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Abstract

Background: Based on available biological information, genomic data can often be partitioned into pre-defined sets
(e.g. pathways) and subsets within sets. Biologists are often interested in determining whether some pre-defined sets
of variables (e.g. genes) are differentially expressed under varying experimental conditions. Several procedures are
available in the literature for making such determinations, however, they do not take into account information
regarding the subsets within each set. Secondly, variables (e.g. genes) belonging to a set or a subset are potentially
correlated, yet such information is often ignored and univariate methods are used. This may result in loss of power
and/or inflated false positive rate.

Results: We introduce a multiple testing-based methodology which makes use of available information regarding
biologically relevant subsets within each pre-defined set of variables while exploiting the underlying dependence
structure among the variables. Using this methodology, a biologist may not only determine whether a set of variables
are differentially expressed between two experimental conditions, but may also test whether specific subsets within a
significant set are also significant.

Conclusions: The proposed methodology; (a) is easy to implement, (b) does not require inverting potentially
singular covariance matrices, and (c) controls the family wise error rate (FWER) at the desired nominal level, (d) is
robust to the underlying distribution and covariance structures. Although for simplicity of exposition, the
methodology is described for microarray gene expression data, it is also applicable to any high dimensional data, such
as the mRNA seq data, CpG methylation data etc.

Background
With the advent of high dimensional genomic data,
researchers are able to study changes in the expression
of several hundreds and thousands of variables such as
genes or CpG’s under various experimental conditions (or
phenotypes) in a given cell culture, tissue or an organ-
ism etc. Although identification of differentially expressed
individual variables across experimental conditions is of
general interest, in recent years there is considerable inter-
est in analyzing sets of variables that belong to some
pre-specified biological categories such as signaling path-
ways and biological functions. Numerous statistical and
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computational methods have therefore been developed
for such analyses. Although the methods described in this
paper are broadly applicable to any high dimensional data
where the sets and subsets are pre-defined, for simplicity
of exposition, we shall describe the methodology in the
context of gene expression data. The available gene set
analysis (GSA) methods can be broadly classified into two
categories. Loosely speaking, the first category of meth-
ods, often referred to as competitive gene set methods,
tries to answer questions such as “Given the collection
of differentially expressed genes identified by a statisti-
cal/bioinformatics methodology, how enriched is a pre-
specified set?” For example, suppose S1 and S2 are two
pre-specified sets consisting of N1 and N2 genes respec-
tively. Suppose an investigator identified a total of n genes,
ni of which belong to set Si, i = 1, 2. Then this category of
methods computes the probability of discovering n1(n2)
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or more genes from the set S1(S2). Several variations and
innovations to Fisher’s exact test, Kolmogorov-Smirnov
test, etc, have been proposed in the literature for obtaining
the corresponding p-values (c.f. [1-5]). Software packages
such as Ingenuity Pathway Analysis (IPA) report p-values
using such tests. The second category of methods answers
a different but equally important question (c.f. [4,6-11]),
namely, “Is a given set of genes differentially expressed
between two conditions?” In this category of methods the
gene set information is directly used when selecting differ-
entially expressed sets of genes between two experimental
conditions and the question it answers has a clear bio-
logical meaning. Commonly this category of methods is
referred to as self-contained methods, which is the focus
of this paper.
Most earlier methods (belonging to either of the two

categories described above) are based on univariate statis-
tical tests and thus ignore the underlying dependence in
the gene expression data (c.f. [1-5,9,12-14]). For a review
onemay refer to [11,15,16]. It is well known that univariate
statistical methods for multivariate data may potentially
increase false positive rate and/or decrease power [17].
A natural multivariate extension of the classical t-test

is the Hotelling’s T2 test which can be used for compar-
ing a set of genes between two experimental conditions.
Consequently, several GSA methods using Hotelling’s T2

test have been proposed in the literature such as [18-
20]. Intrinsically, the Hotelling’s T2 statistic requires the
sample size to be larger than the number of variables.
However, for GSA, it is common for the sample size
to be much smaller than the number of genes in a set.
As a consequence, the Hotelling’s T2 statistic is not
uniquely defined. To deal with the singularity problem,
several approaches have been proposed in the literature.
For instance, Kong et al. [8] modified the Hotelling’s T2

