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Abstract

supervised classification is not appropriate either.

allows it to run on reasonably large datasets.

Background: Searching for similarities in a set of biological data is intrinsically difficult due to possible data points
that should not be clustered, or that should group within several clusters. Under these hypotheses, hierarchical
agglomerative clustering is not appropriate. Moreover, if the dataset is not known enough, like often is the case,

Results: CLAG (for CLusters AGgregation) is an unsupervised non hierarchical clustering algorithm designed to
cluster a large variety of biological data and to provide a clustered matrix and numerical values indicating cluster
strength. CLAG clusterizes correlation matrices for residues in protein families, gene-expression and miRNA data
related to various cancer types, sets of species described by multidimensional vectors of characters, binary matrices. It
does not ask to all data points to cluster and it converges yielding the same result at each run. Its simplicity and speed

Conclusions: CLAG can be used to investigate the cluster structure present in biological datasets and to identify its
underlying graph. It showed to be more informative and accurate than several known clustering methods, as
hierarchical agglomerative clustering, k-means, fuzzy c-means, model-based clustering, affinity propagation
clustering, and not to suffer of the convergence problem proper to this latter.

Background

Clustering of biological data often requires to look for
the proximity of few data points within a large dataset
with the purpose to group together only those that sat-
isfy the same set of constraints, possibly resulting from
the same functional origins, or that have undergone the
same evolutionary pressures. This is the case for amino
acids in proteins, where one expects few of the residues
to account for the structural stability of the protein or for
its functional activity. For these biological problems, the
number of expected clusters is unknown and classifica-
tion approaches, known as unsupervised, are expected to
unravel hidden structures in the data.

A common approach to clustering is the simple unsu-
pervised k-means clustering technique [1]. It starts with
a random selection of k samples in the dataset and itera-
tively creates clusters of data points around the k samples
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by adding new data points to the k-centers in such a way
that the sum of squared errors between data points and
their nearest centers is small. k-means clustering is sen-
sitive to the initial selection of data points and it needs
to be re-run many times in the attempt to find a satisfi-
able solution. If k is small and there are good chances that
at least one random selection of data points will be close
to a good solution, k-means is an interesting technique to
try. Otherwise, the ideal approach would be to simultane-
ously consider all data points in the set and find, with some
well-designed criteria, appropriate candidates for cluster
generation [2,3]. We propose a method that tries all data
points, that is multidimensional vectors of characters, as
generators and extends them by properly identifying data
points in the set that share with the generator similar val-
ues for the same set of characters and display differences
on a complementary set of characters. Through an appro-
priate discretization of the space of distances, the method
always provides a clustering solution and this latter is
unique. Depending on the strength of the clusters, mea-
sured by the number of similar characters, the method
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aggregates clusters whenever they share some data points.
Aggregates are expected to be biologically significant.

CLAG, for CLusters AGgregation, is an unsupervised
non hierarchical clustering algorithm that handles non
uniform distributions of values in order to zoom in dense
sets of character values, parameterizes data points prox-
imity, and outputs a graph of similarity between data
points as well as a clustered matrix.

Important work on clustering a restricted number of
datapoints [4-14] or datapoints that might belong to sev-
eral clusters [15,16] has been previously developed. CLAG
is compared to several known clustering methods, as hier-
archical agglomerative clustering and k-means, and in
particular to fuzzy c-means, model-based clustering and
affinity propagation clustering. It proves to be informa-
tive and accurate, not to suffer of convergence problems
proper to some of the methods, and to perform well with
multidimensional data.

Results and discussion

Clustering algorithm and aggregation

Let us consider a set N of N elements and a set &, called
environment, of M characters. To each element we asso-
ciate a vector of M character values, and we consider
a M x N matrix A describing the full set of elements
in V. Characters can have different nature or might be
the N elements themselves. In this latter case, the matrix
entries might correspond to correlation values or to dis-
tances between elements. Without loss of generality, we
assume the matrix entries to be reals and we renormalize
them in the interval [0, 1]. Let A be a parameter, ranging
from O to 1, that modulates the proximity between ele-
ments. Based on A, we shall determine if two elements
V,Z € N are close (or similar) with respect to the envi-
ronment and, whenever possible, if they are symmetric.
The idea is to look at the distribution of matrix entries
and analyse for each pair of elements in N (that is, for
each pairs of columns in the matrix) the localization of all
corresponding pairs of matrix entries within the distribu-
tion. A measure of closeness between entries is introduced
(based on the discretization of the distribution into quan-
tiles grids) and it is used to define the proximity of two
elements in V. Then, we define two scores, environmental
and symmetric scores, for pairs of elements in A/ provid-
ing, in this way, a numerical criteria to evaluate clusters’
strength.

Entries distributions and grids

The M - N entries of the matrix are first analyzed by look-
ing at their distribution and dividing it into A-quantiles
(by default, A is divisible by 0.05), that is subsets of the dis-
tribution containing 100 - A% of entries. We denote with
A-quantile(S), the A-quantile computed starting at entry
S of the distribution. To each A-quantile, we associate an
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interval which is defined by the minimum S; and the max-
imum Sy entries within the A-quantile. The length of the
interval is |Sy — S7].

