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Abstract

Background: Parameter estimation in biological models is a common yet challenging problem. In this work we
explore the problem for gene regulatory networks modeled by differential equations with unknown parameters, such
as decay rates, reaction rates, Michaelis-Menten constants, and Hill coefficients. We explore the question to what
extent parameters can be efficiently estimated by appropriate experimental selection.

Results: A minimization formulation is used to find the parameter values that best fit the experiment data. When the
data is insufficient, the minimization problem often has many local minima that fit the data reasonably well. We show
that selecting a new experiment based on the local Fisher Information of one local minimum generates additional
data that allows one to successfully discriminate among the many local minima. The parameters can be estimated to
high accuracy by iteratively performing minimization and experiment selection. We show that the experiment choices
are roughly independent of which local minima is used to calculate the local Fisher Information.

Conclusions: We show that by an appropriate choice of experiments, one can, in principle, efficiently and accurately
estimate all the parameters of gene regulatory network. In addition, we demonstrate that appropriate experiment
selection can also allow one to restrict model predictions without constraining the parameters using many fewer
experiments. We suggest that predicting model behaviors and inferring parameters represent two different
approaches to model calibration with different requirements on data and experimental cost.

Keywords: Systems biology, Differential equation models, Experimental design, Parameter estimation, Data fitting

Background
A popular class of biological models are differential
equations models describing the dynamics of several reac-
tive agents. Models of this type often involve a large
number of unknown parameters [1-8] which need to be
inferred from experimental data, a process known as
model calibration. This inference problem can be very
challenging for many reasons. Due to the lack of prior
information about parameter values, it is often necessary
to search a large region of a high-dimensional space to
find parameter values that produce reasonable fits to the
data. Furthermore, the models are often highly nonlinear
functions of the unknown parameters, making it diffi-
cult to navigate this space efficiently. This is particularly
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true for models which are defined as ordinary differen-
tial equations. Challenges notwithstanding, models of this
sort have attracted a lot of interest in the systems biology
community and much effort has focused on calibrating
these models.
Typically, the fitting problem for nonlinear models

is very ill-conditioned with large uncertainties in the
inferred parameters, a phenomenon sometimes known
as sloppiness [9-11]. For one model it was observed that
inferred parameters had a relative uncertainty of sev-
eral hundreds of thousands [11], suggesting that infer-
ring parameters accurately might require unreasonable
amounts of data. More recent work applying experimental
design techniques, however, has shown that parameters
for the samemodel could be inferred with just a few exper-
iments, provided the experiments probed complimentary
degrees of freedom [12]. Although the experiments may
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still require a large amount of data to achieve the desired
accuracy [13], they are nevertheless a dramatic improve-
ment over previous results and the present work is moti-
vated in large part by this approach.
More generally, experimental design has been used

extensively in guiding modeling of biological systems, see
reference [14] for a review. Interest in experimental design
has been further motivated by the need to infer topo-
logical relationships among biological agents in protein
signalling and gene regulatory networks [15]. In general,
the relative complexity of models in combination with the
limited amount of quantitative data makes optimal exper-
imental design an ongoing challenge in systems biology
[12,16-19].
This work is also motivated by the recent 6th Dia-

logue on Reverse-Engineering Assessment and Methods
(DREAM6) parameter estimation challenge [20]. This
challenge provided three models and required contes-
tants to “purchase” noisy experimental data on a limited
budget with the goal of inferring the model parame-
ters and predicting the time series of the protein con-
centrations after perturbation. In this work we follow
the DREAM6 challenge closely, attempting to infer the
parameters and model predictions using the same set
of perturbation experiments available in the challenge.
However, the DREAM6 challenge was a type of meta-
optimization problem; contestants were required to bal-
ance the costs of different types of experiments with the
goal of estimation accuracy. Although most real-world
decisions will hinge on this trade-off, in this study we do
not weigh different experiments by their costs. The prob-
lem we address is therefore separate from, but related to,
that of the DREAM6 challenge. The work described in this
paper was conducted after the conclusion of the DREAM6
challenge.
The main result of this paper is that the Fisher Informa-

tion can be used as an effective criterion for experiment
selection. The Fisher Information is a measure of informa-
tion content based on a local linearization of the model.
We show that even when parameter uncertainty is too
large to justify the linear approximation, the Fisher Infor-
mation is still an effective metric for experiment selection.
Our method of selecting experiments is therefore com-
putationally efficient since it is based on a sensitivity
anslysis at a point estimate of the parameters. It does not
require, for example, a sampling of a Bayesian posterior or
other rigorous methods of estimating confidence intervals
in order to select a maximally informative experiment.
It is also robust to which parameter values are used to
calculate the Fisher Information. We find that by calcu-
lating the Fisher Information at a local minimum rather
than the best fit still produces reliable experiment choices
to efficiently find the true parameters. Furthermore, our
method can be generalized to select experiments that

reduce uncertainties in predictions without a need for
estimating parameters directly. Indeed, we find that model
predictions can often be constrained with considerely
less cost than the parameters. In real-world scenarios in
which costs must be balanced against research goals, we
anticipate this approach to be useful.
In the current approach, we assume that the true math-

ematical form of the model and the distribution of exper-
imental noise are known, while the model parameters are
unknown. Although such assumptions are generally not
true in practice, this problem represents a step toward the
more general problem of model inference.

