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Abstract

Background: Many problems in bioinformatics involve classification based on features such as sequence, structure
or morphology. Given multiple classifiers, two crucial questions arise: how does their performance compare, and how
can they best be combined to produce a better classifier? A classifier can be evaluated in terms of sensitivity and
specificity using benchmark, or gold standard, data, that is, data for which the true classification is known. However, a
gold standard is not always available. Here we demonstrate that a Bayesian model for comparing medical diagnostics
without a gold standard can be successfully applied in the bioinformatics domain, to genomic scale data sets. We
present a new implementation, which unlike previous implementations is applicable to any number of classifiers. We
apply this model, for the first time, to the problem of finding the globally optimal logical combination of classifiers.

Results: We compared three classifiers of protein subcellular localisation, and evaluated our estimates of sensitivity
and specificity against estimates obtained using a gold standard. The method overestimated sensitivity and specificity
with only a small discrepancy, and correctly ranked the classifiers. Diagnostic tests for swine flu were then compared
on a small data set. Lastly, classifiers for a genome-wide association study of macular degeneration with 541094 SNPs
were analysed. In all cases, run times were feasible, and results precise. The optimal logical combination of classifiers
was also determined for all three data sets. Code and data are available from http://bioinformatics.monash.edu.au/
downloads/.

Conclusions: The examples demonstrate the methods are suitable for both small and large data sets, applicable to
the wide range of bioinformatics classification problems, and robust to dependence between classifiers. In all three
test cases, the globally optimal logical combination of the classifiers was found to be their union, according to three
out of four ranking criteria. We propose as a general rule of thumb that the union of classifiers will be close to optimal.

association studies.
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Background

A common problem arising in bioinformatics is to clas-
sify experimental results into two categories, according to
the presence or absence of some property of interest. Such
classification problems are widespread and diverse. For
example, in genome-wide association studies (GWAS),
genotype data is collected at SNP or other marker loci
across the entire genome for a large number of cases
and controls (as in [1]), and the marker loci are classified
according to whether or not they are associated with the
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disease under study. Another example is the prediction of
protein subcellular localisation, in which predictors such
as protein sequence are used to identify to which inter-
nal structures, or organelles, a protein will be transported
after synthesis. A third example is the use of morphologi-
cal differences to classify cells and tissues, for example to
classify whether a cell is cancerous or not, or to determine
whether a cell has a parasitic infection.

Despite the diversity of these applications, each can be
reduced to binary classification, e.g. disease-associated
or non-associated, trafficked or not, infected or parasite-
free, etc. Whatever the specific context, it is important to
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quantify the accuracy of the classifier, in order to assess
the level of confidence one should place in the predic-
tions, and so that alternative classifiers can be compared
and ranked. Classifiers can be assessed in terms of their
sensitivity and specificity. The sensitivity of a binary clas-
sifier is the proportion of positive individuals that are
correctly identified as such. Similarly, the specificity is
the proportion of negative individuals that are correctly
identified.

Ideally, there will be a gold standard data set available
for evaluating classifiers, comprised of data for which the
true classification of each individual is known with cer-
tainty, or at least for which there is an accepted best
available classification. When a gold standard is avail-
able, it is straightforward to estimate the sensitivity and
specificity as proportions of the gold standard positives
and negatives respectively. However, it can happen that
there is no gold standard. For example, if the classifier
is a medical diagnostic test such as a swab for swine flu,
there may not be any more accurate means of diagnos-
ing the disease, or none that is affordable for a large study.
Because such diagnostics are experimental in nature, it
is not even possible to simulate data against which to
benchmark, and a gold standard for evaluating them may
therefore be difficult or impossible to obtain. In bioinfor-
matics the absence of a gold standard can occur because
data that can be classified with perfect accuracy is either
non-existent or too limited for reliable estimation. It may
also be that any gold standard data that was available
has already been used to train one or more of the clas-
sifiers, rendering the data unsuitable for comparing the
classifiers. A concrete example is the analysis of genome-
wide association studies, where the data set can include
millions of individual SNPs, a negligible proportion of
which are known to be associated with the disease. Sim-
ulated data can sometimes be generated, but it may not
be clear that it is sufficiently realistic. In such cases, it is
still possible in principle to evaluate and compare compet-
ing classifiers, provided that multiple classifiers are avail-
able. In medical diagnostics, this is typically in the order
of 2-6 classifiers.

