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Abstract

calls for automation.

annotations for non-annotated model elements.
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Background: To enable automatic searches, alignments, and model combination, the elements of systems biology
models need to be compared and matched across models. Elements can be identified by machine-readable
biological annotations, but assigning such annotations and matching non-annotated elements is tedious work and

Results: A new method called “semantic propagation” allows the comparison of model elements based not only
on their own annotations, but also on annotations of surrounding elements in the network. One may either
propagate feature vectors, describing the annotations of individual elements, or quantitative similarities between
elements from different models. Based on semantic propagation, we align partially annotated models and find

Conclusions: Semantic propagation and model alignment are included in the open-source library semanticSBML,
available on sourceforge. Online services for model alignment and for annotation prediction can be used at http://

Background

Systems biologists aim to understand the dynamic beha-
viour of cellular pathways with the help of quantitative
models. To construct large-scale models flexibly from
existing parts, models need to be retrieved, compared,
and combined. For this purpose, modellers need to find
and match equivalent model elements, for instance, vari-
ables describing identical metabolites. In the future,
such alignments should be automated or, at least, sensi-
ble suggestions should be provided by software.

A simple way to match model elements is by compar-
ing their names or identifiers as they appear in the mod-
el’s code. Greedy alignments and model combination
based on element names have been used in [1-4], but
these approaches may fail if models stem from different
sources and therefore use different naming schemes. A
safer and more general approach is to compare model
elements by the biological objects or concepts they
stand for. Semantic annotations, for instance the MIR-
IAM-compliant annotations [5] used in the Systems
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Biology Markup Language (SBML) [6], provide a quali-
fied naming scheme by relating model elements to
entries in public web resources or ontologies. Knowl-
edge from these ontologies can be used to compare
alike biological objects and to define quantitative simi-
larity scores between them [7,8].

Obviously, such comparisons will fail if annotations
are missing. However, there are also algorithms that
compare biological networks by their structures and can
therefore handle missing annotations. Since the compar-
ison of graph structures is computationally hard [9],
these algorithms either yield approximative results [10]
or are restricted to models having a simple structure
like a path [11,12] or a tree [13,14]. The initial compari-
son of network nodes, which is later refined using struc-
tural information, also varies from approach to
approach. While some of them use plain node labels,
others compare nodes by chemical structures [10,15] or
semantic information like EC numbers [16] or Gene
Ontology terms [17]. With this information, they can
either refine the alignments [18] or speed up the com-
putations by reducing the search space [19]. A recent
review on these and similar works can be found in [20].
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In this article, we propose new heuristics for aligning
network models with missing annotations. The basic
idea is simple: a reaction, for instance in an SBML
model, refers to its substrates and products. If two reac-
tions are not annotated but their reactants are, we can
trace the reactants, evaluate their annotations, and use
this information for comparing the reactions. This logic
can be applied whenever model elements show cross-
references. Instead of collecting and combining this
information step by step for each element, we developed
a method to propagate all semantic information simulta-
neously across the network. Starting from an original
direct similarity score, which compares elements only by
their own annotations, we obtain a new inferred similar-
ity score that incorporates information obtained from
other elements.

Two applications of semantic propagation are pre-
sented in this article. The first one is the improved
alignment of systems biology models. The second one is
a method for predicting missing annotations in a model
by aligning it to fully annotated network models. Our
present implementation, which is a part of the tool
semanticSBML [21], works for SBML models and for
specific similarity measures [8]. However, semantic pro-
pagation is a general approach that applies to a wide
range of network models and similarity scores and that
can be combined with different model matching algo-
rithms, including the ones mentioned above.

Results

Algorithm

We have developed methods for aligning partially anno-
tated biological networks and implemented them for
SBML models with MIRIAM-compliant annotations. A
model alignment is based on two kinds of knowledge:
similarities between model elements, which are com-
puted from semantic annotations, and references
between elements within each model (called here the
“network structure”).