Methods
Models and data
In this paper, we study three models provided by the
recent 6th Dialogue on Reverse-Engineering Assessment
andMethods (DREAM6) parameter estimation challenge.
Thesemodels describe three hypothetical gene-regulatory
networks, implemented as ordinary differential equations
that describe the time course of 12, 14, and 18 dynamical
variables (mRNA and protein concentration for 6, 7, and
9 genes). The goal of the challenge is to select a series of
experiments to accurately estimate the model parameters,
subject to budgetary constraints. Although our results are
valid for all three models, in this presentation we focus on
model 1, whose network structure is given in Figure 1. The
precise mathematical form of themodel is available in sev-
eral formats from the website of the challenge and given
in the appendix.
The unknown model parameters consist of mRNA and

protein production and degradation rates, as well as
Michaelis-Menten constants and Hill coefficients describ-
ing the gene regulation. In our implementation we follow

Figure 1 A graphical representation of model 1. Six genes are
represented by network nodes. The network has eight edges,
representing the protein mediated gene interactions.
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the convention of the DREAM6 challenge and assume
that the mRNA degradation rates are each 1, which sets
the time scale of the experiments, and that the proteins
share a common, albeit unknown, degradation rate. With
these conventions, models 1, 2, and 3 have 29, 35, and 49
unknown parameters respectively.
For each model, we generate a set of parameter val-

ues and treat them as the true values in our simulation.
We then evaluate the time course of the model accord-
ing to the true parameter values. When evaluating the
model, we assume the initial protein concentrations are
each 1 while the initial mRNA concentrations are 0. We
sample the concentrations for 21 and 41 time points (for
mRNA and protein concentrations respectively) evenly
spaced between t = 0 and t = 20, after which, the model
has essentially reached the steady state concentration. We
then add “experimental” noise to the true time course
in the form of both additive and multiplicative Gaussian
noise. Specifically, if v were the simulated value then the
observed value would be given by

vnoise = max(0, v + C1ξ1 + C2ξ2v), (1)

where ξ1 and ξ2 are Gaussian random variables with
zero mean and standard deviation of one. We use values
C1 = 0.1 and C2 = 0.2, following the conventions of the
DREAM6 challenge.
The noisy time course for mRNA concentrations serve

as the startup data, and our goal is to estimate the param-
eters from this noisy data. However, even knowing the
time course for all the dynamical variables of the model
is not enough to reasonably constrain the parameters as
the parameter can be varied by several orders of magni-
tude without appreciably changing the model behavior. It
is therefore necessary to select new experiments which
perturb the model dynamics in order to further constrain
the possible parameter values.

Cost function andminimization scheme
We define a cost function,

C(θ) = 1
2

∑
i
ri(θ)2 (2)

where i labels each measurements and θ are the unknown
parameters. The residuals ri are given by

ri(θ) = yobsi − ypredi (θ)

σi
. (3)

where yobsi is the i-th experimental observation, mea-
sured with uncertainty σi, and ypredi (θ) is the correspond-
ing model prediction. The uncertainty is given by σi =√
C2
1 + (C2yobsi )2. Much of the work of this paper involves

exploring the dependence of the cost on the unknown
parameters θ and the choice of experimental data. For a

set of data, the parameters θBF that globally minimize the
cost function in Eq. (2) are known as the best fit.
In practice, even finding a good fit for a large, non-

linear model such as the ones we consider can be a
challenging task. When one possesses little or no prior
information about expected parameter values, searching a
high dimensional parameter space for the optimal fit can
be a daunting task. Recent advances have helped to iden-
tify the primary pitfalls in finding good fits and suggested
methods for finding them more efficiently [21,22].
Algorithms often fail to converge to anyminimum of the

cost because they push parameter values to their extreme
limits (such as zero or infinity), at which point the algo-
rithm fails since the cost function is very flat in these
regions. To overcome this problem we follow the method
described by Transtrum et al. [22]. First, we augment our
cost function with penalties to force the parameters to
remain within a reasonable range. These penalties help to
guide the algorithm away from extreme parameter values
toward ranges where they could be potentially measured
by the experiment. Specifically, for each parameter θμ we
add two additional residuals to our cost function of the
form

r = √
whθμ (4)

and

r =
√wl

θμ

. (5)

The former penalty prevents the parameter θμ from
becoming too large while the latter prevents it from
becoming too small. The weights are chosen to be as small
as possible while maintaining a high success rate with the
algorithm. We choose wh = wl = w, which places the
minimum of the penalty at 1, the natural scale for the
problems at hand.
We choose w to be 0.1 for the degradation rates and Hill

coefficients. This allows the parameters to vary by roughly
an order of magnitude in either direction. While this may
seem to be is a tight restriction, it is justified in that the
models are insensitive to larger variations in these param-
eters and it would be impossible to estimate them from
the data even if the true values were beyond this range.
If the final estimate of the true values for the parameters
were to lie near the boundaries set by these penalties, they
should not be trusted, and amore accurate estimate would
require a different set of experimental conditions.
For the remaining parameters we choose w = 10−4,