The intuition here is that the extent to which competing
classifiers agree or disagree provides information about
the reliability of each classifier. In the absence of a gold
standard, all that is known is the imperfect binary clas-
sifications, which can be organised into a matrix such as
shown in Table 1 for K classifiers and N individuals. Note
that the true classification is not known for any individ-
ual. However, in broad terms, where two classifiers tend to
agree (i.e. have similar columns) our confidence in both of
them increases, whereas where two classifiers tend to dis-
agree (i.e. have dissimilar columns), we cannot have high
confidence in both. This intuition is given a mathematical
expression in the Bayesian models discussed below.
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A variety of techniques have been proposed in the med-
ical statistics literature for comparing diagnostic tests in
the absence of a gold standard. A spectrum of approaches
has been developed to suit specific variations of the prob-
lem; for example, some approaches assume log-linear
models of errors, as compared to error models that
assume normally distributed errors. Approaches also dif-
fer in methodology, for example, maximum likelihood
approaches compared to Bayesian approaches. Not only
do the approaches vary, but the assumptions also vary,
with some approaches requiring data from two or more
populations with different prevalences of the disease (for
example [2]), and others considering tests re-administered
to the same individuals at two or more time-points (for
example [3]). A review of the diverse approaches and
methods is provided by [4]. We focus on the simplest and
most common setting in practice, in which K binary clas-
sifiers are applied to N individuals randomly selected from
a single population, each at a single time-point. In par-
ticular, we consider the Bayesian model of [5,6], and its
potential for application to data sets in the bioinformat-
ics domain. This model is described in detail in the first
sub-section of the Methods. To the best of our knowledge,
the model has not previously been applied in this domain,
despite the numerous potential applications. We provide a
new, concise and highly efficient implementation in Win-
BUGS. Our implementation is freely available, applicable
to any number of classifiers, and as we demonstrate below,
is able to handle genomic-scale data sets.

Once classifiers have been compared, the question nat-
urally arises how to combine them to form a new classi-
fier that is better than any of the constituents. A simple
method is to take a consensus, that is, to classify an indi-
vidual as positive if most of the component classifiers
‘vote’ for a positive classification, and classify an individual
as negative otherwise. A weighted consensus, in which the
vote of some classifiers counts more than others, is also
possible. But what is the optimal way to combine classi-
fiers? This problem has been extensively studied (see [7]
for an introduction and [8] for an extended treatment).
However, the problem of how to combine classifiers in the
absence of gold standard data does not appear to have
been studied, and in particular the potential for the model

Table 1 Data matrix

Classifier
Individual 1 2 vee K

1 0 1
2 1 0 1




Keith et al. BMC Bioinformatics 2012, 13:179
http://www.biomedcentral.com/1471-2105/13/179

of Joseph et al. [5] to solve this problem has not been
explored. In the second sub-section of the Methods, we
present a new method that estimates the sensitivity and
specificity of all logical combinations of classifiers in the
absence of a gold standard. The method is implemented
in R and again the code is freely available. We note that if
no additional covariates are available to distinguish indi-
viduals, that is, if the only information we have for each
individual is its set of classifications, then logical combi-
nations of the classifiers encompass all possible ways of
combining the classifiers, including all weighted voting
schemes. The use of additional covariates to better com-
bine classifiers may be a possible extension of the methods
proposed here, but is beyond the scope of this paper.

Results and discussion

The model was loaded into WinBUGS, and run with three
test data sets: protein subcellular localisation, to test per-
formance in the presence of a gold standard; swine flu
diagnostics, to test performance with a small data set; and
classification of SNPs in macular degeneration, to test per-
formance with a large data set. Test data are provided in
Additional file 1: Section S2 and on our website.

Evaluation with gold standard data: classifying protein
subcellular localisation
We first evaluated our method relative to a gold stan-
dard. Protein sequences were obtained from the Ara-
bidopsis Proteome in FASTA format from the website of
[9]: http://bioinfo3.noble.org/AtSubP/. The localisation of
these sequences to each of the cytoplasm, chloroplast,
golgi body, mitochondrion, nucleus, plasma membrane,
and extracellular region is known. The protein sequences
were run through three classifiers available from the
AtSubP website: the Amino Acid composition-based SVM
(AA), Dipeptide composition-based (DP), and N-Center-
C Terminal Region-based (NCC) classifiers. These classi-
fiers were converted into binary classifiers by taking one
organelle (say, chloroplasts) and treating localisation to
that organelle as a positive result, with localisation to a dif-
ferent organelle as a negative result. Results for all seven
organelles are presented in Additional file 1: Section S3.1,
but in the main text we present only the results for chloro-
plasts, which were representative (neither best nor worst).
The output of each classifier was converted to a
sequence of Os and 1s, indicating which proteins were
localised to the chloroplast region (1) and which were not
(0). For each parameter of the model, summary statis-
tics for its marginal posterior distribution were obtained
(Additional file 1: Section S3.2). Density plots (Figure 1)
and time series plots (Additional file 1: Section S3.3) were
also produced. Sensitivities and specificities for the classi-
fiers were evaluated using the gold standard classification,
and these are shown as vertical lines in Figure 1. It should
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Figure 1 Protein sub-cellular localisation results. Density plots of
model variables for the chloroplast localisation data. Vertical lines
show gold standard sensitivity, specificity or proportion. A, B, C: the
sensitivity of the AA, DP and NCC classifiers, respectively. D, E, F: the
specificity of the AA, DP and NCC classifiers, respectively. G:
estimated proportion of proteins localised to chloroplasts.
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be noted that these gold standard estimates also have stan-
dard errors (not shown) because they are based on finite
sample sizes.