The alignment of two models is computed in two
steps. In a first step, semantic information is propagated
across both network structures. This ensures that all ele-
ments, even elements lacking annotations, obtain
semantic information, which makes them comparable
between models. This claim of improved comparability
is illustrated with an example of a propagation of “col-
our information” shown in Figure 1. Using the network
structure, we refine the direct similarity o and obtain an
inferred similarity measure y, which can be nonzero
even if one of the two compared elements does not
carry any annotations.

In the second step, the actual model alignment, ele-
ments are matched between two or more models
according to their inferred similarities. We use a greedy
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Figure 1 Propagation of colour features. Feature propagation in
a small example network (circles: compounds; squares: reactions). A:
Network nodes carry feature vectors v = (r, g, b)" shown by RGB
colours. Feature vectors for non-annotated elements are unknown
and set to zero by definition (nodes shown in grey). B: After feature
propagation, all nodes have distinct feature vectors, i.e. colours.
Matching nodes by their colours would now allow to self-align the
entire graph unambiguously.

heuristic that arranges similar elements into tuples, sup-
posed to be matched: all elements in a tuple have the
same type (e.g. reaction), stem from different models,
and each element is part of one tuple (possibly of size
1). Elements within a tuple have to show a high similar-
ity, while elements in different tuples are supposed to be
dissimilar.

Feature propagation

The semantic propagation can be carried out in two
ways, as feature propagation (FP) or as similarity propa-
gation (SP). For feature propagation, each element has
to be associated with a feature vector. The components
of this vector (usually numbers between 0 and 1)
describe how closely the element resembles certain bio-
logical concepts. A model species describing a phos-
phorylated MAP kinase, for example, could carry
annotations referring to UniProt entry P28482 (MAPKI1)
and KEGG Compound entry C00562 (Phosphoprotein).
The feature vector corresponding to this species would
contain mostly zeros except for the two entries specify-
ing the relation to these web resource entries. Two ele-
ments are similar if their feature vectors point to similar
directions, i.e. if they are related to similar biological
concepts like a phosphorylated and a non-phosphory-
lated MAP kinase. The size of the feature vector
depends on the number of biological concepts consid-
ered, e.g. the entries of all web resources being referred
to in BioModels Database [22].

In feature propagation elements inherit semantic
information from their neighbour nodes, which might
contribute to the definition of the elements’ identity.
The inferred feature vectors do therefore not only char-
acterise the model element itself, but also its surround-
ing elements in the network. In the case of a reaction
element, they do not only describe the reaction, but also
its reactants, enzyme, or regulators. The transition from
the original to the inferred feature vectors is shown by
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an abstract example in Figure 1A. In this example the
colours red, green, and blue correspond to the features
in a colour vector of size three, which encode for
semantic information. The propagation of this informa-
tion (Figure 1B) leads to mixed colours in the center of
the network, which give each node its own identity and
allow for a unique self-alignment of the network. The
mathematical details of feature propagation are
explained in the Methods section.

Similarity propagation

The second approach, similarity propagation, is compu-
tationally harder, but also applies to similarity measures
that are not based on feature vectors. In contrast to FP,
we do not consider single model elements, but pairs of
elements from different models to be compared, e.g. the
reactions x and y from Figure 2A. We require that, if
two such elements refer to other elements that share a
high similarity, this will increase their own similarity
(Figure 2B). Our method determines these similarities in
a self-consistent manner and uses a propagation process
similar to feature propagation. In contrast to feature
propagation the process is not carried out on the reac-
tion network, but on an element pair graph. In this
graph each node represents a pair of elements, one from
each model. Two nodes are connected if the corre-
sponding elements are connected in the reaction net-
works. The mathematical details are explained in the
Methods section and a mathematical relation between
feature and similarity propagation is discussed in addi-
tional file 1.