allowing the parameters to fluctuate by eight orders of
magnitude. This larger variation is justified in that the
model remains sensitive to these parameters over a larger
range. However, as before, if the final estimate of the
parameters lies near this boundary, the precise values
are suspect.
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Under a Bayesian framework, the penalty terms in
Eqs. (4) and (5) can be interpreted as priors. However, it
is not necessary to adopt a Bayesian approach to justify
including the penalties; their practical utility in helping
algorithms find the maximum liklihood estimator also
makes them useful from a frequentist viewpoint. When
performing a frequentist analysis, one would relax the
penalities in order to identify the best fit of the bare cost;
however, in practice the penalties are weak enough that
they make no practical difference in the values of the
final parameter estimates. Insetad, their usefulness is in
preventing search algorithms from getting lost.
With our modified cost function that includes penalty

terms, we search for the best fit parameters using the
geodesic Levenberg-Marquardt algorithm [21,22]. The
Levenberg-Marquardt algorithm is a gradient search algo-
rithm that interpolates between gradient descent and
Newton’s method and is usually the most reliable method
for nonlinear least-squares minimization. The geodesic
Levenberg-Marquardt attempts to further improve con-
vergence rates by correcting the search direction based on
higher order derivative information.

Error estimation and the fisher information
In the neighborhood of the best fit there exists a region
of parameter values that, although not optimal, are never-
theless consistent with the data within experimental noise
and constitute the confidence interval for the parameter
estimate. The corresponding variation in the parameter
values is known as the uncertainty. If it is known that the
set of acceptable fits is sufficiently localized around the
best fit, then the uncertainty may be estimated by expand-
ing the cost as a Taylor series centered at the minimum:

C(θ) ≈ C0 + 1
2

∑
μν

δθμHμνδθν , (6)

where the first order terms have vanished since the gra-
dient is zero. The Hessian matrix H contains the second
derivatives of the cost with respect to the parameters:

Hμν = ∂2C
∂θμ∂θν

(7)

=
∑
i

(
∂ri
∂θμ

∂ri
∂θμ

+ ri
∂2ri

∂θμ∂θν

)

≈
∑
i

∂ri
∂θμ

∂ri
∂θμ

(8)

In the final line we have made the common approxima-
tion that the residuals ri are small near the best fit and
can be neglected. This approximate Hessian is the Fisher
Information matrix and its inverse is the co-variance of
the inferred parameters in the quadratic approximation,
which is our approximate parameter uncertainty. In the

DREAM6 challenge, the accuracy of contestants’ inferred
parameters was measured by the function

Dparam = 1
N

∑
i

[
log

(
θestimate
i
θ truei

)]2

, (9)

where N is the number of parameters. Because of this,
it is advantageous to work in log parameters, essentially
measuring relative rather than absolute uncertainty. Addi-
tionally, by working in log parameters we enforce that all
our parameters are positive, producing an unconstrained
optimization problem. In the quadratic approximation, we
can estimate our expected value of Dparam as

Dparam ≈ 1
N
trace

(
I−1) , (10)

where I is the Fisher information matrix in log parameters

Iμν =
∑
i

∂ri
∂ log θμ

∂ri
∂ log θν

. (11)

Eq. (10) is the average variance of the log parameters,
so that a 30% uncertainty in the parameter values cor-
responds to D = 0.32 ≈ 0.1 and a 10% uncertainty
corresponds to D = 0.12 = 0.01. In practice, the
Fisher Information is often ill-conditioned and calculating
Dparam from Eq. (10) can often produce numerical errors.
Fortunately, in practice, we are primarily interested in the
case for which the Fisher Information is the most well-
conditioned. We can often disregard the cases in which
numerical errors pose problems. The stability of the cal-
culation can further be stabilized by noting that since
I = JT J where Jmμ = ∂rm/∂ log θμ, the eigenvalues of I
are the squares of the singular values of the Jacobian, J. In
practice, we therefore useDparam = ∑

μ 1/s2μ where sμ are
the singular values of the Jacobian.With this approach our
calculations do not suffer from numerical instabilities due
to the extreme ill-conditionedness of the problem.
Although this approximation of parameter uncertainty

is accurate for when the data has sufficiently constrained
the parameters, it is not accurate if the uncertainties
extend beyond the harmonic approximation or if there
are several distinct local minima with reasonable fits.
We show, however, that although uncertainties estimated
from the Fisher Information may not be accurate, it pro-
vides an effective metric to select experiments.

Experiment selection
With the best fit parameters and an estimate of the
uncertainty, we next select an experiment to reduce the
estimated error. We consider the same set of potential
experiments available in the DREAM6 challenge, which
consists of a perturbation to the model and a mea-
surement experiment. The perturbations include delet-
ing one gene, over expressing one of the proteins, or
down-regulating the mRNA production of a single gene.
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The available measurements included the time series
of mRNA concentrations (corresponding to a microar-
ray experiment) or of two proteins (corresponding to a
fluorescence microscope experiment). We do not con-
sider experiments with different initial conditions, nor do
we consider multiple perturbation experiments (i.e. no
massive deletions). In addition to time series measure-
ments, we also assume gel-shift assay experiments are
available which estimate the true values of the Michaelis-
Menten constants and Hill coefficients for a given
interaction.
To select an experiment, we simulate all the poten-

tial experiments using the current best fit parameters,
estimate the parameter error given by Eq. (10) for each
experiment, and propose to perform the experiment that
reduces the estimated error most. Note that when we
evaluate Eq. (10) we do not include the contribution
from the penalty terms. In this way Eq. (10) only mea-
sure the information content of the experiments. Noisy
data corresponding to the selected experiment is then
generated by simulating the model with the true param-
eters and adding noise according to Eq. (1). With the
additional data, the previous best fit parameters will
no longer lie at a minimum of the cost function. We
therefore repeat the process of minimization and error
estimation using the new data. We iteratively select exper-
iments in this way until estimated error is sufficiently
small.
Our method of selecting experiments is similar to other

