regarded as in-
dependently measured Poisson variates with parameters
λ x� δð Þ; λ xð Þ; λ xþ δð Þf g.
The following three alternative hypotheses are tested

for local peak-like forms (see Figure 1a):

2λ xð Þ > λ x� δð Þ þ λ xþ δð Þ ð1Þ
λ xð Þ > λ x� δð Þ ð2Þ
λ xð Þ > λ xþ δð Þ ð3Þ

The above three hypothesized peak-like forms will be
annotated as Form 1, Form 2, and Form 3 peaks, re-
spectively. In Form 1 peaks, the peak coverage is higher
than the average flanking coverage, while in Form 2 and
Form 3 peaks the peak coverage is higher than the left-
or right-flanking coverage, respectively (Figure 1a).
The following three model-free test statistics for peak-

like forms are based on equation (11) of Hoel [14].
These statistics have approximately standard normal dis-
tributions even for arbitrarily low positive total counts.

z1 x; δð Þ ¼ 2C xð Þ � C x� δð Þ þ C xþ δð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 C x� δð Þ þ C xð Þ þ C xþ δð Þð Þp ð4Þ

z2 x; δð Þ ¼ C xð Þ � C x� δð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C x� δð Þ þ C xð Þp ð5Þ

z3 x; δð Þ ¼ C xð Þ � C xþ δð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C xþ δð Þ þ C xð Þp ð6Þ

Calculation of model-free test statistics for local enrichment
on each strand
At each strand location x the raw coverage B xð Þ of the
control sample is formally regarded as a Poisson variate
with Poisson parameter μ xð Þ ¼ E B xð Þ½ �. For a given ratio
Table 1 Triform parameters

Parameter Descriptio

w read width

δ fixed spacin

r actual ratio

min.z fixed minim

min.n fixed minim

min.er fixed minim

min.lag fixed minim
r between the control and ChIP-Seq library sizes (see
Table 1), the tested hypothesis of local enrichment is:

r � λ xð Þ > μ xð Þ ð7Þ
The model-free test statistic for local enrichment,

z4 xð Þ , is calculated according to (8). The local enrich-
ment ratio, ER xð Þ, is calculated according to (9).

z4 xð Þ ¼ r � C xð Þ � B xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r B xð Þ þ C xð Þð Þp ð8Þ

ER xð Þ ¼ 1þ r � C xð Þ
1þ B xð Þ ð9Þ

Calculation of local inter-strand lags between overlapping
peaks on opposite strands
Figure 1c illustrates the range of locations involved in
the calculation of the local inter-strand lag between two
overlapping Form 1 peak regions on opposite strands.
The range starts at the start � δð Þ position on the forward
strand and ends at the end þ δð Þ position on the reverse
strand. The optimal lag is taken as the one that maximizes
the cross-correlation between the forward and reverse
coverage distributions within the specified range.
Procedure for detecting local peak-like forms
Parameters and default parameter settings are shown in
Table 1. The parameters are fixed values to avoid over-
fitting. The default values have been chosen to reflect
well-known properties of ChIP-Seq data. For example, the
default value of the spacing parameter δ is 150 bp, which
is comparable to the length of DNA around a nucleosome.
The cut-off for the minimum local enrichment ratio
min.er is needed because non-specific ChIP-Seq cover-
age is often significantly higher than the coverage in the
control sample. Currently the min.er cut-off value is
calculated for each strand as the 3/8 quantile of the
enrichment ratios in significantly enriched Form 1 peaks.
The choice of quantile cut-off value does not seem to be
critical because the 1/4 and 1/2 quantiles were nearly
equal in all tested data sets.
n