Annotation prediction

Model alignments can be used to complete missing
annotations in a model. To do so, one may align the
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Figure 2 Similarity propagation. A: Alignment of two models
describing the same biochemical reaction (circles: compounds;
squares: reactions). The reactants a and p have a known similarity
0, (dashed line; accordingly for products b and q), while the
similarity between the reactions x and vy is initially unknown. To
determine how well the reactions match (dotted line), we compute
the inferred similarities y°°. B: Propagation graph. Red arrows show
how information is propagated from species to reactions (a
potential propagation back is shown in blue). The similarity
between the reactions x and y is supported by two paths (x < a
— p—>yand x <« b < g—y). The respective terms azo'ap and
0’0y, yield the inferred similarity 1//;;,) =a? (O’ap + qu)‘
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model to a large, annotated map of all physiological
pathways and copy annotations from elements in the
map to the model elements they have been aligned to.
Even if not all of these annotations are correct, they
may still be presented to users as suggestions during
manual model annotation.

Our semanticSBML web page for model annotation
(http://semanticsbml.org) provides this functionality and
uses BioModels Database as a replacement for the large,
annotated pathway map. The idea behind the annotation
prediction is to apply feature propagation to a sparsely
annotated model and all BioModels. Afterwards, the
similarities between non-annotated model elements and
all database elements are calculated. Finally, the annota-
tions from the most similar elements contained in the
database are presented to the user as suggestions for
new annotations. Details of this procedure are described
in the Methods section.

Testing

Self-alignment of a linear chain

To illustrate how semantic propagation can improve
model alignment, let us consider a linear metabolic
pathway in which only the first and the last species are
annotated (see Figure 3). If we align two copies of this
pathway based on direct similarities, only these two ele-
ments can be matched. With the help of feature propa-
gation or similarity propagation, all reactions and
metabolites are matched correctly.

Alignment between MAP kinase pathways

As a real-world example, we aligned two well-annotated
signal transduction models, model 9 [23] and model 11
[24] from BioModels Database. These models contain
elements that represent proteins in different phosphory-
lation states but carry identical annotations. An align-
ment based on direct similarities would not be able to
distinguish between these different states, but feature
propagation and similarity propagation both manage to
improve the results (see Figure 4).

In practice, models are often less carefully annotated
than these example models and the quality of a model
alignment will depend on the fraction of annotated ele-
ments. To study this in detail, we considered the same
two models, removed some of the annotations in Bio-
Model 9 randomly, aligned the models, and scored the
quality of the alignments by precision and recall with
respect to a manually chosen alignment. This procedure
was repeated 25 times for each number of removed
annotations. Figure 5 shows the results: without seman-
tic propagation, both precision and recall increase
almost linearly with the number of annotations present.
This is not surprising because the only possible reason
for alignment errors are ambiguities caused by elements
carrying identical annotations. If we use feature or
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Figure 3 Alignments of computational models. A: Linear pathway; only the first and the last species are annotated. B: Self-alignment of the
linear pathway. Depicted are the pairwise element similarities according to the three different similarity measures. Each table entry contains six
numerical values. The entries in the upper line denote the direct similarity o (blue), the similarity y/p obtained by feature propagation (red), and
the similarity y°° from similarity propagation (green). Values between 0 and 1 are shown by colour intensities. Similarities between different
types of elements (e.qg. species and reactions) were set to 0, while w* values larger than 1 were set to 1. The lower three entries show the
element matching obtained from these similarities. Thick boxes indicate the correct matching.
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similarity propagation, the quality increases more
rapidly. As expected, the mean recall - i.e. the fraction
of correct matches recovered - is improved because pre-
viously incomparable pairs can now be matched. The
precision - counting how many predicted matches are
actually correct - depends on how many elements are
annotated. If many annotations have to be guessed, both
inferred similarity scores yield a lower precision than
the direct similarity. Nevertheless, with a higher number
of annotations present, both methods can surpass the
simple matching. SP outperforms FP for both precision
and recall, but its computational effort is also much
higher. Similar tests with different models lead to similar
results (data not shown).

Despite the indifference of the results with respect to
the models which are compared, the quality of the
results varied in between examples in which only species
or reaction annotations had been removed. The more

detailed the annotations in a specific subset of model
elements was, the more dramatic the decline in match-
ing quality has been after their removal. For a deeper
analysis of the matching quality after the removal of
either species or reaction annotations from BioModel 9,
the reader is referred to additional file 1.