approaches in the literature [12,19]. The basic scheme is
to first estimate the parameters from the available data,
either as a point estimate, as we do, or as a Bayesian pos-
terior as done by Vanlier et al. [19]. From this estimate,
one predicts the outcome of the available experiments and
estimates information content of each experiment. Finally,
the most informative experiment is selected and added to
the available data and the processes is repeated. We sum-
marize this procedure in Table 1. One of the advantages
of our approach is that our method uses a point estimate
of the parameters and so does not require a computa-
tionally expensive Markov Chain Monte Carlo (MCMC)
calculation at each iteration.

Table 1 Algorithm for selecting experiments

Algorithm for selecting experiment

1. Find the best fit with available data.

2. Simulate all possible experiments, assuming the best fit is true.

3. Evalaute Eq. (10) for each potential experiment.

4. Select experiment with smallest trace and add the new data to

the collection.

5. Repeat steps 1-4 until parameters are satisfactorily constrained.

Results
Fitting the initial data and estimating uncertainty
By using the methods described above, the fitting process
is essentially automated, and we are able to efficiently
explore parameter space by searching for local minima
of the cost from random initial guesses. With several
repeated runs we are able to identify the best fit parame-
ters. There is evidence that the cost landscape for models
such as these is very rugged with many local minima
[5,23-25]. We therefore also search extensively for local
minima.
We explore the extent to which our models have local

minima in the cost by searching from 10, 000 random
starting points chosen uniformly on a log scale in the
range corresponding to the penalties described above. The
algorithm successfully found a local minimum about 20%
of the time for each model. The failures were due to
the differential equation solver being unable to accurately
integrate the differential equations at extreme values of
the parameters.With 10, 000 starting points, our sampling
of the entire search space is necessarily not very dense,
a limitation due to the high-dimensionality of the search
space. Notice that the typical number of points per param-
eter axis for the smallest model is 100001/29 ≈ 1.37 while
for the largest model it is 100001/49 ≈ 1.20. However,
because such a large fraction of the attempts failed due to
extreme parameter values, the sampling is also very dif-
fuse. Therefore, our results cannot be attributed to our
search being localized to a small portion of parameter
space. Furthermore, this success rate could be increased
by reducing the range of starting points. Although the
search is sparse and diffuse, if our models had many local
minima, we anticipate they would be discovered by our
investigation.
Among the roughly 2000 successful attempts of the

geodesic Levenberg-Marquardt algorithm, the majority
(anywhere from 90% to 99% depending on the model)
correspond to “good” fits of the data, i.e. fits within exper-
imental errors. The remaining “bad” fits correspond to fits
that fail to fit one or more qualitative features of the data
and had much larger values of the cost function than the
good fits.
Inspecting the parameter values of the several “good”

fits, we find that the parameters vary over a very wide
range, suggesting that there are many local minima that
fit the data well. However, the eigenvalues structure of
the Fisher Information evaluated at theseminima suggests
that cost surface has many narrow canyons, i.e. there are
many very small eigenvalues. Because the cost surface is
very flat along the bottom of these canyons, it is possi-
ble that these fits actually correspond to the same basin of
attraction. Indeed, the cost surface is sufficiently flat along
these canyons that one would expect numerical noise,
such as rounding errors in the differential equation solver,
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to create artificial local minima along the bottom of the
canyon. We therefore cannot use parameter differences as
a criterion for distinguishing distinct local minima.
A better criterion to identify unique local minima is

to use relative differences in the residual vector, ri(θ) as
a distinguishing criterion. This is a natural choice as it
corresponds to how the search algorithm checks con-
vergence. The algorithm monitors the angle between the
unfit residuals and the surface of potential fits in data
space, known as theModelManifold [22].When this angle
approaches 90◦, the algorithm is near a local minimum as
illustrated in Figure 2. Furthermore, from the algorithm’s
tolerance we can estimate the distance to the true mini-
mum in data space. If two fits are nearer than the distance
specified by the algorithm’s tolerance, then we assume
that they belong to the same minimum, even though their
parameter values may be very different.
Using this criterion, we identify 30 distinct minima for

model 1 that were good fits to the data. Closer inspection
of the good fits reveals that their residual vectors are sep-
arated by a distance only slightly larger than the tolerance
specified by the search algorithm. Furthermore, a direct
line in parameter space connecting the distinct minima
reveals they are separated by very shallow barriers in the
cost function as we show in Figure 3. These observations
leave open the possibility that these good fits are not actu-
ally distinct, but belong to the same basin of attraction.
However, it is safe to conclude that even if the good fits are
distinct minima, they all reside within some broader basin
and are separated only by shallow barriers.
Finally, we compare the orientation of the uncon-

srained parameter directions as measured by the Fisher

Figure 2 Convergence criterion for minimization algorithm. The
set of model predictions in data space form a surface known as the
model manifold. By comparing the angle between the tangent plane
to theModel Manifold and the vector of unfit data, we can monitor
convergence to a local minimum of the cost. If α is approximately a
right angle, then we are likely near a local minimum. Fits separated by
more than |r(θ)| cosα are likely to correspond to different minima.