, symmetrically extended to a fixed value (default 100 bp)

g between central and flanking locations (must be>w, default 150 bp)

between control and ChIP-Seq library sizes

um upper-tail z-value (default corresponds to standard normal p= 0.1)

um number of bp (peak width) in peak-like region (default 10 bp)

um local enrichment ratio (default 3/8 quantile of the enrichment ratio)

um inter-strand lag between peak coverage distributions (default 10 bp)
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Figure 1 Triform approach to peak definition. Key aspects of the Triform algorithm. Part a) shows the definition of the three alternative
peak-shape hypotheses Forms 1, 2, and 3 using very simplified peaks. Part b) shows this on a more realistic peak shape, using the min.z cut-off
on the z1, z2, and z3 test statistics to define the start and end of the regions R of each peak-like form. Part c) shows how strand lag for a
peak pair on the forward (red) and reverse (pink) strand is estimated, using the δ parameter to define an extended region. Triform uses
cross-correlation on this region to estimate the optimal lag, and compares this with the minimum inter-strand lag min.lag.
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The necessary and sufficient conditions to detect a
local peak-like form within a region R on one strand are:

� The number of base pairs in region R (peak width)
exceeds a given minimum min.n.

� For every location x in region R: zf x; δð Þ >min.z,
where zf denotes one of the standard normal test
functions z1, z2, and z3 defined by equations (4)–(6)
above (see Figure 1b), and min.z is a fixed minimum
upper-tail z-value cut-off for Hoel tests.

� For every location x in region R: z4 xð Þ >min.z.
� For location x0 at the center of region R: ER x0ð Þ >

min.er.
� If biological replicates are available, then for every

replicate k and every location x in region R:
zf x; k; δð Þ > 0 and z4 x; kð Þ > 0.
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The criteria to detect local peak-like forms on both
strands are:

� For each of the three peak forms accept only those
detected peak regions that overlap exactly one
detected peak region on the opposite strand.

� Accept only those pairs of overlapping peak regions
whose local inter-strand lag exceeds a given
minimum min.lag (see Figure 1c).

� Reject any redundant Form 2 or Form 3 peaks that
overlap a Form 1 peak.

� Merge any overlapping Form 2 and Form 3 peaks
into Form 1 peaks.

Implementation of the Triform algorithm
The Triform method has been implemented in R using
the IRanges package. For each detected peak region, the
peak position (PEAK.LOC) is reported as the midpoint
of the range, and the peak significance (PEAK.NLP) is
reported as the sum of the Negative Log10 (P) (NLP)
values for the test statistics calculated according to
equations (4)–(6). This is proportional to the Fisher’s χ2

statistics for the combined null hypothesis that all indi-
vidual null hypotheses are true. Details of the implemen-
tation can be found in Additional file 1. The Triform
algorithm has been implemented in R, and is available
via http://tare.medisin.ntnu.no/triform. It has been sub-
mitted to Bioconductor for inclusion in the Bioconductor
package [15].

Triform outperforms other methods on a manually
curated ChIP-Seq benchmark
We evaluated the performance of Triform on the manu-
ally curated ChIP-Seq benchmark for peak-like enrich-
ment profiles, created by Rye et al. [6] (see Figure 2).
The performance of Triform was compared with that of
seven other programs for ChIP-Seq peak identification:
QuEST, MACS, the Meta approach by Rye et al., PICS,
FindPeaks, PeakRanger, and TPic. QuEST and MACS
are popular, and have both performed well in previous
program evaluations [4,5]. Meta was the method used by
Rye et al. during the original benchmark, and is a com-
bination of outputs from the programs MACS and
SISSRs [7]. PICS uses a Bayesian approach to identify
binding events [16]. FindPeaks tests for local peak-like
coverage distributions [9] and is the tool that is currently
most similar to the Triform algorithm. PeakRanger and
TPic are recent additions to the family of ChIP-Seq
peak-identification programs, and have, to our know-
ledge, not yet been independently evaluated.
Triform clearly outperformed all these methods on