Automatic suggestion of element annotations

In order to test the quality of our annotation predic-
tion heuristic, we applied it to BioModel 61, a well-
studied model of glycolysis [25]. For our first evalua-
tion, we removed all annotations from the model and
tried to re-predict them via the web interface. The test
confirms that the predictions are not perfect, but the
top 10 results usually contain relevant annotations. In
general, the predictions become better as the fraction
of correctly annotated model elements increases and as
we scan more of the top results for the correct
annotation.
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Figure 4 Alignment of MAP kinase cascades. Alignment of BioModels 9 [23] and 11 [24] as shown in Figure 4. The two alignments based on
inferred similarities contain previously unmatched pairs (E2, RAFPH), (P_KKK, RAFp), and (KKPase, MEKPH) and some previously false matches are
swapped. These incorrect matches resulted from the fact that elements represent proteins in different phosphorylation states but carry the same
annotations. The inferred similarity measures differ in two details: the matching of RAF and RAFpRAFPH, which is correctly predicted from
similarity propagation and the matching of Reaction19 and Reaction25, which is correctly obtained from feature propagation (data not shown).
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To study this systematically, we randomly removed
annotations from some of the elements, predicted new
annotations for them, and checked if the correct annota-
tion appeared in the top results. As shown in Figure 6, a
significant number of annotations were predicted correctly

using our propagation schemes. The results suggest that
the probability of predicting an annotation correctly
increases linearly with the number of annotations present
in the model. Considering more of the topmost results did
not strongly increase the quality of the prediction. This
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shows that correct annotations, if they can be predicted at
all, will rank relatively high in the results.

Implementation

We have implemented both propagation methods in
Python. The source code of this implementation is
included in our library semanticSBML, which is freely
available (GPL 3) from SourceForge (http://sourceforge.
net/projects/semanticsbml/) and can be used to e.g.
annotate and merge SBML models.

Furthermore, we have included the semantic propaga-
tion methods into our web tool semanticSBML http://
www.semanticsbml.org. First, this web tool allows users
to visually compare the results of the three methods to
compare model elements (direct similarity, feature pro-
pagation, and similarity propagation). Second, for model
merging, all three methods can be used to suggest an
initial matching of model elements. Third, for model
annotation, new element annotations based on propa-
gated features from BioModels will be suggested after
the “Predict annotations” button has been clicked.

Discussion
Annotating the elements of systems biology models is
laborious. Interactive software can facilitate this work by

keyword searches and by proposing annotations based
on element names. Our software semanticSBML [21,26]
helps modellers to annotate and combine SBML models
based on MIRIAM-compliant annotations [5]. In the
present work, we addressed an important open issue,
the alignment of models with missing annotations.

As the examples have shown, element matchings
based on our inferred similarity measures perform well
in practice. In our tests, semantic propagation increased
the recall of correct element pairs, but at the price of a
lower precision if less than half of the elements were
annotated. Our two approaches, feature and similarity
propagation, differ slightly in their quality, but also in
their computational costs. While similarity propagation
tends to yield better results, the computational effort is
much higher than in feature propagation (O(IM|? - N|?)
instead of O(|M|? + [N|3), where |M| and |N| denote
the numbers of elements in the two models).

We furthermore showed how new annotations for
model elements can be suggested based on the annota-
tions already present in a model and an annotated path-
way map. For our predictions, we have selected the
BioModels Database as a resource for highly curated
annotation data. Analyses using other resources (see addi-
tional file 1 for details) show no loss in prediction quality
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and we plan to extend our background pathway map by
using various other pathway resources in the future.

The details on how information is transfered during
semantic propagation depends on the choice of propaga-
tion weights. In our tests, changing their values within
reasonable ranges had little influence on the model
alignment. In any case, the scaling factor A (see Meth-
ods) allowed to avoid an overly strong propagation,
which might lead to spurious similarities. As soon as a

sufficient number of predefined model matchings will be
available as a gold standard, the propagation weights
may be further improved by machine learning.