We discretize the entries distribution with the help of
two shifted grids of intervals that will be used to eas-
ily define entries closeness. Namely, a 0-grid is defined
by segmenting the distribution in A-quantiles from the
minimal entry of the distribution, and a I-grid is defined
by segmenting the distribution from the end of the first
%—quantile. The successive intervals of the 0-grid are
denoted IIQ, and those for the 1-grid are denoted I}. Notice
that the first and the last intervals of the 1-grid corre-
spond to %—quantiles. See Figure 1A for an example of
distribution and grids.

We say that a distribution of scores is heterogeneous in
a grid if there are intervals of the grid whose lengths are
greater than u + o, where i is the mean of the lengths of
the intervals for the entire grid and o is the standard devi-
ation of the distribution of lengths. To avoid having very
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Figure 1 Entries distribution and grids. Toy example based on a
matrix of 100 entries with environment € of size |M| = 5. A: the
distribution of entries, partitioned with a 0-grid (solid lines) and with a
1-grid (dashed lines). Alternated grey and green colors are used to
identify quantile regions. Grids are defined with A = .20, and
therefore, each quantile region contains exactly 20 entries. B:
elements V,Z € N, represented by 5 character values in the matrix,
are plot in the distribution: 5 circles and 5 diamonts represent V and
Z, respectively. Foreach X € €, A(V,X) = A(Z,X) and this implies an
environmental score Seny (V,2) = 1. C: contrary to B, here the 5 pairs
of entries, A(V, X) and A(Z, X), are not necessarily equal nor highly
similar (that is, belonging to the same quantile) and they are
indicated by a straight line linking entries positions. Sepy (V, 2) is
expected not to be maximal.
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large and very small intervals associated to A-quantiles
for the same distribution, possibly due to very sparse or
very concentrated entries along the distribution, we refine
the 0- and 1-grids by cutting in half each interval in them
which is larger than 1 + o and redefine the 0- and 1-grids
to be the refined ones.

Closeness between entries

CLAG clusters elements in N according to £ and to
explain how it does it, we introduce the notion of closeness
between pairs of entries. Let S1, Sy be two entries within
the matrix such that §; < S;. We say that S; and Sy are
close in a grid if they belong to the same interval in either
the 0- or the 1-grid, or if they belong to two consecu-
tive intervals, that is IP,I?H or 11.1,11,14_1, and Sy belongs to
A-quantile(S;).

Notice that for distributions of scores that are not het-
erogeneous, the definition of closeness can be greatly
simplified: two entries Si, Sp, with S < Sy, are close if Sy
belongs to the A-quantile(S;). For distributions which are
possibly heterogeneous, the notion of grid turns out to be
crucial but it should be observed that the concept of close-
ness could be stated by using the 0-grid only. The usage of
the second grid (that is, 1-grid) is redundant here.

Environmental score

For a pair of elements V,Z € N/, we evaluate the close-
ness of the entries A(V,X) and A(Z,X) for each X € £.
We define the environmental scores Seqy by counting the
number of characters X for which A(V,X) and A(Z, X)
are close, say K, and we set Sy, (V,2) = % (for binary
matrices, we count the number of X where A(V,X) =
A(Z,X)). The set of characters X which are not close is
denoted Diff (V, Z). For convenience, we renormalize the
environmental scores S,y to the interval [ —1,1]. A high
environmental score reflects the fact that V, Z behave in a
highly similar manner for all characters in £ (Figure 1B),
while a low score indicates a very different behavior within
& (Figure 1C).

Clusters and affine clusters

To define a cluster in a matrix, we fix an element V € N
as a cluster’s generator, for a fixed A. For each pair of
elements V,Z € N, the cluster containing V, Z and gen-
erated by V is the largest set of elements W € A/ such that
the two following conditions are satisfied:

a. Sew(V,2) = Seuy(V, W),
b. Diff(V,Z) = Diff(V,W).

If no such W exist, the cluster is formed by the pair V, Z.
From the definition, it follows that a cluster is a sub-
set of elements in A\ that behave similarly with respect to
E. It also follows that two clusters generated by the same
element might share at most one element, that is the gen-
erator. Clusters sharing several residues are generated by
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different elements. Notice that for a cluster C, the value
Senv(V, Z) is the same for all Z € C (from a). We call
this unique value S, (C). An affine cluster is a cluster C
where S,,,(C) > 0, that is a cluster whose elements dis-
play identical scores (with respect to A) with at least a
half of the environment. Strictly speaking, cluster affinity
could be defined in more general terms with respect to a
hyperparameter §, by setting S,,,, (C) > 8.

By increasing A, one expects clusters to get larger (since
the number of pairs of entries that turn out to be equal
up to A increases, and therefore the number of data
points that are close increases) and possibly new ones to
be created. This parameter renders the system flexible to
clustering analysis and adaptable to multiple applications,
the idea being that clusters detected by small A’s are the
most meaningful and that significativity of clusters would
decrease by enlarging A.

Matrices with A/ € €

If N C &, then one can define an additional score, called
the symmetric score Sgy,, of pairs of elements V,Z € N,
that establishes when A(V, Z) and A(Z, V) are identical up
to A and where they are located along the distribution of
entries.

Symmetric score
In order to evaluate the symmetric score of a pair
V,Z € N, we consider A(V, Z) and A(Z, V) and check for
their closeness. Sgy,, is defined for close entries only, and
for all other pairs is undefined. With no loss of generality,
AV,Z) < A(Z, V).