peak finding, for all three TFs that were analyzed, both
with respect to coverage, which is the percentage of true
peaks identified, and the FDR. Most importantly, Triform
recovered 80% of the peaks at a 0.05 FDR level. For NRSF
and SRF, Triform kept the FDR at an acceptable 0.1 when
the coverage went beyond 90%. For the more challenging
MAX data set, the FDR was somewhat higher when the
coverage exceeded 90%. However, given the differences
in binding patterns for the three factors, especially exem-
plified by MAX that includes many partly overlapping
peaks, Triform showed consistently good performance
for all factors.
Triform shows good performance on a motif enrichment
benchmark
A frequently used benchmark approach is to test gen-
omic regions from a peak finder for binding site motifs
for the TF sampled in the ChIP-Seq experiment, assum-
ing that the best performing peak finders will identify
peak regions with a high occurrence rate of relevant
motifs. Here we used the approach described for ex-
ample in the evaluation of PICS [16]. Output from each
peak finder was sorted according to significance, and for
the top n peak regions a representative binding site
motif for the given TF was used to scan each region for
significant binding sites. Please see Methods for details.
Both the fraction of regions containing binding sites,
and the average distance from the estimated peak sum-
mit was estimated. Results for MAX using the MAX
binding site motif from Jaspar [17] is shown in Figure 3;
full results for all three TFs are found in Additional file 2:
Figure S1 to S3.
The good performance of Triform on the motif en-

richment benchmark confirms that the superior per-
formance on the peak finding benchmark is consistent
with a high biological relevance. Triform also seems to
have the best overall performance with respect to finding
the optimal peak summit. Apart from this, the difference
between methods with respect to motif enrichment is
relatively small, except for a couple of methods with
sub-optimal performance, and the relative performance
of all methods seems to vary with data set and motif
model. This test is easily biased for example by the
choice of motif description, the relative frequency of in-
direct binding of TFs, and possible lack of specificity of
the antibody used in the ChIP-Seq experiment. This is
therefore a more indirect test of peak finder perform-
ance than the peak profile benchmark described in the
previous sub-section.
Triform peaks generally show the most significant
statistical association with relevant biological processes
As an evaluation of the general quality of the peak set
defined by selected methods, the highest-scoring peaks
were submitted to GREAT [18] for statistical overrepre-
sentation analysis. As the total number of peaks varied,

http://tare.medisin.ntnu.no/triform


Figure 2 Peak profile benchmark results. Triform outperforms other methods on ChIP-Seq peak profile benchmarks for the TFs NRSF, SRF, and
MAX. Coverage, which is the percentage of true peaks recovered in the evaluated regions, is plotted against the false discovery rate (FDR) for
each method evaluated. The peak lists from each method are first sorted according to the peak scores from that program. The corresponding
coverage and FDR are then calculated as the list is traversed starting at the highest scoring peak. In general, Triform has the lowest FDR for
medium-to-high coverage. To emphasize the details at the lower FDR levels, the results from TPic are not shown because of the high FDRs
produced by this method. The results from FindPeaks for NRSF are not shown due to the low total number of regions that were recovered (389),
giving a total coverage of only 7%.
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Figure 3 Motif enrichment benchmark results. Triform shows good performance on the motif enrichment benchmark. The figure shows motif
occurrence rate of the Jaspar MAX motif (MA0058.1) in peak regions (±150 bp around predicted peak summit) sorted according to significance.
Also shown is the average absolute and relative spatial error of the motif position relative to the predicted peak summit. If more than one
significant motif was found in a given region, only the motif closest to the predicted peak summit was used for statistics. Please see Additional
file 2 for full results.
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depending on both the data set and prediction method,
a fixed number of peaks representing only those with
highest score was used in each case. This was to make
the conditions as similar as possible for the different
tools. These peak lists were submitted to GREAT, which
associates peaks (entered as genomic regions) with
genes, and test gene annotations for statistically overre-
presented terms relative to a general genomic back-
ground. Selected properties of the overrepresentation
analysis were evaluated and are summarized in Table 2.
These features were ranked high by all or most of the
methods, and represent in general known processes or
features associated with each of the TFs.
The analysis of NRSF/REST was based on the top 3500

peaks from each method, and the peak regions showed
an overlap from 94% to 64% among the different meth-
ods. GREAT associated on average 4000 genes with these
peak regions. Overrepresentation analysis focused on the
gene ontology (GO) feature “Neurotransmitter transport”
and TF feature “REST motif” from Predicted Promoter
Motifs. The highlighted GO feature is supported by pre-
vious publications [19,20]. For both features, Triform
showed the most significant overrepresentation.
Table 2 Results of statistical overrepresentation analysis with