statistic by replacing the inverse of sample covariance
matrix by its Moore-Penrose inverse based on the first few
eigenvalues. Although this procedure is appealing, there
is arbitrariness in the choice of number of eigenvalues
to be used. Recently [11] introduced a shrinkage based
Hotelling’s T2 statistic by replacing the sample covariance
matrix by a shrinkage estimator of the covariance matrix
derived in [21]. Although such modifications are compu-
tationally more stable than the Hotelling’s T2, for large
gene sets (i.e. sets with a large number of genes), they
still pose computational challenges. It is because that the
test statistic involves the inversion of a high dimensional
covariance matrix even though it may be non-singular.
Lastly, all multivariate methodologies described above
implicitly assume that the gene expression data in the
two experimental conditions are homoscedastic across all
genes. That is, for a given set of genes the covariance
matrix of gene expression in the two groups is identi-
cal. This, in our opinion, is a very restrictive assumption

and may be hard to verify in practice when dealing with
microarray data consisting of several thousands of genes.
To gain deeper understanding of the differences

between the two experimental/test groups (e.g. cancer
and normal patients), there is considerable interest in
identifying not only sets of genes involved in a pathway
or a biological process, but also in identifying subsets of
genes belonging to a particular biological process within
each significant set. For example, genes in the Vascular
Endothelial Growth Factor (VEGF) pathway are impor-
tant for angiogenesis. There are about 31 genes in this
pathway that are involved in various biological processes.
These 31 genes can be further partitioned into different
subsets of biological functions and the biologist may be
interested in discovering not only the VEGF pathway
but also various subsets of genes within this pathway.
For example, MAP2K3, MAP2K6, p38, MAPKAPK2,
MAPKAPK3, and HSP27 are involved in Actin reorgani-
zation, FAK and Paxillin are involved in Focal Adhesion
Turnover, whereas GRB2, SHC, SOS, Ras, Raf1, MEK1,
MEK2, ERK1, and ERK2 are involved in gene expression
and cell proliferation. Similarly, other genes in VEGF
pathway are involved in various other biological pro-
cesses, such as cell survival, vascular cell permeability,
prostaglandin production, and nitric oxide production.
In examples such as the above, we may (i) be inter-

ested in using the additional information about the sub-
sets to improve the power of detecting gene sets (such
as the VEGF pathway), and (ii) not only be interested in
knowing if genes in the VEGF pathway are differentially
expressed between control and treatment group, but also
interested in identifying subset of genes in biological pro-
cesses within VEGF pathway that are also differentially
expressed between the two groups. Methods described
above and other multivariate statistical methods, such as
the methods based on principal component analysis [7],
the mixed effects logistic regression [6], analysis of covari-
ance [10,22], are not designed to address such questions
directly. If one ignores information regarding subsets,
then there is not only a loss of biological information when
interpreting the data, but also a potential loss in power. On
the other hand, one may use the existing methods by tak-
ing the subsets as the unit of analysis rather than the sets.
However, such a strategy destroys the underlying relation-
ships among subsets within a set and consequently may
result in loss of power.
In this paper we introduce a novel methodology that

(a) is computationally simple and does not require inver-
sion of any matrix, (b) exploits the underlying dependence
structure, (c) is useful for identifying significant gene sets
and subsets within each significant set, (d) controls the
overall familywise error rate (FWER) at the desired nom-
inal level, and (e) is robust to potential heteroscedasticity
in the data.
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The basic idea of the proposed method is rather sim-
ple. Using the available biological knowledge, we partition
the sets of genes into various subsets within sets. Within
each gene subset so obtained, we perform a variation
of Hotelling’s T2 test and calculate the corresponding
p-value using bootstrap methodology. We then perform
multiple testing corrections using Bonferroni method for
controlling the FWER. To control the FDR, the proposed
methodology can be easily modified by using Benjamini-
Hochberg (BH) procedure [23] to replace the Bonfer-
roni method. Using extensive simulations, we studied
the performance of the proposed procedure in terms of
power and the FWER control. We illustrate the proposed
methodology using a recently published data of [24].

