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Abstract

from being solved.

Background: To understand the roles they play in complex diseases, genes need to be investigated in the
networks they are involved in. Integration of gene expression and network data is a promising approach to
prioritize disease-associated genes. Some methods have been developed in this field, but the problem is still far

Results: In this paper, we developed a method, Networked Gene Prioritizer (NGP), to prioritize cancer-associated
genes. Applications on several breast cancer and lung cancer datasets demonstrated that NGP performs better than
the existing methods. It provides stable top ranking genes between independent datasets. The top-ranked genes
by NGP are enriched in the cancer-associated pathways. The top-ranked genes by NGP-PLK1, MCM2, MCM3, MCM?7,
MCM10 and SKP2 might coordinate to promote cell cycle related processes in cancer but not normal cells.

Conclusions: In this paper, we have developed a method named NGP, to prioritize cancer-associated genes. Our
results demonstrated that NGP performs better than the existing methods.

Background
To understand the roles they play in complex diseases,
genes need to be investigated in the networks they are
involved in [1]. Integration of gene expression and net-
work data is a promising approach to prioritize disease-
associated genes [2]. The prioritized genes can facilitate
us to understand the molecular mechanism of disease
and discover the promising candidates of drug targets.
Up to now, three main types of methods have been
developed to prioritize disease-associated genes with gene
expression and network data. The assumption of the first
type is that the genes surrounded by differentially
expressed (DE) genes in networks tend to be disease asso-
ciated genes [3-7]. A recently published example of this
type is the Heat Kernel Ranking method [7]. The second
type is based on a network rewiring (NR) model to
prioritize disease-associated genes [8-11]. In the NR
model, the interactions of the candidate gene with other
genes are assumed to be changed between normal and
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disease samples. The method by Taylor et al. [11] is a
typical representative of this type. The third type consid-
ers the changes of gene interactions between normal and
disease samples and their effects on gene expression to
prioritize disease-associated genes [12,13]. The method
of Regulatory Impact Factor or RIF [13] is a recently
developed method of this type.

However, there are some drawbacks in the existing
methods. For the first type of methods, networks are
assumed to be static and may not reflect the specific
condition under the study, and therefore it may produce
many false positive results. For the second type of meth-
ods, it considers network variations but doesn’t consider
their effects on gene expression. In some case, a top-
ranked gene by this method may not play important
roles in disease because its network variations may have
little effects on the expression of its interacting genes.
The third type of methods considers network variations
and their effects on gene expression. However, in some
situation, a disease-associated gene may lead to the dif-
ferential expression of its interacting genes even there is
no network rewiring. We call this situation as networked
differential expression or ND for short.
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In this paper, we have developed a method named
Networked Gene Prioritizer (NGP) to prioritize cancer-
associated genes. In our method, we assume that be-
tween compared samples, cancer-associated genes cause
the differential expression of their interacting genes by
NR and/or ND. We applied the proposed NGP method
and three representative methods on 4 independent
breast cancer patient microarray datasets and 3 inde-
pendent non-small-cell lung cancer (NSCLC) patient
microarray datasets. The compared methods include the
Heat Kernel Ranking method [7], the method by Taylor
et al. [11] and the RIF method [13]. We call them as
HKR, the Taylor method and RIF, respectively, for the
convenience of description. The results demonstrated
that the proposed NGP method performs better than
the compared methods. The top-ranked genes by NGP
are stable between independent datasets and enriched in
the cancer-associated pathways. Our results suggest that
the top-ranked genes by NGP-PLK1, MCM2, MCM3,
MCM7, MCM10 and SKP2 might coordinate to promote
cell cycle related processes in cancer but not normal
cells.

Result

We applied NGP, HKR, the Taylor method and RIF on 4
independent breast cancer patient datasets and 3 inde-
pendent NSCLC patient datasets (see Materials and
Methods for the description of the methods and data).
NGP can use two models: the NR model and the ND
model (see Materials and Methods for details). We call
them as NGP-NR and NGP-ND for short, respectively.
RIF also has two models: RIF1 and RIF2 [13]. Two ques-
tions are asked when we compare their performances:
1). whether the top-ranked genes by the methods are
stable between independent datasets; 2). whether the
top-ranked genes are enriched in the cancer-associated
pathways.