Our inferred mean posterior sensitivities were typically
greater than 2 standard deviations above gold standard
estimates, but the latter were nevertheless within the
range of values obtained. A similar statement applies to
specificities, and the prevalence of chloroplast localisa-
tion. Importantly, the classifiers were ranked in the correct
order of sensitivity and specificity. That is, Classifiers 2,
3 and 1 had increasing sensitivity and decreasing speci-
ficity (see Additional file 1: Section S3.1). These comments
apply to all seven organelles, with the caveat that out of
the 42 sensitivities and specificities, 5 cases resulted in a
tie according to the gold standard. For example, classi-
fiers AA and DP had equal sensitivities when applied to
mitochondria. In these cases, the method has not identi-
fied a tie, but has otherwise ranked the classifiers correctly.

Application to a small data set - Swine Flu

We then tested our method on data for the diagnosis of
swine flu in patients, where the data set is very small
and no gold standard is available. The data contains the
diagnosis of N = 48 individuals for presence or absence
of swine flu using K = 2 different diagnostic tests.
The tests are referred to as the nasopharyngeal aspirate
(NPA) and nasal swab (NS). The parameters of the model
were each initialised to 0.5 and the model allowed to run
for 10000 iterations. Summary statistics and time series
plots were obtained for all parameters (Additional file 1:
Sections S4.1 and S4.2). There was no discernible burn-in,
indicating rapid convergence.

Density plots were produced using the last 5000 itera-
tions of the time-series, as shown in Figure 2. The inferred
densities exhibited low standard deviations, with an aver-
age standard deviation of 0.099 and a maximum of 0.1568,
indicating surprisingly good confidence in determining
the parameters with a small data set (see Additional file
1: Section S4.1 for means and standard deviations of all
parameters). Notice in Figure 2 that the sensitivity of the
NPA test (A) is substantially higher than the sensitivity
of the NS test (B). However, the specificity of NPA (C)
is marginally lower than the specificity of NS (D). On
balance, the NPA appears to be the better test, and this
conclusion is supported by the ranking criteria that we
introduce below (“Inference of the best combination of
classifiers”). Note that, in Additional file 1: Section S7.2.3,
the NPA test (C;) scores higher than NS (C;) according to
all four ranking criteria.

Application to a large data set - SNP classification

To test the method’s performance on a large data set,
data from a genome-wide association study was analysed.
This study identified SNPs associated with age-related
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Figure 2 Swine flu results. Density plots of model variables for the
swine flu data. Az Sensitivity of the NPA classifier. Bz Sensitivity of the
NS classifier. C: Specificity of the NPA classifier. Dz Specificity of the NS
classifier. E: Prevalence of the disease.

macular degeneration, according to K = 3 independent
classifiers (obtained from [10]). The classifications were
produced by running the classifiers on a filtered set of
SNPs in the HapMap Phase I+II CEU data (see [10] for
details of this filtering procedure). The post-filtered set
of SNPs contained N = 541094 SNPs. The first classi-
fier was PLINK [11], which took as a predictor variable
the dosage of the minor allele, and as covariates, the age
and gender of each individual. The second classifier was
a gene-based method using VEGAS ([12]) and the third
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classifier was an evaluation of the proportion of signifi-
cant pairwise interactions between SNPs involving each
SNP (as presented in [10]). These methods all assigned p-
values to each SNP. It was decided (arbitrarily) to assign
approximately the top 1000 SNPs, as classified by each
method, to the disease-associated class. To do this, thresh-
olds needed to be set for each classifier. The maximum
thresholds that accepted the smallest number of SNPs
equal to or greater than 1000 were 0.00195 for PLINK,
0.0019 for the SNP by SNP interaction method and 0.0051
for the gene-based method. These accepted numbers of
SNPs were 1003, 1006 and 1310, respectively. For compar-
ison, a second data set with approximately 5000 SNPs was
also generated, using thresholds 0.0092, 0.0094 and 0.0232
to obtain 5008, 5362 and 5018 positives respectively.