Methods
Notations
Suppose we are interested in comparing two experimental
conditions on the basis of mean expression levels of genes
belonging to K pre-specified sets of genes S1, S2, . . . SK .
For instance, these gene sets may represent different path-
ways or biological functions, derived from databases such
as GO, KEGG, IPA, etc. Furthermore, suppose each gene
set Sk , k = 1, 2, . . . ,K , is a union of mk pre-specified sub-
sets Sk,1, · · · , Sk,mk such that Sk = ⋃mk

i=1 Sk,i. Note that
Sk,i

⋂
Sk,j is not necessarily an empty set for any i �= j.

Suppose there are a total of G genes on the microarray
and suppose Xij is a G × 1 random vector correspond-
ing to the jth sample, j = 1, 2, . . . , ni, in the ith group,
i = 1, 2 with mean vector E(Xij) = μi and covariance
matrixCov(Xij) = �i, whereμi = (μi1, . . . ,μiG)′, i = 1, 2.
For set Sk , we are interested in testing the following

null and alternative hypotheses; Hk : μ1,k = μ2,k versus
H ′
k : μ1,k �= μ2,k , where μi,k = (μi,j : j ∈ Sk) denotes the

mean vector of genes in the set Sk for samples from the ith
group, i = 1, 2. Similarly, for genes belonging to the subset
Sk,j ⊂ Sk , the hypotheses of interest are,Hk,j : μ1,kj = μ2,kj
versus H ′

k,j : μ1,kj �= μ2,kj , where μi,kj = (μi,l : l ∈ Sk,j)
denotes the mean vector of genes in the subset Sk,j for
samples from the ith group, i = 1, 2.

The test statistic and its null distribution
We shall now describe the test statistic using a generic
notation. Suppose, for i = 1, 2, Xi1,Xi2, . . . ,Xini is a ran-
dom sample of G × 1 vectors from a common population
with mean vector μi and covariance matrix �i. Let X̄i
denote the sample mean vector corresponding to the ith
population, i = 1, 2, and let S denote the usual pooled
sample covariance matrix. Samples randomly drawn from
these two populations are independent. Then under the
assumption of�1 = �2, the Hotelling’s T2 statistic is pro-
portional to (X̄1 − X̄2)′S−1(X̄1 − X̄2). For large values of
G, statistics such as the Hotelling’s T2 and Fisher’s linear

discriminant function can be unstable since they involve
the inversion of a high dimensional covariance matrix S.
In the context of discriminant analysis [25], it was sur-
prisingly found that the linear discriminant function that
ignored the off-diagonal elements of S performed better
than Fisher’s linear discriminant function that used the
entire matrix S. In addition, in practice it may not be
suitable to assume that �1 = �2. Motivated by these rea-
sons, we use the following test statistic for testing the null
hypotheses described in the above subsection:

T2
diag =(

X̄1−X̄2
)′

(
Diag(S1)

n1
+Diag(S2)

n2

)−1(
X̄1 − X̄2

)
,

(1)

where Diag(Si) is a diagonal matrix containing the
diagonal elements of the sample covariance matrix Si,
i = 1, 2.
Since the underlying gene expression data are not nec-

essarily multivariate normally distributed and the covari-
ance matrices of these two groups are potentially unequal,
the exact distribution of the above test statistic under the
null hypothesis cannot be determined easily. We there-
fore adopt bootstrap methodology for simulating the null
distribution of the test statistic such that the result-
ing methodology is not only robust to heteroscedasticity
but also preserves the underlying dependence structure
among genes. To do so, we draw simple random sam-
ple (with replacement) of ni subjects from the ith group,
i = 1, 2 and construct the bootstrap data using the resid-
uals ε∗

ij = Xij − X̄i, i = 1, 2, j = 1, 2, . . . , ni from the
resampled subject j. Thus the bootstrap data are given
by X∗

ij = ¯̄X + ε∗
ij , i = 1, 2, j = 1, 2, . . . , ni, where

¯̄X = n1X̄1+n2X̄2
n1+n2 , the weighted average of the two sam-

ple means, and ε∗
ij is the residual corresponding to the

jth subject selected. For more details regarding the resid-
ual bootstrap methodology we refer the reader to [26,27].
It is important to recognize that the residual bootstrap
methodology implemented here is different from the usual
bootstrap methodology. The standard bootstrap may not
honor the structure present in the data and hence may
potentially result in an inflated false positive rate. We
remark that our proposed test statistic resembles the
test statistic of [9], in the sense that neither procedure
uses the off diagonal elements of the estimated covari-
ance matrices. The two procedures, however, differ in the
denominators used in the test statistic. The proposed test
allows for unequal variances in the two populations that
are being compared. Secondly, and more importantly, the
two procedures fundamentally differ in the resampling
schemes used. As noted above, the proposed method-
ology bootstraps the residuals and thus allows for any
underlying dependence structure in the data (unknown
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to the user) whereas the resampling scheme used in [9]
intrinsically assumes that under the null hypothesis the
two populations under comparison are identically dis-
tributed, which is often not the case in practice. This
is a major and an important difference between the
two methods.

