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Abstract

Background: Aligning short DNA reads to a reference sequence alignment is a prerequisite for detecting their
biological origin and analyzing them in a phylogenetic context. With the PaPaRa tool we introduced a dedicated
dynamic programming algorithm for simultaneously aligning short reads to reference alignments and corresponding
evolutionary reference trees. The algorithm aligns short reads to phylogenetic profiles that correspond to the
branches of such a reference tree. The algorithm needs to perform an immense number of pairwise alignments.
Therefore, we explore vector intrinsics and GPUs to accelerate the PaPaRa alignment kernel.

Results: We optimized and parallelized PaPaRa on CPUs and GPUs. Via SSE 4.1 SIMD (Single Instruction, Multiple Data)
intrinsics for x86 SIMD architectures and multi-threading, we obtained a 9-fold acceleration on a single core as well as
linear speedups with respect to the number of cores. The peak CPU performance amounts to 18.1 GCUPS (Giga Cell
Updates per Second) using all four physical cores on an Intel i7 2600 CPU running at 3.4 GHz. The average CPU
performance (averaged over all test runs) is 12.33 GCUPS. We also used OpenCL to execute PaPaRa on a GPU SIMT
(Single Instruction, Multiple Threads) architecture. A NVIDIA GeForce 560 GPU delivered peak and average
performance of 22.1 and 18.4 GCUPS respectively. Finally, we combined the SIMD and SIMT implementations into a
hybrid CPU-GPU system that achieved an accumulated peak performance of 33.8 GCUPS.

Conclusions: This accelerated version of PaPaRa (available at www.exelixis-lab.org/software.html) provides a
significant performance improvement that allows for analyzing larger datasets in less time. We observe that
state-of-the-art SIMD and SIMT architectures deliver comparable performance for this dynamic programming kernel
when the “competing programmer approach” is deployed. Finally, we show that overall performance can be
substantially increased by designing a hybrid CPU-GPU system with appropriate load distribution mechanisms.
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Background
The PaPaRa tool [1] implements a new method for align-
ing a—typically—large number of short sequence reads
against a reference multiple sequence alignment (MSA)
and a corresponding phylogenetic tree. HMMALIGN [2]
can also be used to accomplish this task. With certain
limitations, programs for de novo MSA such as MUS-
CLE [3] and MAFFT [4] can also be deployed for this
purpose. However, HMMALIGN, MUSCLE, and MAFFT
align short sequence reads against a single, monolithic
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profile that is derived from the reference MSA without
taking into account the corresponding phylogeny. PaPaRa
takes the phylogeny into account by calculating multiple
profiles that are obtained from the phylogeny induced by
the reference MSA. The short reads are aligned against
each of these phylogeny-aware profiles and the best align-
ment for each short read is kept. Since a large number of
pairwise alignments are computed (every query sequence
(QS) is aligned against every edge of the reference tree
(RT)), this operation dominates the runtimes of PaPaRa.
Note that all pairwise alignment operations can be carried
out independently. Hence, the algorithm exhibits a large
degree of parallelism.
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A characteristic property of PaPaRa and HMMALIGN
is that they use dynamic programming algorithms for the
alignment step. Dynamic programming alignment algo-
rithms generally exhibit a time complexity of O(mn) for
aligning two sequences of length m and n against each
other. This can become a limiting factor when either
two long sequences or a large number of sequences are
aligned. Therefore, optimization and acceleration efforts
typically focus on optimizing these dynamic program-
ming kernels. Because of its generality and importance,
optimization efforts have so far mainly been undertaken
for the Smith-Waterman algorithm (SWA). Because of
the analogies between the SWA and PaPaRa kernels, we
briefly survey SWA optimization efforts.
There exists extensive literature on vectorizing SWA