The parameters of the model were again initialised to
0.5, and the model run for 10000 iterations. Summary
statistics were produced for each parameter (Additional
file 1: Section S5.1). The last 5000 iterations were used
to produce plots of the densities of the sensitivity, speci-
ficity and estimated prevalence of disease association
(Additional file 1: Section S5.2 and S5.3).

The summary statistics and density plots show smaller
standard deviations than the swine flu data, indicating
greater confidence in predicting model parameters, which
can be attributed to the larger data set. Our method finds
that the PLINK classifier had significantly higher sensitiv-
ity than the other two classifiers, and slightly higher speci-
ficity as well. However, all three had high specificities, as a
consequence of classifying such a small proportion of the
data as positive.

The difference between the results for the different
thresholds is unexpected and informative. Our expec-
tation was that using higher thresholds would increase
the sensitivities of all three classifiers and decrease the
specificities. Moreover, ideally the method should obtain
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roughly the same estimate of disease prevalence regard-
less of the thresholds, since the underlying population is
the same. Instead, using the higher thresholds resulted in
lower estimates of both sensitivity and specificity, but only
slightly (compare tables and density plots in Additional
file 1: Section S5). A more dramatic change is that the
estimate of disease prevalence increased approximately
six-fold. This unexpected behaviour may be indicative of
conditional dependence between the classifiers.

Notably however, the ranking of the three classifiers
by sensitivity or by specificity remains the same - with
PLINK significantly outperforming the other classifiers on
both measures. This observation underscores our major
point that the ranking of classifiers is in general robust to
violation of the assumption of conditional independence.

Inference of the best combination of classifiers
The R-script described in the Methods was used to invoke
the WinBUGS model from R (using R2WinBUGS), and
the model was rerun for all three test cases for a burn-in
of 1000 iterations. Then, for each case the model was run
for a further 1000 iterations, and at every iteration an esti-
mate of the sensitivity and specificity was calculated for all
possible logical combinations of the classifiers. Only the
last 500 iterations were used for the following analyses.
To determine which logical combination of the classi-
fiers performed best, we applied the four ranking criteria
based on the (1) product, (2) sum of squares, (3) sum of
absolute values, and (4) minimum of the sensitivity and
specificity. Summary statistics for sensitivities and speci-
ficities of all logical combinations of the swine flu classi-
fiers, and selected simple combinations of the chloroplast
localisation and SNP classifiers, are shown in Tables 2, 3
and 4. For all three test cases, ranking criteria 1-3 (prod-
uct, sum of squares, and sum of absolute values) identified
the union of all classifiers as the best combination. For the

Table 2 Sensitivities and specificities of the chloroplast localisation classifier combinations

Sensitivity Specificity

2K-bit code Combination Mean Median SD Mean Median SD

2 GAGAG 0311 0307 0.094 1.000 1.000 0.000
4 GAG 0.394 0.384 0.096 0.999 0.999 0.001
6 G AG 0.553 0.544 0.108 0.997 0.997 0.001
18 GAG 0436 0433 0.101 0.998 0.998 0.001
24 At least two classifiers 0.762 0.772 0.089 0.994 0.995 0.003
64 GVvGEG 0.867 0.870 0.058 0.932 0.933 0.021
96* G VG 0.934 0.939 0.037 0.894 0.895 0.025
120 GvVvG 0.900 0910 0.053 0.904 0.907 0.025
1287 GvGaVvGa 0.969 0975 0.021 0.868 0.869 0.029

SD: Standard Deviation.
TOptimal combination using ranking criteria 1, 2 and 3.
#Optimal combination using ranking criterion 4.
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Table 3 Sensitivities and specificities of the swine flu classifier combinations