Conclusions

Compared to existing approaches, our methods for
model alignment have three advantages. First, by proces-
sing semantic annotations instead of ad-hoc node labels,
we can compare models from different sources and
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compare elements with similar, yet different annotations.
Second, considering the network structure allows us to
distinguish between model elements carrying identical
annotations, e.g. proteins in different phosphorylation
states. Third, our similarity measures can be combined
with various structure-based model comparison algo-
rithms, e.g. [13]. Although our approach has only been
implemented for SBML models, it can be extended to
any computational models that include structural infor-
mation and semantic annotations.

Methods

Semantic similarity

The biological meaning of a model element can be
described with the help of annotations, which point to
entries in different web resources. Since different web
resources overlap in their content (e.g. ChEBI [27] and
KEGG Compound [28]), entries from different
resources can have the same biological meaning, i.e.
describe the same biological concept, e.g. as ChEBI
entry CHEBI:17925 and KEGG Compound entry
C00267 both describing B-D-glucose. Given a list of
biological concepts, we can describe the meaning of a
model element x, e.g. a species, a reaction, or a com-
partment, by a feature vector v,. This vector contains
non-zero values v, ; only for those biological concepts
that appear in the element’s annotations. If, for exam-
ple, element x has been annotated using the aforemen-
tioned ChEBI entry CHEBI:17925 or the KEGG
Compound entry C00267 (and assuming that the ;™
biological concept is describing -D-glucose), the value
of v, ; will be larger than zero. Similarities ¢ between
two model elements x and y can be computed by tak-
ing the cosine of the angle between their feature vec-
tors [29]

T,
e Vi V}’

= Ty
\/vxvx\/vyvy

setting 0y, = 0 if either vy, = § or vy = 0. This similarity
measure assumes that different biological concepts are
logically independent and completely dissimilar: the basis
vectors, each representing one concept, are orthogonal
and therefore share similarities of 0. To allow for potential
similarities between them, e.g. to allow for a non-zero
similarity between -D-glucose and D-glucose, we may
predefine similarities S;; between the biological concepts
and replace the scalar product by a quadratic form based
on the matrix S. The new similarity measure reads

T
v, Svy

Oxy =
\/ vISv, \/ V}SV},

(1)
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with o, = 0 whenever one of the elements is not
annotated [30]. For ways to derive such a matrix S, the
reader is referred to [8].

Propagation of semantic information

To compare non-annotated model elements by their
biological meaning (e.g. the reactions in Figure 2A), we
have developed two alternative propagation schemes. In
feature propagation (FP) elements receive information
about semantic annotations from their neighbours,
while in similarity propagation element pairs receive
information about pairwise similarities between neigh-
bouring elements. In both methods information is pro-
pagated along the references between model elements
(Figure 2B). The strength of information transfer is
determined by a |M| x |M| propagation matrix p™
where |M| is the number of elements in model M. The
sparse structure of this matrix reflects the connections
between model elements, and its positive, real-valued
entries pM determine the strength of the information
transfer between the different types of elements. For
instance, we may choose the values pM = o and pM = g
whenever a reaction x refers to a species a as its reac-
tant or product, and pM = 0 if a does not appear in
reaction x. The parameter o controls the information
transfer from species to reactions, while the parameter 3
controls information transfer in the opposite direction
(Figure 2B). To prevent semantic propagation between
unrelated reactions, we stop the propagation at cofac-
tors, which might be highly connected hubs in the net-
work structure. Therefore, we set pM = pM = 0 whenever
the annotations on a species a suggest that it is a cofac-
tor (see additional file 1 for details).