Method MACS Meta

NRSF

Peaks total (2894 common) 9802 4750

Peaks used (1993 common) 3500 3500

Genes 4017 4017

GO – Neurotransmitter transport 1.6 × 10-10 6.0 × 10-11

TF – REST motif 1.1 × 10-26 4.6 × 10-25

SRF

Peaks total (608 common) 4012 1553

Peaks used (310 common) 1300 1300

Genes 1930 1887

GO – Actin cytoskeleton 1.8 × 10-7 2.6 × 10-9

TF – SRF-motif 6.0 × 10-9 3.6 × 10-12

MAX

Peaks total (3306 common) 21866 10323

Peaks used (2014 common) 6500 6500

Genes 6139 6393

GO – ncRNA processing 4.3 × 10-18 5.9 × 10-14

GO – DNA duplex unwinding 9.7 × 10-43 3.9 × 10-14

TF – MYC motif 2.5 × 10-12 2.7 × 10-14

TF – E2F1 motif 2.7 × 10-12 1.8 × 10-12

TF – c-MYC from ChIP-chip 2.1 × 10-36 2.8 × 10-35

aThe table shows (for each TF) the total number of peaks identified by each peak-fi
peaks used for GREAT analysis (including the number of common peaks), the numb
identified by GREAT for the selected GO and TF-associated terms. The smallest Q-va
The analysis of SRF was based on 1300 regions, with an
inter-method overlap between 77% and 39%. GREAT
associated on average 1800 genes with these peak regions.
Overrepresentation analysis focused on the GO feature
“Actin cytoskeleton”, which is supported, for example, by
the findings of Sun et al. [21], and on the TF feature “SRF
motif”. Here, Meta showed the most significant overre-
presentation of GO features, whereas Triform was best
on the TF feature. However, the difference between Meta
and Triform was small and barely significant.
Finally, the analysis of MAX was based on 6500

regions, with an inter-method overlap between 75% and
49%. On average, 6300 genes were associated with these
peak regions. Here, the variation among the methods
with respect to overrepresented features was much lar-
ger. Therefore, several features were compared: two GO
features (“ncRNA processing” and “DNA duplex unwind-
ing”) and three TF features (“MYC motif” and “E2F
motif” from Predicted Promoter Analysis, and “c-MYC
from ChIP-chip” from Perturbation). The interaction be-
tween MAX and MYC is well documented (e.g., [22]).
The interaction between MYC (and therefore probably
MAX) and E2F has also been demonstrated previously
GREATa