Sensitivity Specificity
2X-bit code Combination Mean Median SD Mean Median SD
1 All results are negative 0.000 0.000 0.000 1.000 1.000 0.000
2 GAG 0.626 0.633 0.162 0.991 0.994 0.010
3 -G AG 0.116 0.101 0.088 0.938 0.947 0.047
4 G 0.742 0.760 0.152 0.928 0.939 0.054
5 G A=G 0.214 0.201 0.127 0.879 0.885 0.072
6* G 0.840 0.859 0.119 0.870 0.875 0.078
7 G AG) V(G A-G) 0.330 0.340 0.124 0817 0.821 0.079
8f GvQG 0.957 0974 0.050 0.808 0813 0.087
9 —(G v(&) 0.043 0.026 0.050 0.192 0.187 0.087
10 (G AG) V(G VE) 0.670 0.660 0.124 0.183 0.179 0.079
1 -G 0.160 0.141 0.119 0.130 0.125 0.078
12 -G vG 0.786 0.799 0.127 0.121 0.115 0.072
13 —C 0.258 0.240 0.152 0.072 0.061 0.054
14 G v -G 0.884 0.899 0.088 0.062 0.053 0.047
15 (G ANG) 0.374 0.367 0.162 0.009 0.006 0.010
16 All results are positive 1.000 1.000 0.000 0.000 0.000 0.000

SD: Standard Deviation.
TOptimal combination using ranking criteria 1,2 and 3.
*Optimal combination using ranking criterion 4.

SNP data, ranking criterion 4 (minimum of the sensitivity
and specificity) also inferred that the union of all classi-
fiers was best, while for the subcellular localisation and
swine flu data, the best combination was a union of all but
one of the classifiers. The better performance of a union
of classifiers is due to higher sensitivity at the expense of
lower specificity, as the union of all classifiers necessarily
has higher sensitivity and lower specificity than any union
of a subset of the classifiers.

For the two cases with < 500 data points (swine flu and
subcellular localisation), the optimal logical combination
was the same in up to 0.526 iterations of the Gibbs sam-
pler. However, for the SNP data with more than 500000
data points, the optimal classifier was the same at every
iteration. This is expected, as more data should increase
the confidence with which the optimal classifier can be
identified.

Posterior density plots for the sensitivity and specificity
of all possible logical combinations of the swine flu clas-
sifiers are presented in Additional file 1: Section S7.2,
and for selected logical combinations of the subcellular
localisation classifiers in Additional file 1: Section S7.1.
Additional file 1: Sections S7.1 to S7.3 also contain
summary statistics for the four ranking criteria in each
case, generated using the R code in Additional file 1:
Section S6.2. A curious anomaly is observed for the swine
flu data: Ranking Method 4 identified the NPA classifier

(C1) as best in a majority of MCMC iterations, yet the
average of the Method 4 score is slightly higher for the
union of the NPA and NS classifiers (C; Vv C;). We note
that the standard deviations of the ranking scores are quite
large relative to the differences between ranking scores,
which may suggest that combinations of classifiers other
than that identified as ‘best’ remain plausible candidates.
Nevertheless it is clear that the union of all classifiers
ranks well if not best for all data sets and any ranking
criterion examined here.

Run times

Run times for the various data sets are shown in Table 5.
Times for the 10000 iteration runs for the chloroplast
localisation, swine flu, and SNP data are in the column
headed “WinBUGS. The times were approximately the
same for the swine flu and chloroplast data sets, despite
the greater number of data points and extra classifier in
the latter. The SNP data set was > 1500 times larger and
as expected the run time was much greater.

The run times of the 2000 iteration runs from the pre-
vious sub-section included an R component and a Win-
BUGS (called from R) component, shown in the last two
columns. WinBUGS apparently runs faster when called
from R. Although the R combination algorithm (second
sub-section of the Methods) is O(22K), the main time cost
of the genomic scale SNP runs (where K = 3) is in the



Keith et al. BMC Bioinformatics 2012, 13:179

http://www.biomedcentral.com/1471-2105/13/179

Table 4 Sensitivities and specificities of the SNP classifier combinations

Page 7 of 11

~ 1000 positives Sensitivity Specificity

2X-bit code Combination Mean Median SD Mean Median SD

2 GAGOAG 0.083 0.082 0.017 1.000 1.000 0.0000
4 GAG 0.098 0.097 0.018 1.000 1.000 0.0000
6 G AG 0.144 0.143 0.020 1.000 1.000 0.0000
18 GAG 0.483 0.481 0.053 1.000 1.000 0.0000
24 At least two classifiers 0.559 0.558 0.053 1.000 1.000 0.0000
64 GVvG 0.645 0.647 0.047 0.997 0.997 0.0001
96 GVvG 0.869 0.869 0.035 0.997 0.997 0.0001
120 GvG 0.932 0.933 0.021 0.998 0.998 0.0001
1287 GvGavaG 0.943 0.944 0.018 0.996 0.996 0.0002