Figure 3 Cost barrier between twominima. Although we
identified several distinct local minima with that were able to fit the
data well, a direct line path connecting these minima reveal that the
cost barrier between them is very small. Here we see two points for
which the cost barrier between them is about 50. Most randomly
selected parameter values have a cost between 1, 000 and 10, 000,
illustrating that this barrier is relatively small. It is possible that these
minima are not distinct but are connected by a winding canyon.

Information with a Principal Component Analysis (PCA)
of the collection of good fiits. Specifically, consider the
two five-dimensional subspaces spanned by the eigenvec-
tors of the least constrained directions for both measures
of uncertainty. One can compute the so-called principal
angles between these subspaces to measure the extent to
which they are aligned [26]. Geometrically, these angles
are defined by considering the angles between all the vec-
tors contained in the two subspaces; the smallest such
angle is the first principal angle. Smaller angles indi-
cate that the two spaces are more aligned. For the two
five-dimensional subspaces we consider, this angle is 16◦.
By comparison, the average first principal angle among
two randomly generated five-dimensional subspaces is
approximately 49◦ (with standard deviation about 6◦).
From this we conclude that the two subspaces are roughly
aligned. Although our local search method produced
many different parameter values suggestive of a rough cost
surface [5,23-25], our subsequent analysis suggests that
these local minima are separated by very small barriers.
We therefore believe that the cost functions of our models
are dominated by one large basin that is long and narrow,
and that the orientation of this basin is roughly described
by the Fisher Information (although nonlinearities make
the Fisher Information a poor approximation for rigorous
confidence intervals). Therefore, by selecting experiments
based on the Fisher Information using the criterion in
Eq. (10), we hope to maximally increase the curvature
of the cost function around this minimum and efficiently
estimate the parameter values.
This argument should not be misunderstood to suggest

that the linear approximation is an accurate estimate of
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the uncertainty with sparse data. Rather we expect the
Fisher Information to be an efficient choice because of
the cost function appears to have only one basin that
fits the data well. We can therefore select experiments
to maximize the curvature of this basin. This argument
will be further strengthened in section Selecting exper-
iments where we show that the choice of experiment is
roughly independent of which point in the basin is used to
calculate the Fisher Information.

Selecting experiments
Motivated by the results of the previous section, we
assume that experiments that minimize the variance
described by the Fisher Information will be maximally
informative in constraining the parameters. We there-
fore select experiments that minimize the error given by
Eq. (10) as described in section Experiment selection.
An example of experiments produced by this method for
model 1 is given in Table 2. This sequence of experi-
ments was generated by finding one local minimum using
the startup data, selecting an experiment using the local
Fisher information matrix at that minimum, and adding
the experimental data for this experiment to the collection
of data. We then iteratively repeat the process.
Naturally, the precise sequence of experiments listed

in Table 2 depends on at which parameter values the
Fisher Information is calculated. However, we repeated
the experiment selection procedure from all 30 minima
and found that there is much overlap among the selected
experiments irrespective of which minimum was used.
Additionally, we tested our method using several sets of
true parameters and found that the selected experiments
are also more or less independent of the true parameter
values. Furthermore, after selecting a sequence of exper-
iments, we repeat our search for local minima. We find
that the additional data has successfully reduced the 30
minima of the initial startup data into a single good fit,
indicating that any of the 30 sequences would have also
been effective for estimating the parameters. We see this
explicitly in Figure 4 where we show how the experiments
guide the paths of the local minima to the true parame-
ter values. Even though the experiments along each path
are slightly different, they converge to the same estimate
of the true parameters.
It is interesting to compare the uncertainty reduction

of our method with that of randomly selected experi-
ments. We find that it typically takes four to five times
as many randomly chosen experiments to accomplish a
comparable accuracy as that in Table 2.

Parameters vs predictions
In addition to estimating parameters, the DREAM6 chal-
lenge asked contestants to predict a time series of a
perturbed version of the model. For model 1 this was a

Table 2 Experiments for parameter identification in
model 1

Iteration Perturbation Measurement Estimated error

1 Wild Microarray ∞
2 Delete 1 Proteins 3 and 4 4.7 × 107

3 Over 1 Microarray 3.8 × 104

4 Down 5 Proteins 1 and 6 54

5 Over 1 Proteins 2 and 4 2.5 × 103

6 Down 5 Microarray 1.5

7 Over 4 Proteins 2 and 4 1.2

8 Down 1 Proteins 2 and 6 1.1

9 Delete 1 Proteins 2 and 6 6.9 × 10−2

10 Assay 1 n/a 2.2 × 10−2

11 Down 5 Proteins 3 and 4 1.5 × 10−2

12 Assay 3 n/a 1.2 × 10−2

13 Down 1 Proteins 3 and 5 1.0 × 10−2

We list the sequence of experiments for estimating the parameters for model 1
for a randomly chosen set of true parameters. Experiments consist of a
perturbation and a measurement. “Wild” refers to the original, unperturbed
model, while “Delete 1” indicates a deletion of gene 1, “Over 1” indicates an
over-expression of gene 1, “Down 5” indicates a down-regulation of protein 5,
and so forth. “Microarray” indicates a microarray measurement experiment of
time series for all the mRNA concentrations, while “Protein 3 and 4” indicates a
time series measurement of proteins 3 and 4, and similarly for the remaining
measurements. Gel-shift assay experiments indicate a direct measurement of
the Michaelis-Menten constant and Hill coefficients for a specific reaction in the
model. The estimated error is calculated from Eq. (10) which is an estimate of the
average variance in log-parameters, so that that 30% accuracy corresponds to an
error of 0.1 and is achieved after about 9 experiments. An accuracy of 10%
corresponds to an estimated error of 0.01 and is achieved after 13 experiments.
After about six experiments, the marginal benefit of additional experiments
becomes small. At this point, the experiments are no longer complimentary and
most of the benefit is attributed to probing the same degrees of freedomwith
more data. Notice that the estimated error increases at the fifth iteration. This is
due to the minimization algorithm not finding the best fit at this iteration. The
subsequent success of the method is a demonstration of the robustness of this
method for selecting experiments.