Application on breast cancer patient datasets
We prioritized cancer-associated genes between ER posi-
tive and ER negative breast cancer patient samples.

First we investigated whether the methods can pro-
duce stable top 10, 25 and 50 genes between independ-
ent datasets. It is analyzed by the GSEA strategy and
measured by p value (see Materials and Methods for de-
tail). If the p values of the dataset pair are smaller than
0.005, the top ranking genes between the datasets are
regarded as stable. As Additional file 1: Table S1, Add-
itional file 2: Table S2 and Additional file 3: Table S3
show, HKR and NGP-ND produce stable top 10, 25 and
50 genes between all datasets while other methods fail.
However, HKR’s results are not specific. It always ranked
certain genes at top positions no matter what types of
gene expression data (e.g., differential gene expression
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data of disease datasets, shuffled differential gene expres-
sion data of diseases datasets or differential gene expres-
sion data from the datasets of different diseases) were
used (Additional file 4: Table S4). It has been demon-
strated that a systematic bias that favors highly connected
genes exists in many networked gene prioritization meth-
ods [3,14], and such systematic bias exists in HKR [3].
There is no obvious bias toward certain genes in the other
methods because we can see that the top-ranking genes of
these methods are unstable in either breast cancer or lung
cancer datasets (Additional file 1: Table 1, Additional file 2:
Table S2, Additional file 3: Table S3, Additional file 5:
Table S5, Additional file 6: Table S6 and Additional
file 7: Table S7).

Then we ranked genes according to their rank sum in
independent datasets. The top 10 genes of the different
methods are displayed in Table 1. The top 10, 25 and 50
genes of different methods were selected to conduct
pathway analysis. The tool of pathway analysis is David
functional annotation tools [15]. The pathway database
is Reactome [16]. With Benjamin corrected p < 0.05 as
threshold, we can see that some cell-cycle-related path-
ways are enriched in the top 10, 25 and 50 genes of
NGP-ND (Table 2). The top ranking genes of the other
methods are not enriched in any pathways. Reis-Filho
and Pusztai had summarized the applications of micro-
array on the classification, prognostication, and predic-
tion of breast cancer [17]. They found that when using
the prognostic signatures that include many cell cycle
and proliferation related genes, ER positive breast cancer
can be classified into high proliferation group (about
50% samples) and low proliferation group (about 50%
samples) but most of ER negative breast cancer patients
are classified into high proliferation group (>95% sam-
ples). Their results suggest that the different functional
status of cell cycle and proliferation processes may con-
tribute to the difference between ER positive and ER

Table 1 The top 10 genes of different methods in breast
cancer patient datasets

Ranks NGP-NR NGP-ND HKR The Taylor RIF1 RIF2
method

1 STAT3  PLK1 UBQLN4  HSPB1 FOXO1 CD247
2 EGFR MCM2  SMAD9  RPAI1 IGF1R FGR

3 PDGFRB  MCM7  ESR1 S100B RPS6KA3  LSM1
4 FOXO1 MCM3  CCDC85B RNF11 ERBB2 IL2RB
5 AR LCK TP53 XPO1 TUBGT CDKN2A
6 MCM10 CCNA2  GRB2 NFKB1 ENO2 RIPK2
7 CDKN2A MCM10  ACTB CPE STATSA  GZMB
8 SRPKT  SKP2 AR SRPK1 cbC7 ITK

9 CCND1  LCP2 ACTA1 BCAP31 RBBP8 PRMT5
10 EPS8 CDC25C CTNNB1  BCL2 HSP9OABT COL1AT1
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Table 2 Pathways that the top ranking genes of different
methods are enriched in in breast cancer patient datasets