The definition of symmetric score for two close entries
A(V,Z) and A(Z, V) is given by cases:

1. If A(V,Z) and A(Z, V) belong to 12, we set
Sym(V,Z) = Sym(Z, V) =2 n,

2. IfA(V,Z)and A(Z, V) belong to I;, we set
Soym(V,2Z) = Sym(Z, V) =2 -n+ 1.

3. IfA(V,Z) and A(Z, V) belong to the two consecutive
intervals 10,19,  and to I}, I} .|, and A(Z, V) is in

n+ m+1
A-quantile(A(V, Z)), then we set

2-n if 1}, <19

Som (V) Z) = Seym(Z, V) =
o o 2 m41if10 <1}
(1)

where I < J means that the interval I starts before
the interval J.

4. If A(V,Z) and A(Z, V) belong either to I0, I, or to
.1, .1, and A(Z, V) is in A-quantile(A(V, Z)), then
we set Sy (V,2) = Soym(Z, V) =2 -nor2-m+1
respectively.

The symmetric score of a pair of elements V,Z
describes the approximate position of the A-quantile
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containing both A(V,Z) and A(Z, V) values in the dis-
tribution of entries. This mapping could be stated in
different manners and we have chosen to do it with the
help of two grids instead of one to obtain a more pre-
cise score function. For convenience, we renormalize the
symmetric scores to the interval [ —1, 1].

Clusters and affine clusters taking into account symmetricity
We fix an element V as a cluster’s generator, for a fixed A.
For a pair of elements V,Z € N, the cluster containing
V,Z and generated by V is the largest set of elements W €
N such that the three following conditions are satisfied:

a. Ssym(v; Z) = Ssym(v; w),
b. Semv(V,Z) = Seny(V, W),
c. Diff(V,Z)=Diff(V,2W).

If no such W exist, the cluster is formed by the pair V, Z.

For a cluster C, there are unique values S, (C) and
Ssym(C). If Seuy(C) > 0 and Sy, (C) > 0 then the
cluster is affine. The symmetricity condition (a) imposes
an extra requirement for similarity by enforcing elements
in a cluster to behave symmetrically one to the other. The
identification of such clusters might be useful in certain
applications as illustrated for the dataset of residues in
proteins discussed below.

CLAG algorithm: the clustering step
CLAG is structured along two steps: a clustering step and
a cluster aggregation step (Figure 2). The clustering step
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takes as input a matrix A and a value A, and goes as
follows:

it computes environmental scores for all pairs of
elements in A/ (symmetric scores are computed for
matrices where N' C &). Scores are normalized.

it clusters A by following conditions ab (abc, when A
is such that N C &) as described above.

it identifies clusters and affine clusters.

it outputs a list of ranked affine clusters with respect
to their environmental (and symmetric) scores and
other numerical properties, and pdf images of the
clustered matrix.

w

Notice that the input matrix is automatically renormal-
ized to [0, 1], if the matrix values do not belong to [0, 1]
already. The advantage of using renormalized values, is
that they allow the user to visualize affine clusters with
the R script developed for this purpose. Also, notice that
when N/ C €&, the algorithm can be executed in two
manners: either by allowing the symmetricity condition
to hold or not. When the condition is ignored, similar-
ity will be computed for elements V,Z € N such that
AV, Z) — A(Z, V)| > A.

Highest is the environmental score, closer is the behav-
ior of the elements grouped in a cluster (with respect to
the environment). This information is helpful to under-
stand the structure of the set NV and it could be used to
identify elements that group together and those that are

Matrix, A

Computation of
symmetric scores
with grids based on

Clustering of the matrix

P! v©

Identification of clusters and
affine clusters

Computation of
environmental scores
with grids based on

Computation of
environmental scores

for binary matrices

e .............. J——

Image describing all
affine clusters

List of affine clusters with scores =N
and their numerical properties

Construction of the aggregation graph
and identification of key aggregates

Clusters aggregation step |

Aggregation matrix and aggregation graph:
list of elements and images

Figure 2 CLAG flowchart. lllustration of the different steps of the clustering method. The algorithm’s inputs are the matrix, A and the scores
threshold N (N = 0 by default). The environmental score is computed differently for real-valued matrices (grey solid line) and binary matrices
(dashed line). For matrices with A/ C &, CLAG computes the symmetric score too (black solid line).
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shared by several clusters while varying an environmental
score threshold.

Notice that in the clustering step, the algorithm identi-
fies the set of clusters generated by all elements of V" and
that there is no selection on generators that might bias
clusters identification.

The cluster aggregation step Clusters might share com-
mon elements and we wish to derive non overlapping
sets of elements while keeping track of elements proxim-
ity. We do so for affine clusters and, possibly, for clusters
with scores greater than a fixed positive threshold. We
iteratively aggregate clusters in a graph as follows:

1. for any n clusters in the list, say C;, Cy . .. Cy, having
the same (symmetric score, if it exists, and)
environmental score, iteratively fuse together those
clusters that share a common element and associate
to the resulting cluster the same (symmetric score
and) environmental score. Apply this step until no
more clusters can be fused together. Rank the list of
resulting clusters with the (highest symmetric score
if it exists, and secondly, the) highest environmental
score.