QuEST PeakRanger TPic Triform

3574 6123 37514 10583

3500 3500 3500 3500

4105 3956 3866 4033

1.2 × 10-10 2.5 × 10-6 5.2 × 10-7 9.3 × 10-13

5.4 × 10-19 1.4 × 10-25 5.6 × 10-23 1.1 × 10-31

1383 1320 111305 9555

1300 1300 1300 1300

1855 1816 1565 1837

1.2 × 10-6 2.1 × 10-8 - 3.8 × 10-9

2.4 × 10-11 3.6 × 10-12 2.4 × 10-11 2.3 × 10-18

6556 9383 61021 15137

6500 6500 6500 6500

6626 6283 6276 6668

2.0 × 10-18 3.9 × 10-22 3.1 × 10-16 1.5 × 10-12

- 1.6 × 10-5 1.1 × 10-25 -

5.3 × 10-16 - - 1.7 × 10-17

- 7.3 × 10-15 5.4 × 10-13 2.9 × 10-11

8.7 × 10-48 3.9 × 10-36 1.8 × 10-46 7.8 × 10-58

nder (including the number of peaks common to all methods), the number of
er of associated genes identified by GREAT, and the binominal FDR Q-values
lue for each term is shown in bold.
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[23]. The relevance of the GO properties is supported for
example by [24], which discusses the role of MYC in the
regulation of ncRNA expression, and by [25] on the role
of MYC in replication. In this analysis, Triform showed
the best performance on two of the TF features (see
Table 2 for details).
Because of the somewhat inconsistent results for

MAX, two additional tests were performed on this data
set. First, a smaller data set was tested, using only the
3500 most significant peaks. Second, a moving window
approach was used to select the peak sets, shifting the
window 1000 peaks down the ranked list for each test.
The rationale behind this was to test whether this data
set contained a mixed signal, where the weaker peaks
represented regulation of other processes (for example
through a co-factor), compared with the stronger peaks.
However, neither of these tests provided clarification,
and in general, the significance was reduced.
In summary, overrepresentation analysis shows that

the Triform method tends to identify peaks that are sig-
nificantly associated with relevant biological processes.

Triform peak regions facilitate the detection of
co-occurring SRF/ELK1/NFY motifs in LTR/ERV1/MER57
repeats
It has recently been shown [26] that a significant frac-
tion of STAT1-binding sites are found in the primate-
specific MER41 repeat. This illustrates the potential role
of repeat regions in gene regulation [27], and makes it
relevant to investigate other TFs similarly. However, ana-
lysis of repeat regions in ChIP-Seq data may be challen-
ging. The mapping of reads from repeat regions is often
not unique, potentially leading to more noisy peaks in
these regions. This makes it beneficial to use a peak-
finder with high sensitivity and specificity for non-
optimal peak shapes.
We used the SRF ChIP-Seq set, as this TF is known to

associate with viral long terminal repeats (LTRs) [28]. We
focused the analysis on 1510 Form 1 Triform peaks with
PEAK.NLP> 12. We initially used 2410 low-significance
TPic SRF peaks as negative control regions, assuming that,
given the high number of peaks returned by TPic, these
regions were most likely to be SRF-binding-like regions
without significant regulatory importance (at least in this
context). However, using the 2522 least significant Tri-
form SRF peaks (PEAK.NLP< 4) gave a similar result, and
was used for the analysis shown here. We then used Cis-
Finder for de novo motif discovery in the Triform peak
regions (±150 bp around the peak summit), and compared
these motifs with known motifs.
CisFinder found three significantly overrepresented

motifs (Figure 4): an SRF-like motif known as the CArG
box, an ELK1-like motif (CCGGAA), and an NFY-like
motif (CCAAT). The most likely identity of these motifs
was determined by comparison of the position-specific
frequency matrices against the Jaspar database using the
T-Reg Comparator, identifying the most similar Jaspar
motifs to be MA0083, MA0028, and MA0060, respect-
ively. The co-occurrence of CArG box and ELK1-like
motifs is well documented [29,30]. In addition, the co-
occurrence of the SRF and NFY motifs has been
observed previously [31-33]. The SRF/ELK1/NFY co-
occurrence was strongly associated with LTRs of the
medium reiteration sequence type (MER) from endogen-
ous retrovirus (ERV) transposons (LTR/ERV1/MER57).
Of the 9555 SRF regions from Triform, 124 regions
overlapped with MER57 repeats (with an average overlap
of 91%), and 117 of these contained at least two signifi-
cant binding sites for TFs (from the CisFinder analysis),
which is highly significant (p= 1.2 × 10-65 according to a
Fisher exact test). Submitting these MER57 regions to
GREAT with a general genome-wide list of MER57
regions as background showed that the subset of repeat
regions identified here co-locates with genes significantly
associated with cancer (thyroid and gastric cancer, with
FDR Q-values of 1.9 × 10-2 and 3.6 × 10-2, respectively).
GREAT also indicated that this subset of MER57 regions
is located in more gene-rich regions than the general
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background set, as the foreground set of MER57 regions
on average was associated with 1.7 genes, compared with
0.5 genes for the full set of MER57 regions.
There is a potential risk of bias in de novo motif dis-