Feature propagation applies to all similarity scores
that are computed from feature vectors. For each direct
feature vector v,, we define a new inferred feature vector
w,, which is supposed to resemble the inferred feature
vectors of the neighbouring elements in the network
(see Figure 1B). It is defined by the equation

Wy = Ve + A ZaeM MW, ()

with A being a scaling factor which is determined
below. If an element x does not receive any information
from other elements (i.e. Y,em:.pM = 0), its inferred and
its direct feature vector are identical, i.e. w, = v,. In all
other cases, we add the inferred feature vectors of all
referenced elements, multiplied by their propagation
weights p,, and 2. To compute w, from Eq. (2), we con-
sider each feature i separately. We collect the i™ compo-
nents of all feature vectors v, in a column vector v:; and
the /™ components of all vectors w, in a vector w- .
With the |M| x |M| matrix R = (pM), each component



Schulz et al. BMC Bioinformatics 2012, 13:18
http://www.biomedcentral.com/1471-2105/13/18

of the vectors in Eq. (2) can be written as

Wy i = Vyi+ AR W, ;

= (I—AR) v, ®)

After choosing a scaling factor A that is smaller than
the inverse of the biggest absolute eigenvalue r of R
(e.gr = 21r ), we can replace the matrix inverse in Eq. (3)
by

Wy, = Z ()»R)kv*,i. (4)

k=0

The series expansion shows that the inferred feature
vectors can be obtained by summing up a number of
terms, describing how the direct features are propa-
gated step by step through the network, e.g. from com-
partments to molecular species, from reactants to
reactions, and so on. If information is propagated only
in one direction on an acyclic graph, these contribu-
tions can be computed successively and the infinite
series contains only a finite number of non-zero terms.
Moreover, the series expansion shows that the inferred
feature vectors are non-negative as long as the direct
feature vectors and the propagation weights are nonne-
gative. By collecting the vectors v-;, and w-; in matrices
V and W, the equations (4) for all elements i can be
joined into a single matrix equation

W= (I-2R)"'V. (5

In analogy to Eq. (1), the element similarity with
inferred features reads
w_fp _ WISWY
v \/WISW,C\/W};SW),

Similarity propagation

Our second scheme, similarity propagation (SP), works
for any similarity score. Given the direct similarities o,
(from Eq. (1) or elsewhere) between elements x in
model M and elements y in model N, we define the
inferred similarities by

M ,Sp N
w;}llj = O’xy + A Z IOxa wap ,pr (7)
aeM,peN

(6)

The idea is analogous to Eq. (2): the inferred similarity
w;f represents the direct similarity o,, plus the weighted
inferred similarities between all elements a and p to
which x and y refer. To solve Eq. (7), we merge double
subscripts (as indicated by brackets) and rewrite it as

Vi = o) + A Y Quayom Vi)
(@)
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where Q(xa)(yp) = Pappy. Using the vectors ¥ = (¥7))
and 0 = (O(xs) and the matrix Q = (Q(xa)(yp), the solu-
tion can again be written as

Y = (I-1Q) 0. (8)

Like in Eq. (4), if o is non-negative, A can be chosen
such that " is also non-negative. As an example, expli-
cit calculations of both similarity measures for a partially
annotated model of the phosphoglucoisomerase reaction
are shown in section 5 in additional file 1.

Analogy to diffusion processes

Feature propagation resembles a diffusion process on the
reaction network. Unlike diffusion in the strict sense, our
process is not symmetric and does not conserve mass.
Methods with a similar background idea have already
been successfully applied to assign protein functions in
protein-protein interaction networks [31,32].

Likewise, similarity propagation can be seen as a diffu-
sion-like process on a pair propagation graph in which
each node corresponds to a pair (x, y) of elements from
the two models. An example is shown in Figure 7. An
edge from node (a, p) to node (x, y) in this graph
(with weight ,oi‘gpylf,) means that semantic information is
propagated from a to x (with weight pM) and from p to
y (with weight p%) The matrix Q(ys)(,) Serves as a non-
symmetric, non-mass-conserving diffusion matrix for
this graph. To describe semantic propagation as a tem-
poral process on this graph, we may introduce a produc-
tion term o and a linear degradation term. We then
obtain the equation

Sy oyt —y,

whose stationary distribution is given by Eq. (8).