Top genes Method Pathway Benjamin p

10 NGP-ND REACT_152:Cell Cycle, Mitotic 3.00E-04
REACT_383:DNA Replication 6.51E-04
REACT_1538:Cell Cycle Checkpoints 0.020

25 NGP-ND REACT_1538:Cell Cycle Checkpoints 3.84E-05
REACT_152:Cell Cycle, Mitotic 1.13E-04
REACT_383:DNA Replication 0.005

50 NGP-ND REACT_152:Cell Cycle, Mitotic 3.62E-05
REACT_1538Cell Cycle Checkpoints 1.93E-04
REACT_383:DNA Replication 0.0120

negative breast cancer patients. The genes detected by
NGP-ND are enriched in the cancer associated pathways
between ER positive and ER negative breast cancer
patients.

Application on NSCLC patient datasets
We prioritized cancer-associated genes between lung
cancer and normal samples.

When taking p <0.005 as the threshold, NGP-NR,
HKR and RIF2 produced stable top 10, 25 and 50 genes
between independent datasets (Additional file 5: Table S5,
Additional file 6: Table S6, Additional file 7: Table S7).
However, as mentioned above, the top-ranking genes of
HKR are not specific.

Then we ranked genes according to their rank sum in
independent datasets. The top 10 genes of different
methods are displayed in Table 3. The top 10, 25 and 50
genes were selected to conduct pathway analysis. It is
showed that some cell-cycle related pathways are
enriched in the top ranking genes of NGP-NR, the Taylor
method, RIF1 and RIF2 (Additional file 8: Table S8).
Sustaining proliferative signaling pushes the process of

Table 3 The top 10 genes of different methods in NSCLC
patient datasets

Ranks NGP-NR NGP-ND HKR The Taylor RIF1 RIF2
method

1 PLK1 PCNA UBQLN4  CDC7 PLK1 SPARC
2 MCM7  TGFBR2 ~ SMAD9  MCM7 CDC6  CDC20
3 cbcy SYK TP53 SKP2 MCM7  MCM2
4 BRCAT ~ MCM2 TGFBRT ~ MCM3 MCM3  CDC6
5 EGFR GPRASP1  ACTA1 PLK1 CDC7  MCM3
[§ MCM2 CAV1 GRB2 TUBB MCM10 CD247
7 NDC80  CCNA2  CTINNBT ~ MCMI10 MCM2  CD4

8 MAPK1T  JAK2 EP300 GAB2 YEST cbC7
9 MCM3  STATSB  ACTB MCM2 S100B MCM7
10 SKP2 MAPK1  CCDC85B (D247 DHX9  NDC80
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cell cycle into a different functional status in cancer
cells compared to normal cells [18]. The pathway ana-
lysis result suggests that the genes top-ranked by NGP-
NR, the Taylor method, RIF1 and RIF2 may be associated
with the different functional status of cell cycle process be-
tween lung cancer and normal samples.

It is interesting to see that the top ranking genes of
NGP-ND in breast cancer patient datasets and the top
ranking genes of NGP-NR in NSCLC patient datasets
are overlapped (Table 1 and 3). We selected the over-
lapped genes-PLK1, MCM2, MCM3, MCM7, MCM10
(ranked 13 by NGP-NR in NSCLC patient datasets) and
SKP2 to investigate their functions in cancer. In either
breast cancer or NSCLC patient datasets, we screened
their DE subnets (see methodology of NGP in Materials
and Methods for the definition of “DE subnet”) in inde-
pendent datasets and selected PPIs that appeared in
more than one datasets to construct a network (Figures 1
and 2). We call the network as PLK1-MCM complex-
SKP2 subnet for short. Thirty one genes are overlapped
in the PLK1-MCM complex-SKP2 subnets of breast can-
cer patient datasets (37 genes in total) and the one of
NSCLC patient datasets (42 genes in total). David func-
tional annotation analysis showed 75% genes of the
PLK1-MCM complex-SKP2 subnet in breast cancer pa-
tient datasets and 70.7% genes of the PLK1-MCM
complex-SKP2 subnet in NSCLC patient datasets are
involved in the Reactome pathway of “Cell Cycle, Mi-
totic”. Expression of the interacting genes in the PLK1-
MCM complex-SKP2 subnet of breast cancer patient
datasets is positively correlated in ER positive samples
and ER negative samples (Figure 3A). The interacting
genes’ expression in the PLK1-MCM complex-SKP2
subnet of NSCLC patient datasets is weakly positively
correlated or negatively correlated in normal samples
but positively correlated in lung cancer samples
(Figure 3B). Expression of the genes in the PLK1-MCM
complex-SKP2 subnet of breast cancer patient datasets
is up regulated in ER negative samples (Figure 3C); ex-
pression of the genes in the PLK1-MCM complex-SKP2
subnet of NSCLC patient dataset is up regulated in lung
cancer samples (Figure 3D). These results suggest that
the genes in the PLK1-MCM complex-SKP2 subnets
coordinately work in breast cancer and lung cancer sam-
ples but not normal samples.