covery involving multiple repeat regions, as any motif
associated with repeats will be highly significant. Al-
though the fraction of MER57 repeats is low (1.3% of
the total set), the CisFinder motif discovery was repeated
with the same negative background regions, but using a
positive set where all regions overlapping MER57 repeats
had been removed. The final SRF-like and ELK1-like
motifs were almost identical to the ones identified on
the full sequence set. The NFY-like motif was also very
similar, but was found at a lower frequency. This shows
that the presence of MER57 repeats had only a minor ef-
fect on CisFinder motif discovery, in particular for the
SRF and ELK1-like motifs.
It has long been suspected that LTRs may play a role in

carcinogenesis [34]. The most likely mechanism seems to
be that LTRs act as extra promoters leading to modified
(possibly aberrant) expression of potential oncogenes
[35,36]. In that respect, it is interesting that the MER57
repeats identified here co-locate with tumor-associated
genes, where they may act as additional promoters. It has
also recently been shown that tumor-associated microve-
sicles contain high levels of retrotransposon RNA tran-
scripts [37], indicating that retroelement expression itself
may play a role in carcinogenesis [38]. It is too early to
say whether the subset of MER57 repeats identified here
is involved in any of these processes. However, our ana-
lysis shows that using an approach for peak finding with
improved sensitivity and specificity can generate interest-
ing hypotheses for further testing.

Conclusions
It is challenging to evaluate ChIP-Seq peak-finding meth-
ods because we normally do not know the true solution
to a given experiment. The intensity of a given peak
reflects the frequency of interaction between the TF and
the genomic region, and thus the interaction strength. It
is therefore tempting to focus on the strong peaks, as-
suming that these represent the most important regula-
tory interactions. However, this may be misleading for
several reasons. First, the apparent binding strength may
be affected in many different ways, including post-
translational modifications and protein-protein inter-
actions involving the relevant TF. The formation of
cis-regulatory modules, including indirect binding, may
also affect the efficiency of immunoprecipitation and
pull-down of the relevant genomic fragments. The map-
ping of reads to the reference genome may also be biased,
for example by differences between the sequenced gen-
ome and the reference genome used for read mapping.
This means that we also have to include minor peaks
in the analysis, which makes the peak finding more
challenging. In addition, many protein-protein interactions
lead to more complicated peak shapes, making the
problem even more challenging.
Triform attempts to improve peak finding by identify-

ing and using essential features of typical ChIP-Seq
peaks, including peak shape and sequencing-induced
peak shifts. This has been implemented in a rigorous
model-free statistical framework, making the classifica-
tion both robust and sensitive. In particular, Triform
achieves greater sensitivity, specificity, and control of the
FDR than other methods by utilizing the Hoel test to de-
tect significant Poisson inhomogeneities, as could be
seen in its comparison with, for example, FindPeaks.
As Triform gains performance by addressing specific

properties of ChIP-Seq peaks, it could be argued that
Triform may lead to model overfitting by favoring fea-
tures that are important mainly in the benchmark set.
However, the selected features represent completely gen-
eral ChIP-Seq peak features, and the number of para-
meters in the Triform implementation has been reduced
to a minimum. In combination with the statistical
framework, we believe that this makes the algorithm
more resistant to overfitting.
The excellent performance of Triform has been con-

firmed by the tests described here, including benchmark-
ing, statistical overrepresentation analysis, and motif
discovery for novel motifs. In all cases, the evaluation
was limited by the fact that no perfect solution is avail-
able as a reference. However, in our opinion, all these
tests indicate that Triform is at least as good as any of
the methods it has been compared with, and in many
cases is better.
However, it is important to be aware that although the

Triform approach uses a quite general framework, the
implementation is adapted to peak finding in ChIP-Seq
experiments for TFs. It is likely that application to other
types of ChIP-Seq experiments, for example for chroma-
tin structure, will require a modified approach.