The proposed strategy
For each Sk,j ⊂ Sk , let the test statistic (1) be denoted
by T2

diag,k,j and let the corresponding bootstrap p-value
be denoted by Pk,j. If we have only a single gene-set Sk
with mk gene-subsets Sk,1, · · · , Sk,mk , then within Sk , the
problem of testing the significance of Sk,1, · · · , Sk,mk is for-
mulated as a problem of simultaneously testing a family
of mk null hypotheses, Fk = {Hk,1, · · · ,Hk,mk }, using the
available p-values Pk,j’s. The gene-set Sk is declared to be
significant if and only if at least one Hk,j is rejected in the
above problem of multiple testing.
There are two popular notions of type I error rates

when dealing with the problem of simultaneously testing
multiple hypotheses, one is to control FWER, which is
the probability of falsely rejecting at least one true null
hypothesis, and the other is to control the FDR, which
is the expected ratio of false rejections to the total num-
ber of rejections [23]. In this article we shall only describe
methods to control the FWER.
There are several FWER controlling procedures avail-

able in the literature for testing the family of null hypothe-
ses, Fk = {Hk,1, · · · ,Hk,mk }. In this paper we con-
sider the following Bonferroni based procedure: For a
given set of null hypotheses Fk , we reject Hk,j ∈ Fk
if Pk,j ≤ α/mk . The corresponding Bonferroni-adjusted
p-value for the set of null hypotheses Fk is P∗

k =
min{mkPk,j, j = 1, . . . ,mk}. Similarly, if we have multiple
gene-sets Sk , k = 1 . . . ,K , each of which having mk gene-
subsets Sk,1, · · · , Sk,mk , then the problem of testing the
significance of all gene-subsets in the K gene sets is for-
mulated as a problem of simultaneously testing K families
of null hypotheses, Fk = {Hk,1, · · · ,Hk,mk }, k = 1, . . . ,K ,
using the available p-values Pk,1, . . . ,Pk,mk , k = 1, . . . ,K ,
in which for each gene-set Sk , k = 1, . . . ,K , it is declared
to be significant if and only if at least one hypothesis Hk,j
in Fk is rejected.
For testing the K families Fk , k = 1, . . . ,K , a simple

Bonferroni based strategy is proposed as follows.

THE PROCEDURE

Step 1. Compute raw residual bootstrap p-value for
each subset of genes.

Step 2. Compute adjusted p-values for each set Sk
(adjusting for the number of subsets within the
set) as described above.

Step 3. Declare a set Sk to be significant if its adjusted
p-value is less than α/K . A subset Sk,j within the

set Sk is declared to be significant if its raw
p-value Pk,j is less than α/Kmk .

It is easy to see that the above proposed procedure
strongly controls the overall FWER for any dependent test
statistics, the probability of falsely rejecting at least one
true null hypothesis in some family.
When the number of gene sets and gene subsets is large,

it might be preferable to control the FDR rather than the
FWER. The above proposed testing strategy controlling
the FWER can be easily modified to control the FDR by
using the BH procedure to replace the Bonferroni proce-
dure when simultaneously testing the significance of the
gene sets. Such modified strategy is very similar to a two-
stage test strategy developed in [28] for controlling the
overall FDR while selecting significant gene sets and their
significant individual genes.

Simulation study
We evaluate the performance of the proposed method-
ology in terms of power (the probability of rejecting at
least one false null hypothesis) and the FWER control with
Tsai and Chen’s method in [11], which uses the shrink-
age estimator of the sample covariance matrix proposed
in [21]. Note also that, unlike the bootstrap residuals used
in the proposed methodology for deriving the null distri-
bution of the test statistic, the resampling scheme used in
[11] resembles the scheme used in [9]. Such resampling
schemes do not honor the differences (if any) in depen-
dence structure of the two populations that are being
compared. Thus, if the two populations have different
covariance structures under the null hypothesis, then as
stated earlier in this paper, the standard permutation or
standard bootstrap methodology can potentially result in
an inflated FWER.