~ 5000 positives Sensitivity Specificity

2X-bit code Combination Mean Median SD Mean Median SD

2 GAGOAG 0.065 0.066 0.007 1.000 1.000 0.0000
4 GAG 0.079 0.079 0.007 1.000 1.000 0.0000
6 G AG 0.123 0.123 0.008 1.000 1.000 0.0000
18 G AG 0439 0440 0.025 1.000 1.000 0.0000
24 At least two classifiers 0.510 0511 0.026 1.000 1.000 0.0000
64 GvVvGEG 0.601 0.601 0.024 0.987 0.987 0.0002
96 GvG 0.850 0.852 0.018 0.991 0.991 0.0004
120 GvG 0918 0919 0.011 0.994 0.994 0.0004
1287 GvGovaG 0.930 0.931 0.010 0.986 0.986 0.0004

SD: Standard Deviation.
*Optimal combination using ranking criteria 1, 2, 3 and 4.

run time of the WinBUGS comparison algorithm (first
sub-section of the Methods), which is only linear in K.

Conclusions

The method presented in this paper addresses two sig-
nificant problems with ubiquitous applications in bioin-
formatics: comparing binary classifiers in the absence
of a gold standard, and identifying the optimal logical
combination of such classifiers. Using Bayesian mod-
els developed for evaluating medical diagnostic tests, we
present the first applications of these models in the bioin-
formatics domain and demonstrate their feasibility and
utility for comparing classifiers on genomic scale data
sets. A new, concise and highly efficient implementa-
tion of these models was developed in WinBUGS, and
is the first freely available implementation applicable to
an arbitrary number of classifiers. To identify the opti-
mal logical combination of classifiers, we developed an
entirely new algorithm and again demonstrated its fea-
sibility for genomic scale data sets. The algorithm is the
first to employ the above-mentioned Bayesian models to
evaluate logical combinations of classifiers and indeed
apparently the first to systematically evaluate all logical

combinations. It is implemented in R and is freely avail-
able. The algorithm is O(22K) in the number of classifiers
K, and thus further research is required for large K.

The methods were evaluated on a protein subcellular
localisation data set for which a gold-standard data set
was available for the purpose of comparison. Some dis-
crepancy in the estimates of sensitivity and specificity was
expected because a key assumption of the model - condi-
tional independence of the classifiers - is often violated in
practice. However, we found that the discrepancy was in
most cases small and more importantly, that the method
was able to correctly rank the classifiers.

In all of our examples, a simple union of the classifiers
was found to be optimal according to three out of four
alternative ranking criteria (and in some cases also by the

Table 5 Run times

Data No. Subjects WinBUGS WinBUGS(R) R
Swine Flu 48 6255 0s 1s
Chloroplasts 357 624 s 1s 125
SNP 541094 8 hrs 2917s 12s
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fourth). While this finding is unlikely to be general, we
propose as a rule of thumb that the union of classifiers is
likely to be close to the optimal logical combination.

Methods

Estimating sensitivities and specificities

In this section, we describe a Bayesian model that com-
bines features of the models of [5,6]. As with any Bayesian
model, one first defines a likelihood model, that is the
probability of the data given some values of the param-
eters. One then defines prior probabilities and applies
Bayes’ rule to obtain posterior probabilities for the param-
eters, given the data. Finally, one can sample from this
posterior distribution using Markov chain Monte Carlo
(MCMC). Such samples can then be used to construct
marginal posterior densities, as we do in the Results and
discussion section.

Following [5], our model considers the true positive
(sensitivity) and false positive (one minus specificity) rates
of each classifier as parameters to be estimated. Follow-
ing [6], and in contrast to [5], we explicitly estimate the
latent true classifications for each individual in each itera-
tion of the sampler. This enables a simple implementation
of the model (less than 10 lines of WinBUGS code) that
is applicable to any number of classifiers. In contrast, the
implementation of [5] must be specifically encoded for
a fixed number of classifiers, and becomes increasingly
unwieldy as the number of classifiers increases.

Figure 3 shows the conditional dependencies of the
model, for an arbitrary number of individuals N and clas-
sifiers K. Let Cy, be the outcome of Classifier k for each
individual n, with Cy,, = 1 indicating a positive result and
Cin = 0 indicating a negative result. These outcomes are
modeled as independent Bernoulli trials, conditional on
the true classification for each individual (that is, the clas-
sifiers are conditionally independent). Let the true classi-
fication for individual # be T, and let a; and B denote
the true positive and false positive rates of Classifier k,
respectively. Hence:

o Cop=1T,=1
l1—ax Cn=0,T, =1
Bxk Cin=1T,=0
1 =Bk Cn=0,T, =0

P(Cin| Ty, g, Bi) =

Let the proportion of the population under study that
has the feature of interest be ¢ and further suppose
that the N individuals were selected uniformly and ran-
domly from this population, without replacement. This
is mathematically equivalent to assuming that the true
classifications T}, are the outcomes of N independent
Bernoulli trials with probability ¢ of a positive individual.
The model thus has N + 2K + 1 parameters.
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Ckn