time series for proteins 2, 4, and 6 with several parameters
increased by anywhere from a factor of 2 to 10. Contes-
tants were then judged based on their score as measured
by

Dpred = 1
M

∑
i

[
ypredi − ytruei

]2
C2
1 + C2

2
[
ytruei

]2 , (12)

where M is the number of predictions. If our goal is to
accurately predict the time series, rather than estimat-
ing the model parameters, we can modify our criterion of
selecting experiments to minimize the expected error as
measured by Eq. (12). By extrapolating the uncertainty in
the parameters to the uncertainty in the predictions, in the
quadratic approximation, the estimate of Eq. (12) becomes

Dpred = 1
M

∑
μ,ν

Ipredμν

(
I−1)

μν
, (13)
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Figure 4 Paths for distinct minima as data is collected. The path
through parameter space (projected onto the first and second
principal component of the ensemble of initial fits) as data is added
to minimize the local variance. Although each path corresponds to a
different sequence of experiments, they all arrive at the same
estimate of the final parameters.

where Ipred is the Fisher Information for the predicted
time series:

Ipredμν =
∑
m

∂ypredm
σm∂ log θμ

∂ypredm
σm∂ log θν

. (14)

With these modifications, we list a sequence of exper-
iments to minimize the uncertainty in the predictions in
Table 3. Notice that only 4 experiments are needed to
reduce the uncertainty to within the experimental noise,
even with largely unconstrained parameters. If experi-
ments were chosen to infer parameters it would have
taken nearly twice as many experiments to get a compara-
ble accuracy.

Discussion
Note that the success of the Fisher Information in select-
ing experiments cannot be attributed to the parameter
uncertainty being well-approximated by the linearized

Table 3 Experiments for reducing prediction uncertainty

Iteration Perturbation Measurement Estimated error

1 Wild Microarray 7.7 × 1010

2 Down 5 Proteins 2 and 6 3.5 × 102

3 Delete 5 Proteins 4 and 6 2.5

4 Over 4 Proteins 4 and 5 2.4 × 10−1

We list the sequence of experiments for estimating the predictions for several
protein concentrations in model 1. At each iteration we reduce the relative
uncertainty in the predictions given by Eq. (13) which is reported in the estimatd
error column. For this measure of error, a value of 1 corresponds to an accuracy
comparable to the experimental noise. Notice that the uncertainty in the
predictions can be reduced to the experimental uncertainty with just four
experiments. Even though the parameters are largely unconstrained after four
experiments, the model is nevertheless able to make falsifiable predictions.

residuals. The uncertainties in the inferred parameters
after fitting to the startup data are very large and extend
well beyond the linear approximation in which the Fisher
Information is valid. This can be seen explicitely in
Figure 3 in which we show the cost barrier for a straight
line path between two good fits. As both endpoints of
the path fit the data very well, both points are contained
within the confidence region of the parameters. How-
ever, since the behavior of the cost along the straight line
connecting them is far from quadratic, nonlinearities are
clearly important.
The 30 distinct minima reported in section Fitting

the initial data and estimating uncertainty should not
be misinterpreted as a sampling of the Bayesian poste-
rior distribution. Rather, they represent potential local
minima of the cost surface. As they each fit the data
very well, none of these local minima can be ruled out
by initial data and additional experiments are necessary
to distinguish among them. Although we cannot rigor-
ously identify whether these fits represent local minima
or are connected by a flat canyon, by appropriately select-
ing experiments we were able to successfully distinguish
among them. In Figure 5 we interpret the effect of the
experiment selection on the confidence interval. The ini-
tial confidence region is very large and encompasses all
the good fits from the initial search. As additional data are
added, the confidence interval shrinks and the location of
the minimimum is adjusted. After each additional experi-
ment, the newminimimum lies within the new confidence
region.
While the precise order of selected experiments varies

depending on the minimum used, there are patterns that

Figure 5 Confidence interval reduction by experiment selection.
With the initial data, there is a large region of acceptable fits (black)
which encompasses all the good fits found in the initial search.
Adding a new experiment reduces the confidence region (red) and
the best fit moves to a new point within the new confidence region.
A second new experiment reduces it further (blue). This process is
iterated until the confidence region is acceptably small.
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can be understood ex post facto by inspecting the network
topology. For example, among the list of experiments in
Table 2, there is a strong preference for perturbations of
gene 1. Inspecting Figure 1 we see that gene 1 acts as a type
of head node for the network. It is not regulated by any
other gene while any perturbation of gene 1 expression
should effect the entire network. It is natural to suspect
that experiments perturbing gene 1 will be the most influ-
ential. The remaining perturbation experiments involved
genes 4 and 5. These experiments can be understood by
noting that these genes form a negative feedback loop.
Similarly, we can also understand the choice of measure-