with SIMD instructions on general purpose CPUs: [5]
for the Intel i860, [6] for the Sun Ultra Sparc, and [7-9]
for Intel x86 CPUs. The above implementations deploy
fundamentally different techniques for vectorizing the
algorithm: [6-8] deploy SIMD instructions to speed up
the pairwise alignment of two sequences at a fine-grain
level. They exploit the data parallelism in the calcula-
tions of a single dynamic programming matrix (typically
denoted as intra-task parallelism). However, the inher-
ent wavefront parallelism limits the parallel efficiency of
these approaches, which motivated the introduction of
increasingly sophisticated methods for alleviating these
limitations. Other implementations use a fundamentally
different approach. They simultaneously compute mul-
tiple pairwise sequence alignments intead of vectoriz-
ing individual pairwise alignment computations. In [5],
a 64-bit special purpose register is divided into four
parts for simultaneously aligning a single sequence against
four other sequences. This represents a straightforward
application of data parallelism, generally referred to as
inter-task parallelism. In other words, the basic align-
ment algorithm is executed sequentially but is applied
simultaneously to multiple data. The authors obtained
a 6-fold speedup over the sequential implementation.
Recently, Rognes introduced SWIPE [9], a highly opti-
mized inter-task vectorization approach for modern x86
architectures that uses SSE instructions and achieves
a speedup of up to 6 over the fastest intra-task SSE
vectorization [8].
Furthermore, several approaches have already been

assessed for accelerating the SWA on GPUs. Initial
efforts used OpenGL [10]. Later implementations, after
the introduction of CUDA, led to the development of
SW-CUDA [11], CUDASW++ [12], and CUDASW++2.0
[13]. According to [9], the most efficient CPU and GPU
implementations yield comparable performance on cur-
rent state-of-the-art hardware (SWIPE on a typical quad-
core CPU and CUDASW++2.0 on a NVIDIA GeForce
GTX 480).

Finally, we recently introduced a FPGA implementation
of an earlier version of the PaPaRa alignment algorithm
[14]. This hardware architecture deploys intra-task par-
allelism and exploits the data (in-)dependencies in this
early alignment kernel version. Although the techniques
employed on the FPGA can not be directly applied to the
current version of the algorithm, we obtained a speedup
of two orders of magnitude.
Performance comparisons between GPU and CPU ker-

nels are generally difficult and debatable. In order to
obtain an as fair as possible performance assessment,
we deploy what we term the “competing programmer
approach”. As in previous work on using accelerators
(FPGA versus x86 with AVX intrinsics [15]) for computing
the phylogenetic parsimony kernel [16,17], SB explicitly
worked on obtaining the best possible x86 performance
and NA competed with SB to obtain the best possible
GPU performance. By investing a comparable amount of
optimization effort and man-hours into the x86 and GPU
implementations, we hope to obtain a more realistic per-
formance evaluation for these architectures. Provided the
fast x86 and GPU implementations, we can also address
the problem of how to optimally use all available com-
putational resources on a representative modern desktop
to accelerate PaPaRa. Despite the analogies to SWA, the
PaPaRa dynamic programming algorithm exhibits spe-
cific challenges that are associated with the fact that our
alignment model also incorporates the evolutionary sig-
nal of the phylogenetic tree. Despite the fact that the
SIMT version of the algorithm was tested on NVIDIA
hardware, we chose to use the industry standard OpenCL
instead of CUDA. While CUDA is better adapted to
the specifics of NVIDIA hardware and can potentially
offer better performance, OpenCL allows for using the
same code on different GPUs (e.g., AMD/ATI). Moreover,
OpenCL can also be used on general-purpose multi-
core systems, which is particularly convenient for testing
and debugging.