MCM2-7 are eukaryotic replicative helicases, they un-
wind DNA double strands in DNA replication process
[19]. Ge XQ et al. [20] demonstrated that: 1). Inhibiting
the expression of MCM5 with siRNA will reduce chro-
matin bound MCM2, MCM3, MCM5, MCM6, MCM?7
~50%, but this will not obstruct DNA replication in nor-
mal cells; 2). When cells suffer from replicative stress
and replicative forks are slowed or stalled, this will make
cells not survive. Their result suggests that cells may
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Figure 1 PLK1-MCM complex-SKP2 subnet in breast cancer patient datasets.
-

depend on excess MCM2-7 to efficiently replicate DNA
when replicative forks are slowed or stalled. PLK1 is a
marker of cellular proliferation, and plays important
roles in cancer development [21]. High level of PLK1 ex-
pression is detected in NSCLC and other tumors [22].
Trenz K et al. [23] showed that: 1). Plx1, the Xenopus
orthologue of PIkl, is dispensable in unchallenged
chromosomal DNA replication; 2). When cells suffer
from DNA replication stress and forks are stalled, Plx1
will bind with MCM2-7 to promote DNA replication.
The genome of tumor cells is highly unstable. Many
DNA lesions exist in tumor genome and they would
normally interfere with replication progression. The co-
ordination of PLK1, MCM complex and their interacting
genes (Figure 1 and 2) might driver DNA replication for-
ward, overcoming the effects of replication stress in
breast cancer and lung cancer cells.

SKP2 plays roles in the transition of cell cycle and
behaves as an oncogene [24]. Lin HK et al. demonstrated
that under the oncogenic condition (e.g., aberrant proto-
oncogenic signals or inactivation of tumor suppressor
genes) inactivation of Skp2 will cause cell senescence,

but in normal condition inactivation of Skp2 will not
influence the senescence of cell [25]. With the work of
Lin HK et al. and our results, it is suggested that SKP2
promotes the transition of cell cycle in cancer but not
normal cells.

With above results, it is suspected that PLK1, MCM
complex, SKP2 and some of their interacting genes
(Figure 1 and 2) may play important roles to promote
cell cycle related processes in cancer but not normal
cells. They could be considered as the promising can-
didates of drug targets for cancer therapy.

Discussion

In this paper, we have developed a method named Net-
worked Gene Prioritizer (NGP), to prioritize cancer-
associated genes. We compared the performances of
NGP with 3 existing methods—HKR, the Taylor method
and RIF. The results showed NGP performs better than
the compared methods. The different models (NR and
ND) make it be able to produce stable top-ranking genes
and detect genes in the cancer associated pathways in
breast cancer and lung cancer patient datasets. RIF2