ments. For example, from Figure 1 we see that the protein
produced by gene 3 does not regulate any other genes.
Consequently, without a measurement of the concentra-
tion of protein 3, the parameter controlling the production
of protein 3 is completely unconstrained. Because of this,
the parameter uncertainty with the initial data is infi-
nite (see Table 2), and we always select a measurement of
protein 3 concentrations as the initial experiment.
To understand the remaining measurements, note that

there are two channels through which signals are passed,
either through genes 1 → 2 → 3 or through genes 1 →
4 → 6. Typically, measurements are selected to observe
the effect on both sequences.
The work of Apgar et al. [12] has shown the importance

that experiments be selected that contain complimentary
information. Our qualitative understanding of the choice
of experiments in the previous paragraphs reinforces this
claim. Recent work studying the behavior of large nonlin-
ear models, such as these, from an information geometric
viewpoint has suggested that models can be interpreted
as generalized interpolation schemes [21,22]. We offer
an interpretation of the experiment choices from this
viewpoint.
Data leaves parameters unconstrained when it probes

fewer effective degrees of freedom than the model has
parameters. Consider Figure 6 where we give sample data
for model 1. Although the time series corresponding to
the concentration of mRNA 1 has many data points,
the model effectively has only two degrees of freedom
in such a time series: the magnitude of the equilibrium
concentration and the time scale it takes to equilibrate.
Similarly, the time series of protein 1 has two similar
degrees of freedom; however, since protein concentration
necessarily echoes its corresponding mRNA concentra-
tion, these degrees of freedom are not independent. Fur-
thermore, by noting that gene 2 is promoted by gene 1
and inhibited by gene 6, we see that the six time series
in Figure 6 explore many of the same degrees of free-
dom and are not really independent measurements. In
the language of interpolation, the data for gene 2 is,
in some sense, “between” the data from genes 1 and
6 and could be inferred by interpolating between the

two. Quantitative interpolation is precisely the role of the
model. Indeed, even with largely unconstrained parame-
ters, measurements of time series for gene 1 and 6 would
be sufficient to give accurate predictions for behavior of
gene 2.
The choice of experiments in Table 3 can be understood

in a similar manner to those in Table 2. In this case, the
three selected experiments are analogous to the pertur-
bations in the desired predictions. Indeed, the primary
perturbation in the desired predictions is a massive over-
expression of gene 4, consequently, an experiment was
selected corresponding to a more mild over-expression
of gene 4, as well as experiments to accurately probe the
feedback loop that regulates gene 4. The measurement
experiments correspond primarily to the three time series
to be predicted.
By interpreting the model as a generalized interpolation

scheme, we can understand both why the experiments in
Table 3 were selected, as well has how the model canmake
accurate predictions without enough data to constrain the
parameters. Just as the time series for gene 2 can be pre-
dicted in Figure 6 since its behavior is, in some sense,
“between” the behavior of genes 1 and 6, the desired pre-
dictions lie “between” the experimental observations in
Table 3.
The fact that the cost of inferring parameters is much

larger than that of inferring a few predictions (as mea-
sured by the relative number of experiments in Tables 2
and 3) suggests two differing approaches to modeling and
experimental design. While knowing the parameters has
the aesthetic appeal of allowing one to know all potential
model predictions, if one is only interested in a few predic-
tions, conducting experiments to infer all the parameters
is not a cost effective approach. Furthermore, in most
cases it is unknown whether the proposed model repre-
sents the true biological network. In these cases, there will
likely be several competingmodels that can only be distin-
guished by their ability tomake falsifiable predictions. The
cost advantage of selecting experiments based on the pre-
dictions rather than parameter values is likely to be more
dramatic.
One could generalize this method of selecting experi-

ments by choosing alternative measures of information.
In particular, our criterion in Eq. (10) is based on a
linearization of the residuals, and one could construct
a more accurate measure for when the linear approx-
imation breaks down. One approach might be based
on an MCMC sampling of the Bayesian posterior using
Eqs. (4) and (5) as priors or some other appropriate
choice. In fact, we have sampled the Bayesian poste-
rior for our models, and find that the allowed range of
many parameters is always dominated by the prior for
any choice of weights. These parameters can fluctuate
to infinity or zero with only a statistically insignificant
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Figure 6 Independent model degrees of freedom. Sample data from model 1 for the mRNA and protein concentration corresponding to gene 2
as well as the two genes which regulate these concentrations (genes 1 and 6). By noting that gene 2 is promoted by gene 1 and inhibited by gene
6, it is clear that these time series contain redundant information. The rise and subsequent fall in the mRNA and protein concentrations of gene 2
can be predicted from the time series of genes 1 and 6. Measuring all six time series would be less effective than alternative experiments that
probed independent degrees of freedom.

increase in the bare cost. It is therefore a nontriv-
ial problem how to construct a measure of informa-
tion that adequately reflects the information content
of the experiments without being dominated by the
prior.
Fortunately, we have shown that Eq. (10) often provides

an effective criterion for selecting experiments even when
the parameter uncertainties extend well beyond the linear
approximation as they do in our case. Indeed, the main
result of this paper is that the Fisher Information is effi-
cient for selecting experiments under these conditions.
Recall that the Fisher Information describes the curva-
ture of the cost function around a local minimum. Since,
this curvature describes the parameter uncertainty in the
asymptotic limit, selecting experiments to maximize the
curvature is actually a reasonable choice. Experiments
which minimize Eq. (10) can be understood as those that
bring us closest to the asymptotic regime. We have seen
that this argument seems to hold even when the Fisher
Information is evaluated at different local minima.