2. remove two clusters Cy, C, from the top of the
ranked list; if Cq, Cy share an element, then construct
a graph whose labelled nodes are the elements of
C1, Cy and whose edges are defined between all
elements of Cy, and between all elements of Cy; we
color the nodes of the graph with a unique color and
call the resulting graph an aggregate . If C;, Cy do not
have any element in common, construct a clique
associated to each cluster and color them differently;
the two labelled cliques are aggregates.

3. remove the first cluster C on the top of the list and
check whether it shares some elements with existing
aggregates. If it does, and the aggregates are
Aj ...Ag where possibly k = 1, then construct an
aggregate by adding to the A;’s the “new” nodes of C
(that is, the nodes of C that do not already belong to
the A;’s) and all edges between all nodes in C; if the
shared nodes are several and colored differently, then
color the new nodes of C with a new color.
Otherwise, color the new nodes of C with the same
color as the one used in A;. If C does not share any
node with existing aggregates, then construct a clique
and color it with a new color. The new graph forms
an aggregate. Re-iterate until all clusters from the list
are considered.

The resulting graph is called aggregation graph. Aggre-
gates are disjoint graphs containing all nodes within
clusters. We call key aggregates those subgraphs of the
aggregation graph whose nodes are colored with the same
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color. Key aggregates describe clustering units that should
be biologically interpreted.

In the following, without loss of generality, the term “key
aggregate” will also be used to refer to the set of elements
labeling the nodes of the key aggregate subgraph. Using
sets, we present a toy example to illustrate the aggregation
step. Let C; = {1,2,3},Cy = {3,4,5},C3 = {6,7,8}, C4 =
{8,9,10}, Cs = {5,10, 11, 12} be five affine clusters issued
from the first step of the algorithm. Let s1, 571, s2, 53,54 be
their respective decreasing scores. By step 1, C; and C; are
fused together in a set C15 = {1,2,3,4,5} because they
have the same score and they share a common element.
The set Cj2 has score s1. In step 2, the algorithm selects
C1,2 and Cs, that is the two clusters with highest score, it
verifies that they share no common element and it labels
C1,2, C3 with two different colors. Then, it selects Cy (in
step 3), since it has the highest score among those clus-
ters not yet examined. Cluster Cy shares an element with
Cs and it is fused with Cs into a new set Cs 4, keeping the
color label of Cs. By iterating step 3, Cs is considered. It
shares an element with Cj, and one with C34. The new
set C¢ = {11, 12} is constructed by subtracting C; 2 U C3 4
from Cs and it is labelled by a new color. The three sets
C1,2, C34 and Cg are the resulting key aggregates. Strictly
speaking, the algorithm provides a colored graph struc-
ture that traces the relations between the different key
aggregates (Additional file 1: Table S15).

It might be useful to rank aggregates with respect to the
strength of the clusters that form them. This can be done
by associating to an aggregate two Sg;y (Ssym) scores: the
first is the Sepy (Ssym) score of the first cluster entering the
aggregate and the second is the S¢;,y (Ssym) score of the last
cluster entering the aggregate.

Algorithmic complexity

The construction of the N x N matrix of environmen-
tal scores in the clustering step is realized in O(N2M).
The sorting of the clusters generated by the clustering
step is done in O(N?log N) and the construction of the
key aggregate sets in O(N?). CLAG time performance is
reported in Additional file 1: Table S1 for the biological
datasets discussed later.

Application to biological data

We analyze four datasets [17-19] to illustrate CLAG per-
formance and large applicability. CLAG will be compared
to k-means [1], c-means [15,16], MCLUST [9,10], hier-
archical clustering [20,21] and Soft-Constraints Affinity
Propagation (SCAP) [3] methods.

Breast tumor miRNA expression data

A panel of 20 different breast cancer samples was chosen
to represent three common phenotypes and was blindly
analyzed for miRNA expression levels by microarray
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profiling [17]. For each breast cancer sample, 377 different
miRNAs were considered. Hierarchical clustering (devel-
oped in [21] and based closely on the average-linkage
method in [20]) generates a distance tree associating three
known phenotypes of breast cancer (Figure 3D).

When CLAG is applied to the dataset, it classifies all
patients at A > 0.15, for scores > 0 (Figure 4A). For
these thresholds, the number of key aggregates remains
stable (Figure 4B) and we have chosen to describe in detail
CLAG?'s results for A = 0.20, where it detects three
key aggregates. Its aggregation graph (Figure 3C) pro-
vides information on the proximity of the samples that
is not described by hierarchical clustering (Figure 3D).
Namely, there are two key aggregates, red and green in
Figure 3C, that are formed by samples having a highly dif-
ferent behavior: we observe an almost complete absence
of edges between the two key aggregates in the aggrega-
tion graph. The third key aggregate (violet in Figure 3C)
plays a connecting role for the first two, with all its nodes
that are linked to both green and red nodes. This divi-
sion is well supported by the clinical interpretation of
the samples. In fact, CLAG’s aggregates match well with
three clinical pathologic features (that is the overexpres-
sion of the ErbB2, of the ER or of both receptors) that have
been observed in gene expression profiling of clinically
distinct breast cancer phenotypes: the green aggregate in
Figure 3C corresponds to ErbB2 overexpression (6/6) and
the red one corresponds to ER overexpression (8/9). The
violet key aggregate presents less sharp tendencies with a
presence of ErbB2 on 3/5 data points and of ER on 2/5
data points. The exact contingency table test for CLAG’s
clustering (describing the three cancer phenotypes with
respect to the three aggregates) gives p = 5.5e~% and a
sum of the probabilities of unusual tables of 0.025. These
probabilities improve the ones computed over the tree
organization in Figure 3D (describing the three cancer
phenotypes with respect to the three main subtrees) giv-
ing p = 1.1e7 and a sum of probabilities of unusual
tables of 0.066. In both cases, the probabilities of unusual
tables are small enough to reject the null hypothesis. (See
Additional file 1: Table S4 for contingency tables and
expected tables).