-
N
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Figure 2 PLK1-MCM complex-SKP2 subnet in NSCLC patient datasets.
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Figure 3 Expression correlation and differential expression of genes in the PLK1-MCM complex-SKP2 subnets. A, In NGP-ND, PPIs are
weighted by the absolute average of Spearman coefficient of interacting genes’ expression in ER positive and ER negative samples. The weights
of all the PPIs in the PLK1-MCM complex-SKP2 subnet of breast cancer patient datasets are displayed. B, In NGP-NR, PPIs are weighted by the
absolute difference of Spearman coefficient of interacting genes’ expression in lung cancer and normal samples. The weights of all the PPIs in the
PLK1-MCM complex-SKP2 subnet of NSCLC patient datasets are displayed. C, The differential expression of genes in the PLK1-MCM complex-SKP2
subnet of breast cancer patient datasets is displayed by —log(p), where p is estimated by t test. Genes that are up regulated and down regulated
in ER negative samples are displayed in upper and lower right quadrant, respectively. D, The differential expression of genes in the PLK1-MCM
complex-SKP2 subnet of NSCLC patient datasets is displayed by —log (p). Genes that are up regulated and down regulated in lung cancer

succeeds in producing stable top-ranking genes and
detecting genes in the cancer associated pathways in
breast cancer patient datasets. The other methods fail
in breast cancer and lung cancer patient datasets.

NGP outperforms HKR, the Taylor method and RIF
because: 1). In HKR, network is static and may not re-
flect the specific condition under the study. So the sys-
tematic bias favoring highly connected genes makes
HKR always rank certain genes at top positions no mat-
ter what gene expression data is input. In NGP, the PPIs
are weighted by gene expression correlations to reflect
the network dynamics under the study. 2). The Taylor
method considers network variations but doesn’t con-
sider their effects on gene expression. The top priori-
tized gene by this method may not play important roles
in the disease because its network variations may have
little effects on the expression of its interacting genes. In
NGP-NR, the effects of network variations are measured
by the differential expression of interacting genes. 3). Al-
though RIF and NGP-NR both consider network varia-
tions and their effects on gene expression to prioritize
disease-associated genes, they adopt different models to
integrate gene expression and network. In RIFE
prioritization of the candidate gene depends on the

network variations of the candidate gene with DE inter-
acting genes and their effects on the expression of the
DE interacting genes. But the GSEA strategy facilitates
NGP-NR to consider the network variations of the can-
didate gene with all its interacting genes and their effects
on the expression of the interacting genes. NGP-NR
considers more information about candidate genes’
interacting genes than RIF. Moreover, besides the situ-
ation RIF considered (a cancer-associated genes cause
the differential expression of their interacting genes by
NR); NGP considers one more situation that a disease-
associated gene’s dysregulation of expression can lead to
the differential expression of its interacting genes when
there is no network rewiring. NGP-ND is developed to
prioritize genes in this situation.

However, in our experiments, we can see that the two
models of NGP (NR model and ND model) do not work
equally well on different applications. By their definition,
we can see that the two models aim to detect the differ-
ent types of cancer-associated genes. The problem of
NGP is that how to choose a proper model (NGP-NR,
NGP-ND, or them both) to prioritize cancer-associated
genes when we don’t know the molecular interaction
mechanisms of cancer-associated genes with their
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interacting partners between compared conditions. Our
experiences suggest that a judgment can help us find the
proper model: whether the model adopted can produce
stable top ranking genes between independent datasets.

Additional effort is needed to improve NGP. Genetic
studies identify genetic variation locations (e.g., copy
number variations or SNPs) involved in disease and pro-
vide candidate genes associated with the disease. By in-
vestigating the impacts of candidate genes’ variations on
their own and their target genes’ expression, people can
discover disease-associated genes. Recently, Akavia UD
et al. integrated gene expression and copy number vari-
ation data to uncover drivers of cancers [26]. With some
modifications NGP can also be used to rank candidate
genes inferred from other studies such as genetic
studies.

Conclusions

In this paper, we have developed a method named NGP,
to prioritize cancer-associated genes. The results showed
NGP performs better than the existing methods.