Figure 3 Conditional dependencies of the model. The
dependencies of parameters in the model. ¢ is the proportion of the
population that is positive for the feature of interest, T, is the true
classification of individual n, ax and By are the probabilities of a true
positive and a false positive (respectively) for classifier k, and Cyy, is the
classification of individual n according to classifier k.

This part of the model would be the same regardless of
whether one adopted a Bayesian approach. What makes
a model Bayesian is the specification of prior probabili-
ties for the parameters of interest. Here we assign uniform
priors on the interval [0,1] for each of the parameters
¢, o and Pi. This means that, prior to observing the
data, all possible values between 0 and 1 are considered
to be equally likely. In addition, the model applies the
constraints oy > B, since a classifier would be better
discarded if it is more likely to classify an individual as
positive when that individual is actually negative. Note
this inequality introduces dependence between o and S
for a single classifier, but does not violate the conditional
independence of distinct classifiers.

Having defined the likelihood and prior probabilities,
the model is straightforward to implement with the freely
available Bayesian software package WinBUGS ([13]). Per-
haps surprisingly, it is not necessary to use Bayes’ rule to
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determine the posterior probabilities analytically, as Win-
BUGS automates this step. Nor is it necessary to work out
how to sample from the posterior distribution: WinBUGS
automates this as well. WinBUGS uses an MCMC method
- the well-known Gibbs Sampler - which cycles through
the parameters, updating each by drawing from the pos-
terior distribution for that parameter, conditional on all
other parameters remaining constant. Code for our imple-
mentation is included as Additional file 1: Section S1, and
on our website.

Inferring the best combination of classifiers

Another important goal is to decide how best to com-
bine a collection of classifiers using the logical operators
AND (A), OR (V) and NOT (—). As applied to classifiers,
the complement (—X) classifies an individual as positive
if and only if X classifies that individual as negative. The
intersection (X A Y) classifies an individual as positive
if and only if both X and Y classify that individual as
positive. The union (X V Y) classifies an individual as pos-
itive if and only if either X or Y classifies that individual
as positive.

The sensitivity and specificity of any logical combina-
tion of classifiers can be calculated from the sensitivi-
ties and specificities of the constituent classifiers, if one
assumes conditional independence. Here we propose to
evaluate the sensitivity and specificity of every possible
logical combination, using estimates for the constituents
obtained using the method of the previous sub-section.
This can therefore be done in the absence of a gold
standard.

One problem is that there are infinitely many
semantically correct ways to arrange the symbols
C1,...,Cx, A, V,—, (and ) to form a logical combination,
because in principle there is no limit to the number of
times each classifier can appear. A second problem is
that such expressions are not unique, in the sense that
equivalent classifiers can be obtained by different expres-
sions involving the above symbols. To solve both of these
problems, we express logical combinations in a canon-
ical form, of which there are a finite number. We also
define an ordering of these canonical forms, so that they
can be evaluated systematically. The canonical form is
obtained by noting that any logical combination of the
classifiers Cj,...,Ck can be reformulated as a disjoint
union of intersections of the form (X1 A Xy A ... A Xk),
where each Xj is either C; or —Ci, and all classi-
fiers (or their complements) are present in each such
intersection.

The sensitivity and specificity of a logical combination
of classifiers can be built up from the following primitive
rules applied to the canonical forms. First, the sensitiv-
ity (SENS) and specificity (SPEC) of —X are given by
1 — SENS(X) and 1 — SPEC(X) respectively. Let T' denote
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the set of all positive individuals. Using conditional inde-
pendence, the sensitivity of an intersection is given by:

SENS(X A Y) = Pr(X N Y|T)
— Pr(X|T) x Pr(Y|T)
= SENS(X) x SENS(Y)
and the specificity by:
SPEC(X A Y) = Pr(XNY)| T
= Pr(X°U Y°|T)

= Pr(X“|TC) + Pr(Y|T¢) — Pr(X¢|T°)
x Pr(Y*|T)

= SPEC(X) + SPEC(Y) — SPEC(X)
x SPEC(Y).

Here we have freely used X to denote both a classi-
fier and the set of individuals classified as positive by that
classifier.