Study design
In the simulation study, we considered two patterns of
total number of sets of genes, which were 5 and 10.
Since, in practice, the number of subsets and the num-
ber of genes within a subset may be unknown a priori,
we allowed the number of subsets within each set of
genes to be uniformly distributed in the range 5 to 16 and
the number of genes within each subset was generated
according to a uniform distribution in the range 5 to 10.
To understand the robustness of the twomethods in terms
of FWER control, we considered a variety of probability
distributions for the gene expression as follows:

(1) Multivariate normal distribution, of appropriate
dimension, with mean vectors 0 (for the control
group) and μ (for the treatment group), and
covariance matrices �1 (for the control group) and
�2 (for the treatment group), respectively. As
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commonly done, we assumed intra-class correlation
structure for the two covariance matrices, with
variances σ 2

1 , σ
2
2 and correlation coefficients ρ1 and

ρ2, respectively. We considered two cases, namely,
σ1 = σ2, ρ1 = ρ2 (homoscedastic or homo.) and
σ1 �= σ2, ρ1 �= ρ2 (heteroscedastic or hetero.). In
practice, one never knows a priori whether we have
homoscedasticity or heteroscedasticity. Since genes
within each subset (whether control or treated
groups) may have different variances, for each gene
we let σ1 and σ2 both take one of the five values, 0.1,
0.5, 1, 1.25 or 1.5, at random. Similarly, correlation
coefficient between a pair of genes may not
necessarily be constant across all subsets (whether
control or treated groups), for each subset we let ρ1
and ρ2 both take one of the five values, 0, 0.25, 0.5,
0.75 or 0.9, at random. Thus the variance and
correlation coefficients vary randomly from subset to
subset. For each subset of genes, we always let mean
vector μ = 0 for the control group, μ = δ1 for the
treatment group, where δ was taken to be 0.5, 1 or 1.5
and 1 = (1, 1, · · · , 1)′. For each group, we considered
two patterns of sample sizes, namely, 10 and 40.

(2) Multivariate log normal distribution, where the
vector of natural logarithm of each component
follows multivariate normal distribution, with
parameters as defined in the above setting of
multivariate normal distribution, with �1 = �2.

(3) Multivariate beta distribution. This distribution is
motivated by CpG methylation data. Within each
treatment group the multivariate beta vector was
generated as follows. To generate p dimensional beta
variable, we randomly generated p independent
chi-square random variables U1,U2, . . . ,Up with
either 4 or 5 degrees of freedom and generated an
additional independent chi-square random variable
V with either 1 or 2 degrees of freedom. The
resulting multivariate beta type random vector for a
given treatment group is defined as
Z = (Z1,Z2, . . . ,Zp)′, where Zi = Ui/(Ui + V ),
i = 1, 2, . . . , p. With the above choices of degrees of
freedom, the mean methylation values (commonly
called the “beta” value) for our simulated CpG’s
ranged from approximately 0.67 to about 0.83.

(4) Mixtures of multivariate normal random vectors. For
each treatment group we generated mixture of
multivariate normally distributed data Z as follows:

Z ∼ πN(0,�1) + (1 − π)N(1,�2),

where π = 0.2. As in the case of multivariate
normally distributed data in (1), we considered the
homoscedastic as well as heteroscedastic covariance
matrices for normal vector. The patterns of
covariance matrices are as described in (1) above.

All our simulation results are based on a total on 1,000
simulation runs and 5,000 bootstrap samples.