Methods

Data and data pre-processing

Seven microarray datasets are used in this paper (Add-
itional file 9: Table S9), including 4 independent breast
cancer patient datasets: gse5460 [27], gse7390 [28],
gse21653 [29] and gse2034 [30], and 3 independent
NSCLC patient datasets: gse19804 [31], gsel8842 [32],
gsel0072 [33]. All datasets were downloaded from Gene
Expression Omnibus (GEO) database [34]. Each micro-
array dataset was processed as following: at first, raw
data were processed by RMA [35]; then, the samples
were classified into different classes (e.g., ER positive
and ER negative in breast cancer patient datasets). How-
ever, in the breast cancer patient datasets with histo-
logical type information, only the samples of ductal type
were selected for further analyses.

For each dataset, gene expression profiles were processed
as following: at first, the ambiguous probe sets (mapped to
more than one gene) were filtered out; then, differential ex-
pression analysis of probe sets between compared samples
was conducted (¢ test, two tails, unequal variation); at last,
for each gene, the probe set with most significant p value
was selected and the probe set’s expression level was
assigned as the gene’s expression level. The reason to as-
sign gene expression in this way is that we assume gene ex-
pression has significantly changed between compared
samples. Thus, the expression of the probe set with most
significant p value between compared samples is the best
candidate to represent the expression of the gene.

Protein-protein interactions were downloaded from
HPRD [36] database (Release 9). Excluded self-interactions,
9453 proteins and 36867 PPIs were selected.
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Pre-selection of candidate genes

Candidate genes were pre-selected as hub genes in affy
133a PPI network; the hub genes are genes with more
than 15 interacting genes in the PPI network; affy 133a
network is the PPI network constructed by the genes in
both Affymetrix HGU-133A chip and PPIs of HPRD.
We pre-selected candidate genes in this way because: 1).
It is believed that genes with many interacting partners
in the network tend to play important roles in cell, for
example, they tend to be essential genes or disease-
associated genes [37]. 2). In NGP, it is required that a
candidate gene should have more than 15 interacting
genes in the network (please see NGP methodology for
detail). To make sure the different methods start from
the same candidate genes set, the hub genes are deter-
mined as the genes with more than 15 interacting genes
in PPI network. 3). PPI network is constructed by genes
both in microarray and PPIs of HPRD. Two types of
microarray datasets, Affymetrix HGU-133A and Affyme-
trix HGU-133Plus2, are used in this paper. Affymetrix
HGU-133Plus2 covers the probe sets of Affymetrix
HGU-133A. In the experiments on different types of
microarray datasets, different PPI networks will be used.
To make sure the experiments of different types of
microarray datasets start from the same candidate gene
sets, the hub genes are determined as the hub genes in
affy 133a PPI network. Totally, 953 genes were selected.
Then in each method, the pre-selected genes were fur-
ther processed to get priority list of the method.

Brief introduction of HKR, the Taylor method and RIF
HKR prioritizes genes based on the differential expres-
sion of their neighboring genes [3]. A characteristic of
HKR is that it takes the random walk strategy to detect
candidate genes’ neighboring genes in the network. Two
inputs-network and gene differential expression are
required to run HKR. The output of HKR is a gene rank
list. In our experiments, network is the HPRD network.
Gene differential expression is assigned as —log(p),where
p was estimated by ¢ test of gene expression between
compared samples (two-tailed, unequal variation). Please
refer PINTA [7] for more information.

The Taylor method prioritizes genes based on the net-
work variations of candidate genes with their interacting
genes between compared samples [11]. Gene expression
correlation is used to measure the dynamic action of the
PPIs. The difference of gene expression correlations of
the PPIs in compared samples is used to test whether
the interactions have been varied. In our experiments,
the HPRD network was used. Pearson Coefficient was
used to measure the dynamic action of the PPIs. Candi-
date genes were ranked by averaged absolute difference
of Pearson Coefficient of the candidate genes with their
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interacting genes between compared samples. Please
refer the Taylor method [11] for more information.

In RIF, prioritization of a candidate gene depends on
the network variations of the candidate gene with DE
interacting genes and their effects on the expression of
these DE interacting genes. Two alternative measures of
RIF are computed as equation 1 and 2. Then, the RIF1
and RIF2 of all the candidate genes are Z-score normal-
ized, respectively.