On this dataset, k-means, c-means and MCLUST fail
clustering by proposing one or several clusters of single
elements (see Additional file 1: Table S3 and Additional
file 2).

Brain cancer gene expression data

The expression levels of more than 7000 genes for 42
patients have been monitored and classified in 5 differ-
ent brain cancer diagnosis by an a posteriori assessment
method [18] (10 medulloblastoma, 10 malignant glioma,
10 atypical teratoid/rhabdoid tumors, 4 normal cerebella,
8 primitive neuroectodermal tumors - PNET). To test
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CLAG classification we used a normalized dataset of 6010
genes where data arrays for each patient were filtered,
log-normalized to mean zero and variance one [3]. We
checked the outcomes against the assessment.

For A > 0.1 and by considering all affine clusters with
scores > 0, CLAG aggregates all 42 patients (Figure 5B).
For A = 0.1, CLAG produces 7 key aggregates with 9
errors (Figure 5A), where errors count both misclassified
patients and unclassified patients. Several isolated clusters
of the same diagnosis are found. The medulloblastoma
patients are all grouped together. Normal patients form a
separate group and do not mix. Errors are mostly due to
misclassification of PNET patients that mix with glioma
and medulloblastoma patients.

While A increases until 0.2, the number of correctly
classified patients remains essentially stable and the num-
ber of key aggregates, after augmenting for a while, gets
smaller (Figure 5A). As expected, aggregation of clusters
with increasingly large A values, shows an increased num-
ber of errors for a decreased number of key aggregates.
See Figure 5ABD.

With A = 0.1 and score threshold = 0.25, clustered
patients decrease to 22 and they organize in 6 diagnosis
specific key aggregates, with no mix. No PNET patients
are classified. This suggests that clusters obtained for
scores > 0 are formed by a core of patients that are well
classified and that misclassified patterns, like PNET, are
peripherical cluster elements (Figure 5C). The possibility
to provide information on the structure of the dataset and
on the internal organization of the clusters is a feature of
CLAG.

In [18], patients were clustered using a hierarchical
clustering. Even though the structure of the clustering
is similar to the one we obtained, there is no clear-cut
partition in 5 groups of patients, several diagnosis mix
together and PNET patients appear in several distin-
guished subtrees. Our results have been also compared to
the ones obtained with SCAP [3]. SCAP outputs 4 clus-
ters with 8 errors. Normal patients form a separate group
and all SCAP errors are due to misclassification of PNET
patients that are found spread on three distinguished clus-
ters associated to malignant tumor diagnosis. Both CLAG
and SCAP provide information on the structure of the
dataset. k-means, c-means and MCLUST propose clus-
ters that highly mix the five diagnosis. See Additional
file 1: Table S2 and Additional file 3 for a comparative
assessment.

Coevolved residues in protein families data

A large number of coevolution analysis methods investi-
gate evolutionary constraints in protein families via cor-
related distribution of amino-acids in sequences. Given
a protein family, they produce a square matrix of
coevolving scores between pairs of alignment positions in
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Figure 3 Application on breast tumor samples data. A panel of 20 different breast cancer samples [17]. A: matrix of key aggregates computed
with CLAG, with A = 0.2 and Seny (A) > 0, and zoom on the matrix. The red color scale is associated to small values and the green color scale to

high values. The vast majority of values in the matrix is low and

matrix in A where the three aggregation graphs in C are indicated. C: aggregation graph produced by CLAG where three main clusters (produced
by the first step of the algorithm and colored red, green and violet) are connected among each other by grey edges. Notice that the three clusters

are indicated on the top of the zoomed matrix in B. Numbers la
D: dendrogram produced from the data clustered in A with a hi

and Michener and developed in [21]. Three main clusters are found. The numbers are colored as in C and they are associated to columns in the matrix
in B. For each sample, we denote the presence (+) or absence (-) of factors ErbB2 and ER whose overexpression is known to vary across cancer types.
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erarchical clustering algorithm based closely on the average-linkage method of Sokal




Dib and Carbone BMC Bioinformatics 2012, 13:194
http://www.biomedcentral.com/1471-2105/13/194

Page 8 of 14

A 0
25 -+ 0.25
+ 0.5
20— J——r——w « 2075
3 » o
= 15 L
©
s 10 .
’ K
5 z =
&« - - __—
7
7

0+—at
0 005 0.1 015 0.2 025 03 0.35
Avalue

values, are plot for different score thresholds.