The structure of the pair propagation graph deter-
mines how information about element similarities can
spread during propagation. For instance, the graph in
Figure 7B shows that an initial matching between spe-
cies (edges 1, 2, 4, and 5) or between reactions (edge 9)
cannot lead to a matching between species and reactions
(edges 3, 6, 7, and 8) because they appear in separate
subgraphs.

Model alignment

A main task in model merging is to detect and combine
corresponding elements between models. In such a
model alignment the element matching has to be non-
ambiguous (an element cannot be matched to several
elements in another model) and transitive (if x, y, and z
are elements from three different models and if the
pairs (x,y) and (y,z) are matched, the pair (x,z) is
matched automatically).
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Figure 7 Similarity propagation resembles diffusion of a graph.
A: Propagation graph from Figure 2, redrawn with labels for
element pairs (diamonds). B: Similarity propagation on a pair
propagation graph. Nodes in the graph correspond to element pairs
in the original networks. Edges indicate that information can be
propagated simultaneously for both elements in a pair. For instance,
similarity information can be propagated from the pair (a,p) to the
pair (xy), resulting in the edge 1 — 9 with a weight o - a. C:
Feature propagation entails a similar process with more paths for
propagation. For instance, similarity information could now be
propagated from the pair (a)y) to the pair (x,y), resulting in the edge
5 — 9 with weight o - 1.

Given two models M and N with elements x and y,
a model alignment can be defined as a set
P ={(xy), (a,p) (b, q). ...} of disjoint element pairs. If
more than two models are aligned, we may also obtain
triples or larger tuples of elements. All remaining single
elements are also treated as tuples. To find a good align-
ment P, we use precalculated element similarities y,,
and evaluate the score function

f=22 ¥ 9)

(xy)eP

Instead of maximising the score exactly (which would
be computationally hard), we employ a greedy algo-
rithm: first, it chooses the element pair with the highest
w value. If this value is positive, the two elements are
matched and the pair is removed from the list. Then,
we continue to match the element pairs with the highest
remaining y value until no positive y values are left. If
this leads to inconsistencies (i.e, if one of the two ele-
ments already has a different matching partner in the
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other model), the next best matching pair is considered
instead. In the end, the alignment score is given by the
sum of all y values collected.

For aligning three or more models, we use the same
matching score (for element pairs), but consider the
transitivity constraint: Whenever we match two ele-
ments, we also match all their previously determined
matching partners (and consider the respective mutual
similarities in the score function).

Finding element annotations based on model alignments
Semantic propagation can be used to suggest annotations
for non-annotated model elements. For this purpose the
considered partially annotated model is aligned to a fully
annotated large pathway map. Afterwards, annotations are
transferred from elements in the map to the correspond-
ing, non-annotated elements in the model.

As a prerequisite, we collected many annotated model
elements appearing in BioModels Database, which
served as a replacement for the large, annotated pathway
map, and calculated their propagated feature vectors.
For each element (x € M) in each of the models, its
propagated feature vector (w,) is computed. For every
annotation i on the element (Viv,,-0) we do the follow-
ing. The corresponding feature is removed from the vec-
tor (w,; = 0) and the pair of the feature and this
propagated feature vector is added to the collection.

To find annotations for a non-annotated element of
interest, we calculate its propagated feature vector
within its model and check if there are similar vectors
in our collection. Afterwards, the annotations associated
with these vectors are presented to the user. The general
idea is that given a model from the BioModels Database
that lacks annotations for a single feature on a given ele-
ment, this method would be able to predict annotations
for this element with perfect accuracy.

For annotation prediction on the semanticSBML web-
site, the feature propagation algorithm has been slightly
modified. To reduce the number of annotations sug-
gested, we set the propagation values p between reaction
- reactant/product to ; and all others to 0. Moreover,
information is propagated only to direct neighbours (i.e.
the sum in Eq. (4) does not go to infinity but to 1).

Additional material

Additional file 1: Appendix. Text document containing details on the
implementation, a further comparison of the methods, an additional
numerical example, and further analyses.
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