1 Jj=npE 1 5
RIF1; =— Y = (elf — e2,2> (rly —r2;) (1)
"pE j=1 2
J=HDE 9 2
RIF2; = — [(el, X rl,,-) — (62; X 7"21‘1‘) } (2)
MDE =3

where npe is the number of DE genes that candidate
gene i interacted; el; and e2; are the average expression
of gene j in compared samples, respectively; r1; and r2;
are Pearson Coefficient between gene i and j in com-
pared samples, respectively.

In our experiments, the HPRD network was used.
Gene differential expression was measured by ¢ test
(two-tailed, unequal variation). False discovery rate
(FDR) was used to correct for multiple comparisons. DE
genes were selected by FDR < 0.01. We ranked candidate
genes by their normalized RIF1 scores and RIF2 scores.

Networked Gene Prioritizer
We introduced NGP with a flowchart (Figure 4).

PPI network

PPI network was constructed by genes both in micro-
array and in PPIs of HPRD. It is defined as G=(V,E),
where V' is the set of genes, E is the set of interactions.

Weighted PPl network

PPIs were weighted differently in NR and ND models. In
NR model, it is assumed that cancer-associated genes
cause the differential expression of its interacting genes
by changing the genes it interacts. In ND model, it is
assumed that cancer-associated gene’s dysregulation of
expression can lead to the differential expression of its
interacting genes when there is no network rewiring. We
used gene expression correlation to measure the dy-
namic action of the PPIs in different samples. The differ-
ence of gene expression correlations between compared
samples was used to test whether the PPI has been chan-
ged. So in NGP-NR, PPIs were weighted by absolute dif-
ference of Spearman coefficient of the interacting genes
in compared samples (‘Argt/’). In NGP-ND, the consist-
ently high gene expression correlations in compared
samples suggest there is no network rewiring between
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PPI network

(Gene expressions between)

compared samples

(Weighted PPI network)

ubnets enriched for PPIs with high welg@

Differential gene expressions
between compared samples

Subnets enriched for DE gene)

scores in two steps of subnet analyses

C’rioritization of candidate genes by Z)

Figure 4 Flowchart of NGP. PPI: protein-protein interaction; DE
genes: differentially expressed genes.

the compared samples. So the PPIs were weighted by
absolute average of Spearman coefficient of the interact-
ing genes in compared samples (‘T‘Ei/|). |r75i/.| and ’Argi/’
were calculated by equations 3-5.

re = Zk(xik —%;) (x/k — ‘f/) (3)
i — ) S — )

where E;; is the PPI between gene V; and gene V; k is the
kth sample; V; and V; are ranked by their expressions in
the samples respectively, and X is the rank of V; of kth
sample, X is the rank of V; of kth sample; x;, ¥; are the
average ranks of V; and V; in the samples, respectively.

1
= 5 ’rEi/'l + rEijZ‘ (4)
|Arfu| - rEr/2| (5)

Where rg, and rg, represent the Spearman coeffi-
2 i

‘ TEj

cients of E;; in compared samples respectively.

However, we first filtered out the PPIs that had been
changed between compared samples in NGP-ND. We
calculated the |Arg,| of each PPI, then we permuted
samples labels (e.g., lung cancer or normal) 10000 times
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, at last the PPIs whose
|Ar5”.| are larger than 90% random |Ar5i/.’ were filtered

and generated a random |Ar5ﬁ

out.

Subnets enriched for the PPIs with high weight

In this step, the genes with more than 15 interacting
genes in the weighted network were selected as candi-
date genes. Candidate genes’ subnets consist of them
and their interacting genes. Then the subnets were
screened for detecting the subnets enriched for the PPIs
with high weight. It was conducted by the GSEA [38]
strategy: at first, PPIs in weighted network and candidate
gene’s subnet (S) were regarded as background set and
objective set, respectively; next, PPIs in background set
were ranked by their weight; then, enrichment score
(ES) of the subnet was calculated as the maximum devi-
ation of Pj;,(S,i) and P,,(S,i) when i walked in the
ranked PPIs as following:

5 lof
Y

Phit(S7 l) =
E€S jsi Nr
where
P
Ni = Z |”;‘ (6)
E€S

1
Ppiss(S,0) = —_— 7
$0= 3 x; )
where E; is the jth PPI in the ranked PPIs; 7; is the
weight of the jth PPI in background set; P is a parameter
and set as 1; N is the number of PPIs in E; Ny is the
number of PPIs in the subnet S.