Results
In Table 1 we summarize the simulated FWER of the
proposed Bonferroni method and the TS method. In all
patterns considered the FWER of the proposed test was
closer to the nominal level except in one case where the
estimated FWER exceeded the nominal of 0.05 by one
standard error. This corresponded to the mixtures of mul-
tivariate normal distributions case. On the other hand, as
expected in the case of heteroscedastic data, the estimated
FWER of the TSmethod often exceeded the nominal level
of 0.05 by at least one standard error (which is approx-
imately 0.007). Such cases are represented in bold face
values. It is also interesting to note that the TS method
was extremely conservative in the case when n=10 and the
number of sets was 10. Although the shrinkage estima-
tor of the covariance matrix is known to perform well for
large p (the number of genes) and small n paradigm, in the
present context as the number of sets of genes increases,
the test statistic appears to be very conservative. This phe-
nomenon is very striking when comparing the powers of
the two tests (Table 2). The difference between the pro-
posed method and TS is very noticeable especially when
δ is close to the value assumed in the null hypothesis and
when n =10, and the number of subsets is also 10. As
we depart away from the null hypothesis, the TS method
catches up with proposed test and there is very little dif-
ference between the two methods in terms of power for
alternatives away from null hypothesis.
We also compared the performance of the proposed

procedure based on (1) with that based on the following
Hotelling’s T2 type statistic which uses the entire sample
covariance matrices S1 and S2,

T2 = (
X̄1 − X̄2

)′
(
S1
n1

+ S2
n2

)−1 (
X̄1 − X̄2

)
. (2)

To ensure that the sample covariance matrices are non-
singular, we chose the sample size in each group to exceed
the total number of genes in each subset. In Table 3
we provide a small representative sample of simulation
results. As can be seen from Table 3, the proposed pro-
cedure based on test statistic (1) has far greater power
than the corresponding test based on (2) that uses the full
sample covariancematrices. These findings, in the context
of statistical testing, are consistent with [25] who discov-
ered a similar phenomenon in the context of discriminant
analysis for high dimensional data.

Illustration
Intramuscular injections among children often result in
a variety of problems ranging from minor discomforts
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Table 1 The simulated FWERs of the proposedmethod and the Tsai-Chen’s method at level α = 0.05

Distribution Variance Sample Number Proposed Tsai-Chen’s

structure size of sets method method

Normal Homo. n=10 5 0.027 0.019

10 0.032 0.027

Normal Homo. n=40 5 0.047 0.054

10 0.047 0.061

Normal Hetero. n=10 5 0.036 0.031

10 0.044 0.021

Normal Hetero. n=40 5 0.038 0.066

10 0.052 0.087

Log-Normal Homo. n=10 5 0.027 0.018

10 0.024 0.022

Log-Normal Homo. n=40 5 0.048 0.039

10 0.050 0.062

Mix. Normal Homo. n=10 5 0.018 0.009

10 0.020 0.005

Mix. Normal Homo. n=40 5 0.055 0.050

10 0.050 0.054

Mix. Normal Hetero. n=10 5 0.018 0.003

10 0.017 0.003

Mix. Normal Hetero. n=40 5 0.058 0.060

10 0.049 0.057

Multi. Beta Var. func. mean n=10 5 0.033 0.027

10 0.031 0.031

Multi. Beta Var. func. mean n=40 5 0.043 0.042

10 0.053 0.042

such as, rash and pain, to more serious complications
resulting in emergency room visits [24]. Ferre et al. [24]
conducted a gene expression study on a sample of 10
piglets to evaluate the effect of intramuscular injections
on gene expression. Gene expressions were obtained at
baseline, 6 hours, 2 days, 7 days and 21 days after injec-
tion. For details of the study design one may refer to [24].
To illustrate the proposed Bonferroni-based methodology
we compared the mean expression of genes on day 7 with
their mean expression at baseline. In all, there were 1,908
probes on the cDNA chip. Since the data on one of the
pigs was missing for day 7, we only used data from 9 pigs
in our paired analysis, where the expression (1) is suit-
ably modified to reflect paired data. Using IPA wemapped
these 1,908 probes onto 1,195 genes describing 75 biolog-
ical categories. In Additional file 1: Table S1 (see online
Supplementary Materials) we list all 75 biological cate-
gories along with their sub-categories. Note that the gene
names and biological categories obtained from IPA are
only meant for illustrating our methodology.