B 0
4.5 =025
4 " -+ 05
=0.75
g 3.5 7 1
T 3 va f <
Q25 7
> ’
g 2 - .
>
2 1.? 7
T+ A *
05 - V4 ~ /-
0 > - ./
0O 005 01 015 0.2 025 0.3 0.35

Avalue

Figure 4 CLAG on breast cancer data: clustering analysis. Curves counting classified elements (A) and key aggregates (B) for increasing A

the sequence alignment associated to the protein family
[19,22-25]. Clustering of the score matrix helps to identify
groups of coevolving residues often characterizing impor-
tant functional and structural properties for the protein
family. The identification of groups displaying the high-
est signals of coevolution has been previously realized by
hand.

We applied CLAG to the coevolution score matrix pro-
duced by the coevolution analysis method MST [19] on

the globin protein family, to automatically detect coevolv-
ing groups of residues. By increasing A, CLAG detects
clusters of maximal scores with progressively larger sizes
as well as new clusters (Figures 6A and 7AB). There are
two main key aggregates that are detected at A = 0.1
and grow larger at A = 0.2. (At A = 0.3, they begin
to collapse.) The first key aggregate (red) corresponds
to the conserved binding site enveloping the haem and
the second key aggregate (olive green) corresponds to
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Figure 5 CLAG on brain cancer gene expression data: error analysis. Error analysis of CLAG clustering for gene expression data on brain cancer
[18]. Data points are organized in five different pathologies and come from 42 patients. A: count of errors and key aggregates at increasing A
values, computed on all affine clusters (that is, with scores > 0). Errors count both misclassified and unclustered patients. Notice that for all points
plotted at A > 0.1, the number of clustered patients is maximal, that is 42 (see B). B: number of clustered patients evaluated on aggregation of
clusters having scores greater than a fixed threshold. C: number of PNET patients aggregated at increasing A values, for different thresholds. Curves
show that PNET patients aggregate slowly since they belong to clusters with low environmental and symmetric scores. D: number of patients that

are correctly classified together.
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Figure 7 CLAG on the globin dataset: clustering analysis. Curves counting classified elements (A) and key aggregates (B) for increasing A
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a group of residues that is known to be associated to
the allosteric function [19,26]. By analyzing clusters with
weaker strength, 7 more key aggregates were found and
three of them (orange, yellow and violet) have been high-
lighted in [19] too, as belonging to the globin subunits
binding sites. These five key aggregates are the first ones
to form during the aggregation step (Additional file 1:
Table S6).

Notice that for this dataset, A/ € & and that the
aggregates were found by applying CLAG under the
symmetricity condition. The identification of clusters
grouping elements with symmetric behavior turned out
to be important for distinguishing the red and the olive
green aggregates, known to present functionally dis-
tinct roles for the globin (see Figure 6A and Additional
file 1: Figure S3). Without symmetricity, the red aggre-
gate would be identified at A = 0.1 (Additional file 1:
Figure S3) but the olive green would systematically col-
lapse with other aggregates. In general, one can observe
that with no symmetricity condition, aggregates will
be larger, possibly characterized as the join union of
aggregates determined with symmetricity, and possibly
including other residues, that were not considered as
coevolving by the symmetric condition.

Agglomerative hierarchical clustering [26,27] detects
the red and olive green clusters but it also detects other
clusters as subtrees of comparable height without distin-
guishing them (Figure 6B).

When we compare k-means to CLAG on this dataset,
we observe that several key aggregates detected by CLAG
are grouped within a single k-means cluster (Additional
file 4). In particular, red and green key aggregates are
grouped together (Additional file 1: Table S5) and this
hints that no biological interpretation can be associated
with k-means clusters. Slightly better results are obtained
with c-means, MCLUST and SCAP, where the overall
clusters structure is similar to the one found by CLAG,
but no clear cut identification of our two stronger key

aggregates is obtained (Additional file 4). Our red and
olive green key aggregates are separated in distinguished
clusters but mixed with many data points mainly belong-
ing to the blue key aggregate. Also, for SCAP, conver-
gence into 8 clusters classifying all 67 alignment positions
is obtained for p = 0.13, in less than 100 iteration
steps (Additional file 1: Table S5 and Additional file 1:
Figure S4), but SCAP greatest stability in p variation is
reached for 2 clusters (Additional file 1: Figure S5), cor-
responding to the two large subtrees of the hierarchical
tree in Figure 6B. Notice that all residues are considered
by these clustering tools and that many of them do not
coevolve.

CLAG in synthetic datasets

We run CLAG on six different synthetic datasets with
Gaussian clusters, each of them constituted by 1024 vec-
tors, organized in 16 clusters and defined in 32, 64, 128,
256, 512 and 1024 dimensions respectively. CLAG suc-
ceeds in clustering correctly all datasets for A > 0.1
(Figure 8, Additional file 1: Figures S6-S10 and Additional
file 5) by producing 16 key aggregates describing the
16 original clusters. k-means provides misclassification
errors on all datasets while c-means behaves well on
dimensions 32 and 64, and optimizes to less than 16 clus-
ters datasets of higher dimension. MCLUST clusterizes
based on ellipsoidal models with a very small number of
components and, in this manner, it fuses together several
clusters, for all the multi-dimensional datasets. In dimen-
sion 1024, it generates a single huge cluster. In conclusion,
as the dimension of the data goes higher all methods
produce classification errors whereas CLAG continues to
identify correctly the 16 clusters.