The candidate genes were selected as the genes with
more than 15 interacting genes in the weighted network
because in GSEA the min size of objective sets is 15.
Statistical significance of ES was estimated with Z score.
It was conducted in this way: at first, we permuted the
weights of PPIs in weighted network and calculated ES;
next, we conducted the permutation 1000 times to gen-
erate a random ES set ; then we estimated the Z score of
ES of the subnet (Zs) as

ES — E!
7="0F 0

Where ES is the mean of the random ES set; S is the
standard deviation of the random ES set.

At last, we trimmed the subnet by filtering out its PPIs
that didn’t contribute to ES.

Subnets enriched for differentially expressed genes.
The trimmed subnets (Sg;,meq) Were further screened
for detecting the subnets enriched for DE genes. It was
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also conducted by the GSEA strategy: at first, genes in
microarray (L) and the trimmed subnet were regarded as
background set and objective set respectively; next,
genes in the background set were ranked according to
—log(p),where p was estimated by ¢ test of gene expres-
sion between compared samples (two-tailed, unequal
variation); then, ES of S, ;umea Was calculated as the
maximum deviation of P;/(S;.immear £) and Pis(Spripmmeds
i) when i walked in the ranked genes.

P
. 7
Phit(Strimmed7 l) = t\i[’ ,
GESimmeadsi ©R
where
P
Mg = Z |ri| (9)

8§ EStrimmed

Py (Strz’mmed7 l) = (10)

Z 1
&Estrimmed:jSiM N MH
where g; is the jth gene in the ranked genes; r; is the
magnitude of differential expression of the jth gene; P is
a parameter and set as 1; M is the number of genes in L;
My is the number of genes in S;,meq-

Statistical significance of ES of the trimmed subnet
was estimated by Z score. The Z score was estimated on
the similar way that we did in “Subnets enriched for PPI
with high weight” section.

At last, the trimmed subnet (S,.,meq) Was further
trimmed by filtering out its genes that didn’t contribute
to ES. The trimmed S;.;,,neq is defined as DE subnet.

Prioritization of candidate genes
Candidate genes were prioritized according to the sum
of Z scores they got in above two steps of subnet ana-
lyses (equation 11). To make them comparable, Z scores
of different types of subnets were Z-score normalized re-
spectively.

ZScombinedi = Z;i + Z;

rimmed,

(11)

i represents the ith candidate gene, Z; ; is the normal-
ized Zg of the ith candidate gene, Zsmeq ; is the nor-
malized Z,,,meq Of the ith candidate gene.

Stability analysis of top-ranking genes between
independent datasets

The aim of stability analysis of top-ranking genes be-
tween independent datasets is to investigate whether the
methods can produce stable top-ranking genes between
independent datasets. For the priority lists in two data-
sets A and B, if most of the top-ranking genes in A are
also the upper ranking genes in B, we regard the top-
ranking genes in A are stable in B. If the top-ranking
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genes in A are stable in B and vice versa, we regard the
top-ranking genes are stable between A and B. The sta-
bility analysis was also conducted by the GSEA strategy.
Objective set was the top-ranking genes in one dataset
(e.g., A). Background set was the candidate genes in the
other dataset (e.g., B). The parameter P of GSEA was set
as 0 and the random time was set as 1000. The signifi-
cance of the observed ES was measured by nominal p,
which was estimated by comparing the observed ES with
a set of randomized ES. Please refer the original paper of
the GSEA method [38] for the detail of the estimation of
nominal p.
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