Methods
The PaPaRa algorithm
In a phylogenetic tree, known sequences of living species
(extant taxa) are located at the tips. The inner nodes
of the tree represent hypothetical common ancestors of
these species. Since the actual sequences of the ancestors
are unknown, different methods for accommodating the
uncertainty of ancestral states have been introduced in
the context of scoring criteria for phylogenetic trees. In
PaPaRa, ancestral states are obtained via maximum parsi-
mony (MP), a widely used optimality criterion for phylo-
genetic inference. Based on a fixed, given reference MSA
(denoted as RA), the key idea is to find the phylogenetic
tree which explains the data (MSA) by the least number
of mutations. The ancestral state vectors are calculated
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using Sankoff’s algorithm [17]. Every edge (branch) b of
the reference tree (RT) can be represented by a parsimony
state vector Ab = A1

b, . . . . ,A
n
b , where each Ai

b represents
the parsimony state of the RA at site i (i.e., column i).
Each entry Ai

b is encoded as a bit vector. For DNA data,
each bit corresponds to one of the four DNA characters:
A (Adenine), C (Cytosine), G (Guanine) and T (Thymine).
This representation differs from the simpler case of
pairwise sequence alignment (e.g., SWA) where each ele-
ment of both input sequences represents exactly one
character and not potential, alternative character states.
In PaPaRa, an individual Ai

b entry can either be an A,
C, G, or T, or any combination thereof (e.g., A and T).
This representation is used to encode the uncertainty of
an ancestral sequence state. Thus, using these bit vec-
tors is analogous to ambiguous character representations
(e.g., M representing either G or T). The bit vectors can
also be used for other input data types. The current
CPU versions of PaPaRa also support protein data for
instance. As mentioned before, the QS are aligned against
all ancestral states derived from the edges of the RT. At
each edge an additional node (a ‘virtual root’) is inserted,
for which an ancestral state vector is computed. When
the ancestral state vector has been calculated, the virtual
root is removed again and inserted into another edge.
In conjunction with this ancestral state vector, PaPaRa
uses an additional signal which provides information
about the gap (indel) distribution in the RT. For this pur-
pose, we use a supplementary flag (CGAP) at each site i.
This flag is used to appropriately adapt (calibrate) the scor-
ing function of the dynamic programming algorithm to
the indel pattern as encoded in the RT and RA. The CGAP
signal is calculated along with each ancestral state vec-
tor at each edge, based on the rules described in [1]. The
scoring function of the dynamic programming algorithm
is provided in Equation 1. Note that the default gap and
mismatch penalties are different from the default values
reported in [1]. Equation 1 recursively defines the score
of the dynamic programming matrix cell Si,j in column i
and row j for aligning site Ai

b of the ancestral state vector
against site Bj in the QS.

CGi =
{
3 if CGAP is set for site i
0 otherwise

(GPiOE ,GP
i
E) =

{
(4, 1) ifCGi = 0
(0, 0) otherwise

Mi,j =
{
0 if Ai and Bjmatch
3 otherwise

Ii,j = Si,j−1 + 3

Di,j = min
{
Si−1,j + GPiOE
Di−1,j + GPiE

Si,j = min

⎧⎪⎨
⎪⎩
Si−1,j−1 + Mi,j + CGi

Di,j

Ii,j
(1)

The PaPaRa algorithm has two phases:

• Scoring Phase, during which scores are calculated for
each QS/ancestral state pair using Equation 1. The
algorithm keeps track of the currently best (lowest)
alignment score and the corresponding QS/ancestral
pair for each QS.

• Alignment Phase, during which the actual alignments
are created (via backtracking) for the best-scoring
QS/ancestral state pairs.

Evidently, the scoring phase accounts for the largest part
of overall runtime. The scoring phase carries out R ∗ Q
pairwise alignments for Q query sequences and R ances-
tral state vectors, while in the alignment phase only the
bestQ alignments are created (i.e., one perQS). Therefore,
our optimization efforts focused on the scoring phase.
Note that there are no data dependencies between the R ∗
Q pairwise alignments. Thus, they can easily be calculated
in parallel on a multi-core platform.