Methods
Data sets
The ChIP-Seq benchmark data set is based on sets of
manually evaluated regions for three TFs: NRSF/REST,
SRF, and MAX [6]. All the original ChIP-Seq tag files and
results from the manual evaluations were downloaded
from http://tare.medisin.ntnu.no/chipseqbenchmark/.
The full data sets for NRSF/REST, SRF, and MAX

were downloaded from the ENCODE [39] repository
of the UCSC Genome Browser [40] as specified in [6],
and these data were used for peak finding for motif
enrichment benchmark and statistical overrepresenta-
tion analysis. Identification of co-occurring peaks in
repeats was based on the SRF data set. The list of

http://tare.medisin.ntnu.no/chipseqbenchmark/
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MER57-type repeats for hg18 was downloaded from
the UCSC Genome Browser.

Software tools
The following program versions were used in the evalua-
tions: QuEST v2.4 [41], MACS v1.4.0 [8], PICS v1.0.6 [16],
FindPeaks v4.0 (as part of the Vancouver Short Read Ana-
lysis Package v4.0.16) [9], PeakRanger v1.02 [42], TPic
from January, 2011 [10], and the Meta approach from
March, 2011 [6]. All programs were run with default para-
meters, and the peaks from each program were sorted
according to the score given in that program. Exceptions
are TPic, and to some extent FindPeaks. TPic does not re-
turn any score for its final peaks. We therefore sorted the
peaks from TPic according to tag enrichment. FindPeaks
returns identical score values for large sub-sets of peaks,
and these sub-sets were therefore subsequently sorted
according to tag enrichment, in order to rank all peaks.
For all programs, including Triform, samples and repli-
cates were pooled into a single sample before analysis. To
make the peak-lengths returned by the different programs
comparable, we used the peak summit with a 150-bp ex-
tension in both directions as peak regions for all pro-
grams. A region length of 300 bp is in accordance with
the resolution offered by most ChIP-Seq data.
Statistical overrepresentation analysis of predicted

peak sets was performed with GREAT version 1.8.2 [18].
BEDTools [43] was used for general manipulation of the
peak lists, including estimates of overlap between the
lists. For motif discovery in the motif enrichment bench-
mark we used Patser v3e [44], reporting all motifs with
score at least equal to the negative value of the sample-
size adjusted information content (option -li). TF motif
matrices were taken from Jaspar [17], using the default
vertebrate matrices for REST, SRF and MAX. Additional
matrices were taken from Transfac [45], using the matri-
ces most similar to the Jaspar matrices according to
STAMP [46], except for SRF, where the Jaspar matrix
has relatively low performance (see Additional file 2:
Figure S2). Here the Transfac matrix V$SRF_01 is the
one most similar to Jaspar SRF, but the alternative Trans-
fac matrix V$SRF_Q6 showed better performance, and
was therefore preferred. For de novo motif discovery, we
used CisFinder [47] with CG/AT adjustment (removing
spurious repetitive GC-rich patterns) and a minimum
enrichment ratio of three. The motifs were compared
with the relevant Jaspar [17] entries using the T-Reg
Comparator [48], and final motif logos were generated
with WebLogo [49].
The Triform algorithm was implemented in R using

the IRanges package from Bioconductor [15] The ccf
function from the R statistical analysis package was used
to find the lag with maximum cross-correlation between
the forward and reverse coverage distributions.
Additional files

Additional file 1: Supplementary Information. Implementation of the
Triform algorithm.

Additional file 2: Full results of motif enrichment benchmark test.
Figure S1 - Results for NRSF. Figure S2 - Results for SRF. Figure S3 -
Results for MAX.
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