According to our Bonferroni-based methodology, 36
out of 75 biological categories are significant at FWER
level of 0.05 (see Additional file 2: Table S2 in the online
Supplementary materials). In Additional file 3: Table
S3 in the online Supplementary Materials, we list sub-
categories within each category along with their Bonfer-
roni adjusted p-values. Results of the pathological exam-
ination of the injured muscle on day 21 (post injury)
conducted by [24] revealed formation of dense fibrous and
collagenous tissue in the area of injection with regenera-
tion and maturation of myocytes throughout the injected
area. A scar with new myofibers and connective tissue
were formed. Relative to baseline, their individual gene
expression analysis of day 21 revealed significant differen-
tial expression of genes such as collagens, fibronectin and
matrix metalloproteinase, etc. Interestingly, such genes
are involved in biological categories such as Genetic
disorder, Skeletal and muscular disorder, Protein Syn-
thesis, Cell morphology, Connective tissue development,
and Cellular development, which were all significant sets
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Table 2 The simulated powers of the proposedmethod
and the Tsai-Chen’s method at level α = 0.05 for
multivariate normally distributed data

Variance Sample Number δ Proposed Tsai-Chen’s

structure size of sets method method

Homo. n=10 5 0.5 0.117 0.056

5 1 0.809 0.298

5 1.5 0.991 0.338

Homo. n=40 5 0.5 0.933 0.660

5 1 1.000 0.999

5 1.5 1.000 1.000

Homo. n=10 10 0.5 0.068 0.040

10 1 0.703 0.268

10 1.5 0.977 0.296

Homo. n=40 10 0.5 0.890 0.615

10 1 1.000 0.996

10 1.5 1.000 1.000

Hetero. n=10 5 0.5 0.147 0.037

5 1 0.842 0.188

5 1.5 0.997 0.222

Hetero. n=40 5 0.5 0.959 0.702

5 1 1.000 1.000

5 1.5 1.000 1.000

Hetero. n=10 10 0.5 0.090 0.029

10 1 0.743 0.164

10 1.5 0.988 0.181

Hetero. n=40 10 0.5 0.920 0.643

10 1 1.000 0.999

10 1.5 1.000 1.000

according to our analysis (Additional file 2: Table S2). Our
Bonferroni-based methodology allows a researcher to fur-
ther probe the significance of each sub-category within
the 36 significant categories. Results regarding the sig-
nificance of each sub-category within each category are
provided in the Additional file 3: Table S3 in the online
Supplementary materials.

Conclusions
Since biologists are often interested in identifying a collec-
tion of genes involved in a biological function or a pathway
rather than individual genes, there has been considerable
interest in recent years to develop statistical methods for
identifying significant sets of genes. Usually, each path-
way or biological function consists of a collection of (not
necessarily disjoint) sub-pathways or sub-functions. Thus,
each set of genes can be further partitioned into biologi-
cally meaningful subsets of genes. In this paper we exploit

Table 3 Power comparison of the suggested testing
strategy based on test statistic (1) and (2) for
homoscedastic case and the number of genes= 20

Number of δ Non-diagonal Diagonal

gene sets

5 0.5 0.298 0.637

5 1 0.860 0.997

5 1.5 0.998 1.000

10 0.5 0.236 0.517

10 1 0.780 0.993

10 1.5 0.998 1.000

such structure information and propose a two-stage test
strategy for selecting significant sets and subsets of genes
between two experimental conditions while controlling
the overall FWER. The proposed strategy is a general
hierarchical test methodology, in which significant sets
of genes are first identified by using Bonferroni proce-
dure and then within each significant gene set, significant
subsets of genes are further identified.

Discussion
Although we do not discuss the problem of selecting
significant gene sets and subsets when comparing mul-
tiple experimental conditions, the proposed methodol-
ogy can be extended to such situations by replacing
Hotelling’s T2 statistic by commonly used statistics such
as the Hotelling-Lawley trace test or the Roy’s largest
root test. Furthermore, if the experimental conditions are
ordered, such as in a time-course or a dose-response
study, one can exploit order-restricted inference based
methods developed in [29]. As commented by a reviewer
of this manuscript, it is possible that in some applica-
tions only a few genes in a given pathway are differentially
expressed where such subsets are not necessarily pre-
defined. We believe that discovery of such subsets could
potentially generate interesting hypotheses for biologists
to explore. The proposed methodology is targeted to
identify pre-defined sets and subsets of genes that are dif-
ferentially expressed, however, it would be interesting and
useful to extend the proposed methodology to identify
such unspecified subsets of genes.

Additional files

Additional file 1: Table S1.Excel file containing gene sets, subsets and
gene names.

Additional file 2: Table S2. Excel file containing results of gene set
analysis.

Additional file 3: Table S3. Excel file containing results of gene subset
analysis.
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