Conclusion
In this paper we have described a method of selecting
experiments to infer unknown model parameters. We
have shown that when data is sparse, the parameter uncer-
tainty is large and the cost surface has many local minima.
In spite of this, by selecting experiments based on the
uncertainty estimated by the local Fisher Information, we
are able to reduce parameter uncertainty and constrain

the set of reasonable fits to the data to lie within a sin-
gle region around the best fit. Although this method will
produce a different sequence of experiments based upon
at which minima the Fisher Information is calculated, we
have seen that collection of experiments generated from
different minima is in fact very similar.
As we have noted, our method for selecting experi-

ments is very similar to the greedy method described
by Apgar et al. [12]. Our work goes beyond previous
results, however, in that we have explored the effect of
experiment selection on the global cost surface. Since in
most cases the parameter uncertainty extends well beyond
the harmonic approximation and may even include non-
contiguous patches of acceptable parameters around local
minima, it is not obvious that a selection criterion that is
based only local information (i.e. the Fisher Information)
will be effective. Our results help to validate the method of
previous work [12], while demonstrating its applicability
to additional models.
When selecting experiments, it is important for them

to be complimentary and probe independent degrees of
freedom of the model. Using the proposition that mod-
els should be thought of as a generalized interpolation
scheme, we have understood that measurements lying
“between” observed data is not as effective at reducing
parameter uncertainty as measurements that probe inde-
pendent degrees of freedom. We have shown that we can
qualitatively understand which experiments probe these
degrees of freedom by inspecting the network topology of
the model.
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Previous observations that predictions are often possi-
ble without knowing the parameters precisely [2,27] can
be understood in this light, as well. Indeed, we have shown
that uncertainties in predictions can also be reduced by
an adequate series of experiments. Because reducing the
uncertainty in a few model predictions does not generally
require all the parameters to be tightly constrained, these
predictions can be made with fewer experiments.

Appendix
Differential equations
In this appendix we give the mathematical form for the
first model of the DREAM6 challenge described in this
paper.

d
dt

[mRNA1]=cod1 − mrna deg rate [mRNA1] (15)

d
dt

[ p1]=rbs1 strength [mRNA1]

− p deg rate [ p1] (16)

d
dt

[mRNA2]=cod2 − mrna deg rate [mRNA2] (17)

d
dt

[ p2]=rbs2 strength [mRNA2]

− p deg rate [ p2] (18)

d
dt

[mRNA3]=cod3 − mrna deg rate [mRNA3] (19)

d
dt

[ p3]=rbs3 strength [mRNA3]

− p deg rate [ p3] (20)

d
dt

[mRNA4]=cod4 − mrna deg rate [mRNA4] (21)

d
dt

[ p4]=rbs4 strength [mRNA4]

− p deg rate [ p4] (22)

d
dt

[mRNA5]=cod5 − mrna deg rate [mRNA5] (23)

d
dt

[ p5]=rbs5 strength [mRNA5]

− p deg rate [ p5] (24)

d
dt

[mRNA6]=cod6 − mrna deg rate [mRNA6] (25)

d
dt

[ p6]=rbs6 strength [mRNA6]

− p deg rate [ p6] (26)

where we have used the variables

cod1 =pro1 strength (27)

cod2 =pro2 strength
(

([ p1] /K2)h2

1 + ([ p1] /K2)n2

)

×
(

1
1 + ([ p6] /K5)n5

)
(28)

cod3 =pro3 strength
(

([ p1] /K3)h3

1 + ([ p1] /K3)n3

)

×
(

1
1 + ([ p2] /K4)n4

)
(29)

cod4 =pro4 strength
(

([ p1] /K1)h1

1 + ([ p1] /K1)n1

)

×
(

1
1 + ([ p5] /K8)n8

)
(30)

cod5 = pro5 strength
(

1
1 + ([ p4] /K6)n6

)
(31)

cod6 = pro6 strength
(

1
1 + ([ p4] /K7)n7

)
. (32)

Notice that the mRNA concentrations each degrade
with the same rate mrna deg rate, which we assume is
1 throughout this paper. Also note that the proteins
each decay with the same rate p deg rate, which is one
of the 29 parameters to be inferred. The remaining 28
parameters are the production rates for each component:
rbs[ j] strength and pro[ j] strength for j = 1, . . . , 6 and
the Michaelis-Menten constants and Hill coefficients: Kj
and hj for j = 1, . . . , 8. Measurements are made of the
either the mRNA or protein concentrations at specific
time points. That is to say, yobsi in Eq. (3) can correspond
to eithermRNA[ j] or p[ j] at a specific time point.
The perturbation experiments modify the above

equations as follows: Deleting a gene corresponds to
eliminating production of both the mRNA and pro-
tein for the corresponding gene, i.e. pro[ j] strength =
rbs[ j] strength = 0 for the appropriate gene. We imple-
ment mRNA knockdown by a five-fold increase in the
mRNA degradation rate for the appropriate gene. Increase
of protein expression is implemented by doubling the
translation rates, rbs[ j] strength for j = 1, . . . , 6.
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