OpenCL programmingmodel
OpenCL (Open Computing Language) is an open stan-
dard for parallel programming of heterogeneous systems.
An OpenCL application typically runs on a host CPU and
one or more GPUs. The OpenCL architecture is similar
to NVIDIA’s CUDA (Compute Unified Device Architec-
ture), which represents an extension of C/C++ for writing
scalable codes on SIMT architectures (Single Instruction,
Multiple Threads).
A CUDA device consists of several Streaming Multipro-

cessors (SMs) which correspond to the OpenCL compute
unit terminology. The OpenCL work-items and work-
groups correspond to the CUDA thread and thread block
concepts. In analogy to CUDA applications, OpenCL
applications consist of a host program which is exe-
cuted on the CPU and one or more kernel functions
that are offloaded to the GPU. The kernel code executes
work-items/threads sequentially and work-groups/thread
blocks in parallel. Since threads are organized into thread
blocks, thread blocks are in turn organized in grids of
thread blocks. An entire kernel is executed by such a grid
of thread blocks.
OpenCL applications can access various types of mem-

ory: global, local, shared, constant, and texture. The global
memory resides in the device memory (e.g., DRAM on the
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GPU board) and is accessed via 32-, 64-, or 128-byte trans-
actions. Global memory is allocated on a per-application
basis and can be accessed by all work-items and work-
groups. To maximize global memory throughput, it is
essential to maximize memory coalescence and minimize
address scatter. CUDA local memory accesses occur only
for some automatic variables that the compiler places in
local memory, e.g., large structures or variables that do
not fit into the kernel’s register space. Since CUDA local
memory resides in device memory, local memory accesses
exhibit identical high latency and low bandwidth as global
memory accesses. Shared memory resides on the chip and
is therefore substantially faster than local and/or global
memory. In OpenCL, local memory is located in shared
memory and can be accessed on a per-thread basis, while
shared memory can be accessed on a per-(thread)block
basis. Therefore, as long as there are not bank conflicts,
using shared memory allows for attaining high memory
bandwidth. Finally, constant and texture memory reside in
device memory and are cached.

Inter-reference memory organization
An inter-referencememory organizationmodel, similar to
the one described in [9], is deployed for both the SIMD
as well as the SIMT implementations. The inter-reference
organization facilitates the vectorization of the code on
the SIMD (x86) architecture, while on the SIMT archi-
tecture it allows for coalesced global memory accesses
and thereby high device throughput. In Figure 1 we illus-
trate this generic inter-reference memory organization
approach. A certain number W (a work-group) of ref-
erence sequences (RS) is organized in one large array,
the ‘inter-reference vector’, that consists of consecutive
groups of elements. Each group contains all R elements
for one specific position/index of the RS. The elements
of a group are placed contiguously and all groups are
placed sequentially in memory. In other words, the group

Inter−Reference Vector

A

B

C

A_i A_i+1

B_i B_i+1

C_i C_i+1

Reference
Sequences

A_i C_iB_i A_i+1 B_i+1 C_i+1

group−i

padded to a multiple of 32

index−i elements

Figure 1 Inter-reference memory organization. Example of the
inter-reference memory organization on SIMD and SIMT platforms. All
index-i elements are grouped together in group i. Groups are padded
to a multiple of 32 for performance reasons.

containing the i+1th elements follows the group contain-
ing the ith elements. The group size (number of elements
per work-group) varies for the SIMD and SIMT architec-
tures. A similar organization is used to store the dynamic
programming matrix D (see Equation 1): each entry Di,j

consists of a group of W elements, while the groups in
Di,j and Di+1,j occupy consecutive memory locations. The
groupwidth (W ) of the SIMD implementation depends on
the selected integer data type and the x86 target architec-
ture (see next section for details). For SIMT architectures,
group sizes are multiples of 32 unsigned integers to ensure
that the global memory is accessed in chunks of 128 bytes.
Moreover, all memory transactions are aligned automat-
ically (every address is a multiple of 128). The actual
number of reference elements that a group contains is
either 32 (number of unsigned integers in the group) or
larger, depending on the compression of the reference
entries (number of reference entries that are stored in an
unsigned integer).