Also, we generated 2D sets of points with different
shapes and degrees of density and checked the perfor-
mance of k-means, c-means, MCLUST and CLAG on
these datasets (Additional file 6). When sets of points
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Figure 8 CLAG on the 128-dimensional synthetic dataset. A: the 128-dimensional dataset contains 1024 points and 16 clusters generated with
a gaussian distribution (http://csjoensuu.fi/sipu/datasets/DIM128.txt). CLAG perfectly distinguished the 16 clusters when run with A = 0.05 and
scores > 0.5. B: curves associated to different score thresholds describing the number of elements that are clustered by CLAG while varying A
values. Note that the number of elementsis 1011 for A = 0.05 and maximal scores. Different clustering algorithms were run on this dataset:
k-means (C), c-means (D), MCLUST (E). k-means and c-means were run with 16 clusters, and MCLUST with “ellipsoidal, equal variance with 9
components” as best model (note the 8 grey clusters). For k-means, clusters 1, 13 are split in several k-means clusters while clusters 3, 8 (violet) and
4,16 (light blue) are fused together. c-means clusters the original ensemble in only 11 clusters: clusters 10, 4, 16 (brown) and 5, 6, 8, 9 (orange) are
grouped together. In A, C, D, E elements are represented by circles. Different clusters are distinguished by different colors. Figures ACDE are realized
by plotting the first two columns of the matrix describing the dataset.

are well separated in space, CLAG clusters them prop-
erly independently of shapes (Additional file 1: Figures
S$12-S14B). The same happens for c-means but neither
for k-means nor MCLUST. When sets of points overlap
together, CLAG tends to cluster the sets in a single key
aggregate (Additional file 1: Figures S13 and S14) contrary
to the other tools that prefer to split the datasets in small
clusters, sometimes erroneously (see Additional file 1:
Figure S14BCDE for the blue shape in Additional file 1:
Figure S14A).

CLAG’s parameterization
CLAG is based on two parameters, A and the thresh-
old for environmental and symmetric scores. These

parameters can be used together for evaluating whether
all elements of the dataset are supposed to be clustered
together or for determining how many clusters a dataset
is made of. The main point is to find an interval of values
A where the number of clustered elements as well as the
number of key aggregates remains essentially stable. For
the brain cancer dataset (Figure 4), stability is observable
for the curve dependent on scores threshold = 0 start-
ing from A > 0.15; for the breast cancer dataset, score
threshold = 0 and A > 0.1 identify the clustering of all
data points (Figure 5AB); the globin dataset displays a sta-
ble behavior for the curve associated to threshold = 1
and for A values > 0.175 (Figure 7).In the case of the
synthetic datasets, stability is reached for A > 0.10 and
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arbitrary thresholds (Figure 8). It could be envisageable to
implement these criteria to render automatic the identifi-
cation of best parameter values.

Conclusions

CLAG is an unsupervised non-hierarchical and determin-
istic clustering algorithm applicable to M x N matrices. Its
range of application is spread as illustrated by the datasets
we discussed. Contrary to algorithms like the k-means, the
number of clusters to identify is not specified, but there
is a parameter to the algorithm, A, which influences the
number of clusters that can be predicted. This parame-
ter modulates the proximity between elements that are
accepted to be “similar” or “close” Based on A, the clus-
tering step determines if two elements in N are similar
with respect to the environment £ (and, possibly, if they
are symmetric) providing, in this way, a numerical score
that describes the strength of the signal. The aggregation
step combines clusters sharing the same data points and it
produces key aggregates, that is disjoint clusters. Cluster-
ing depends on A and aggregation depends on the scores
threshold.

An important feature is that CLAG does not try to clus-
terize all data points, but it combines just those that are
sufficiently similar to be clustered together. Because of
this relaxed clustering constraint, after the clustering step,
the user learns which data points drove the clustering
with respect to A. The gradual extension and creation of
clusters with increasing A values, provides the user with
information on the structure of the dataset.

The cluster structure present in biological datasets can
be systematically investigated with CLAG. This underly-
ing structure between data points is typically not a tree
but a graph, and CLAG provides an aggregation graph
describing it.

Known clustering methods ask for a data point to belong
to at most one cluster. For certain applications, this is a
limitation. For instance, for coevolution score matrices,
a fixed alignment position in a protein family could be
subjected to more than one evolutionary constraint and
therefore might play several roles for the protein. Unlike
other approaches, CLAG allows for a position to belong to
several clusters. Hence, the user can extract useful infor-
mation from the clustering step and eventually use the
outcomes of this step as a clustering result.

For the user, scores are relevant to evaluate clusters
strength and to decide whether clusters should be consid-
ered important or not for their analysis. This numerical
feature is missing for the hierarchical clustering where
it becomes hard, at times, to choose among subtrees
based on their height. The globin analysis is an exam-
ple of this (Figure 6AB). Also, scores reflect the structure
of the dataset. They highlight where closest data points
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are located and which subsets collapse together if more
relaxed proximity conditions, that is larger A values, are
allowed.

CLAG second step (producing key aggregates) is
applied only on affine clusters, that is clusters with pos-
itive environmental (and possibly symmetrical) score(s).
Notice that the general notion of affinity, asking for
Senv(C) > & for some hyperparameter § that has been
mentioned above could be used to parameterize further
the algorithm to allow the user to set a threshold on affin-
ity for the aggregation step. The definition of affine cluster,
setting § = 0, asks for at least half of the characteristics
of a data point to be shared with the other data points of
the cluster, and it seems to set a reasonable condition to
compute key aggregates of sufficiently high strength.