To systematically evaluate the sensitivity and specificity
of all intersections of the form (X; A ... A Xx) mentioned
above, we assign a K-bit code to each such intersection.
Where X; = Ci, the kth bit is set to 0, and where
X = —Cg, the kth bit is set to 1 (with bits numbered
right to left). For example, given three classifiers, the k-
bit code for C; A =Cy A —=C3 would be 110. There are
thus 2X such intersections, and we compute their sensi-
tivities and specificities in the order indicated by their bit
codes. Let the sensitivity and specificity of this K-bit code
for the jth such intersection be SENS_K(j) and SPEC_K(),
respectively, where j runs from 0 to 25X — 1.

It remains to compute the sensitivity and specificity of
any disjoint union of these 2X intersections. A disjoint
union of classifiers has sensitivity:

SENS(XVY) = Pr(XUY|T)
— Pr(X|T) + Pr(Y|T)
= SENS(X) + SENS(Y)
and specificity:

SPEC(X VYY)

Pr((X U Y)|T¢)

= Pr(X° N Y| T

= Pr(X°|T%) + Pr(Y°|T) — 1
= SPEC(X) 4+ SPEC(Y) — 1.

These two rules suffice to calculate the sensitivity and
specificity of any disjoint union, but again the 2X inter-
sections must be processed systematically. We assign a
second 2K -bit code to each disjoint union, with bit j set to
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1 or 0 according to whether the intersection j is included
or excluded from the union (with bits numbered right to
left). For example, given two classifiers, the 2X-bit code
0011 represents (C; A C) V (—Cj A Cy). Hence there are
22¢ logical combinations in all, and we again evaluate sen-
sitivity and specificity in the order corresponding to their
bit codes. For disjoint union m, we denote the sensitiv-
ity and specificity of this 2X-bit code by SENS_2K() and
SPEC_2K(m) respectively. In practice, this is implemented
using the formulae:

2K
SENS2K(m) = Y gi(m)
j=0
and

2K—1
SPEC2K(m) = | Y hitm) | +1,
j=0

where:

SENS_K(j) if union m includes
intersection j
0 if union m does not
include intersection j

gi(m) =

and

SPEC_K(j) — 1 if union m includes
intersection j
0 if union m does not
include intersection j

hi(m) =

We use the model from the previous sub-section to
determine the optimal logical combination as follows.
Each iteration of the Gibbs Sampler produces an esti-
mate of the sensitivity and specificity for each of the K
classifiers. Using these estimates, we calculate the cor-
responding sensitivity and specificity of every possible
logical combination of the classifiers, using the system-
atic procedure described in the preceding paragraphs. We
then select the optimal logical combination according to
one of four suitable ranking criteria: the product, sum
of squares, sum of absolute values, and minimum of the
sensitivity and specificity.

The optimal logical combination, thus determined, may
differ from one iteration of the Gibbs sampler to the next.
We therefore estimate the probability that any given log-
ical combination is optimal as the proportion of Gibbs
sampler iterations in which that combination was optimal.
The overall best combination is then the one that is found
to be optimal in the greatest proportion of iterations.

Note that this method exhaustively enumerates all ways
in which classifiers can be combined, if all that is known
about each individual is the classifications (i.e. only data
of the form illustrated in Table 1 are available, and there
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are no additional covariates that can be used to distinguish
between individuals with identical rows). This includes all
possible weighted voting schemes. The globally optimal
combination is therefore identified.

Note that enumeration of all possible logical combina-
tions of classifiers necessarily requires computational time
O(22K), and thus rapidly becomes infeasible as the num-
ber of classifiers increases. In practice, the method is only
feasible for K < 5 classifiers. Further research into meth-
ods capable of handling a larger number of classifiers is
needed.

R code implementing this method is available in
Additional file 1: Section S6.1, and from our website. It
is also interesting to construct posterior distributions of
the sensitivities and specificities for each possible logical
combination, as we illustrate in the Results and discussion.

System and Implementation

The model was implemented in the freely available
Microsoft® Windows-based Bayesian Analysis software,
WinBUGS v1.7 [13], on a Dell™ Optiplex™ 980 com-
puter with a quad core 3.33 GHz Intel Core™ i5 pro-
cessor. To combine classifiers, output from the WinBUGS
runs was loaded into the statistical package R [14], using
the R2WinBUGS library [15]. Calculation of the sen-
sitivities and specificities of all logical combinations of
classifiers was performed using R (code available at our
website).

Additional file

Additional file 1: Supplementary Material. All supplementary material
is contained in the file
‘comparing-binary-classifiers-180712-bmc-supp-v3.doc’.
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