We should warn potential users that the definitions of
environmental score and affine cluster implicitly assume
that all the M characters are equally important for cluster-
ing purposes. This can be a strong assumption, as in many
situations it could not be known whether all the characters
in a dataset are relevant for clustering purposes.

CLAG has been compared to various -clustering
approaches on four biological datasets, and showed to be
more informative and accurate than hierarchical agglom-
erative clustering and k-means. The clustering of the
dataset of coevolving residues showed SCAP to furnish
inaccurate results due to its need to consider all data
points instead of a subset of those. On the brain cancer
dataset, where the full set of patients should be clustered,
SCAP and CLAG showed a comparable performance.
Finally, CLAG does not suffer of the convergence problem
proper to AP and SCAP, and always leads to clustering.
Compared to MCLUST, CLAG shows better performance
in clustering multidimensional datasets where the size of
the environment M is much larger than the size of the set
of elements N. This is seen for brain cancer and breast
cancer datasets as well as for multidimensional synthetic
datasets. MCLUST outcomes are not unexpected. In fact,
the Gaussian mixture models implemented in MCLUST
may become over-parametrized and give poor perfor-
mances on multidimensional datasets [28,29]. Similarly,
the poor performances of MCLUST and of k-means on
the synthetic 2D datasets is likely due to the fact that these
two clustering methods implicitly assume that all groups
of elements have spherical or elliptical shapes, which is
not the case in the described examples. We should notice
that on other datasets, as the IRIS dataset for instance,
characterized by few dimensions and a large number of
elements, CLAG does not perform well compared to the
success of mixture-model-based methods [9,13,30] that
detect the correct number of Iris flower groups by select-
ing variables appropriately, showing that clustering on
all variables always provides an ambiguous result on this
dataset.
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Methods

Implementation

CLAG takes as input a matrix and a A value and it outputs
a text file with a list of clusters together with scores and
parameter values, a list of key aggregates, an aggregation
graph, and clustered matrices. CLAG is written in perl, it
uses the R-package [31] to draw matrices (http://www.r-
project.org/) and it draws graphs with neato found
in Graphviz [32] (http://www.graphviz.org/Credits.php).
neato draws graphs only when they are not too large
(about 100 nodes; notice that 100 corresponds to N and
not to M; M can be much larger as in Figure 4), and for
graph with more than 100 nodes, no pdf file is generated.
The description of the aggregation graph is output on a
text file. How to use it and examples are found in the
Additional file 1.

CLAG is freely available under the GNU GPL for down-
load at http://www.ihes.fr/~carbone/datall. It is sup-
ported on Linux and Mac OSX. Sample datasets are given.
Parameters and instructions are described in Additional
file 1.

Comparative tools and data

Hierarchical clustering, k-means, c-means and MCLUST
were performed with functions in the R-package. Affin-
ity Propagation (AP) was used online at http://www.psi.
toronto.edu/affinitypropagation/webapp/ and, for all our datasets
it did not converge. Soft-Constraint Affinity Propaga-
tion (SCAP), showed to improve AP performance [3] and
was run on a distribution provided by the authors after
request.

Six multi-dimensional synthetic datasets were down-
loaded from http://cs.joensuu.fi/sipu/datasets/. Three
were generated with the software DataGenerator.jnlp [33],
downloadable at http://webdocs.cs.ualberta.ca/~yaling/
Cluster/Php/index.php. The three generated datasets
contain 500 points and 5 clusters at different density
levels: G4 was generated with difficulty level=1 and den-
sity level= 3, and G5, G6 were generated with difficulty
level=2 and density level= 3. The software ELKI [34] was
used to represent classification results, for all methods,
on synthetic datasets G4, G5, G6 in the Additional file 1.

The exact contingency table computation has been real-
ized on the website http://www.physics.csbsju.edu/cgi-
bin/stats/exact.

Additional files

Additional file 1: CLAG instructions and Figures issued from the
datasets analysis. A list of instructions for running CLAG and extra figures
for the analysis of the four datasets discussed in the article are given.

Additional file 2: CLAG executions on the breast cancer dataset.
CLAG executions on the breast cancer dataset are detailed with respect to
parameters variation. Executions of other clustering tools (k-means,
c-means, MCLUST) are also reported.
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Additional file 3: CLAG executions on the brain cancer dataset. CLAG
executions on the brain cancer dataset are detailed with respect to
parameters variation. Executions of other clustering tools (k-means,
c-means, MCLUST) are also reported.

Additional file 4: CLAG executions on the globin dataset. CLAG
executions on the globin dataset are detailed with respect to parameters
variation. Executions of other clustering tools (k-means, c-means, MCLUST)
are also reported.

Additional file 5: CLAG executions on all multi-dimensional datasets
and best models computed by MCLUST. CLAG executions on all
multi-dimensional datasets are detailed with respect to parameters
variation. BIC values for best model selection are reported for MCLUST.

Additional file 6: CLAG executions on synthetic datasets G4, G5, G6.
CLAG executions on synthetic datasets G4, G5, G6. Executions of other
clustering tools (k-means, c-means, MCLUST) are also reported.
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