SIMD vectorization
As mentioned above, the R ∗ Q independent alignment
operations of the PaPaRa scoring phase can easily be dis-
tributed to multiple cores using threads. This corresponds
to a MIMD (Multiple Instruction, Multiple Data) paral-
lelization scheme, which scales linearly with the num-
ber of cores. Further performance improvements can be
obtained by exploiting the capability of modern CPUs
to simultaneously work on multiple data elements by
means of dedicated SIMD (Single Instruction, Multiple
Data) instructions. Based on the input data organization
described in the preceding section, individual instructions
of the sequential implementation (i.e., the naı̈ve imple-
mentation of Equation 1) can be transformed into corre-
sponding SIMD instructions. In contrast to the sequential
implementation that aligns a single QS against a single
ancestral reference at a time, the SIMD implementation
simultaneously aligns a single QS against W ancestral
reference sequences on each x86 core.
The number of instructions that are necessary to cal-

culate individual entries in the dynamic programming
matrix is similar for the sequential and SIMD implementa-
tions, but the memory throughput is increased byW since
each SIMD instruction works onW times more data com-
pared to its sequential counterpart. It is therefore crucial
to reduce the amount of memory used by the alignment
algorithm such that frequently accessed data is kept in
cache. During the dynamic programming matrix compu-
tations (scoring phase), we do not keep the entire dynamic
programming matrix in memory, but only a single line.
This is possible because, according to Equation 1, the cal-
culation of a matrix entry Di,j in row j depends only on
values of D that have previously been calculated either in
the same row or in the preceding row j − 1.
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To make the SIMD implementation more generic, we
hide the specifics of the actual SIMD instruction set (e.g.,
SSE) in a thin abstraction layer called a generalized vec-
tor unit, which is implemented using C++ templates. The
generalized vector unit can be instantiated with different
data types (16-bit/32-bit integers) and vector unit widths
(8 or 4 units for 16-bit or 32-bit integers respectively
when using SSE). The top-level algorithm uses abstract
vector data types (integer vector of 8x16 bits) and vector
operations (e.g., load data from a memory location into
a 8x16-bit integer vector, add two 8x16-bit integer vec-
tors, etc.). Here, the group width W corresponds to the
width of the vector unit (i.e., either 4 or 8 units for 16-bit
or 32-bit integer vectors) on our primary target platform,
an Intel x86 with SSE instructions. This ensures that the
element groups in the RS and the dynamic programming
matrixD can be directly loaded into CPU vector registers.
We implemented the generalized vector unit for Intel x86
CPUs using SSE version 4.1 intrinsics. Note that SSE ver-
sion 4.1 is only required for using 32-bit integers, while
for 16-bit integers SSE version 2 or higher is sufficient.
We have verified that the concept of the generalized vec-
tor unit also works correctly for other vector instruction
sets (e.g., ARMNEON or Intel AVX instructions; data not
shown).

SIMT inter-task parallelization
On the SIMT platform, each alignment kernel invoca-
tion calculates one dynamic programming matrix. To
efficiently execute the kernel on a GPU, every individual
dynamic programming matrix calculation is assigned to
a distinct thread (inter-task parallelization). An alterna-
tive parallelization scheme using intra-task parallelization
would assign each task (dynamic programming matrix
calculation) to a thread block, and all threads within that

block would then cooperate to accomplish the task. Liu
et al. [12] investigated both the inter-task as well as the
intra-task parallelization approaches for porting the SWA
to SIMT platforms. They found that inter-task outper-
forms intra-task parallelization. However, the intra-task
approach requires significantly less device memory per
thread. The intra-task approach is also appealing in cases
where a large number of independent pairwise align-
ments need to be performed. However, in PaPaRa, each
QS is aligned against a large number of RS. This align-
ment workload can be grouped into many 1-to-W align-
ments, which naturally fits the inter-task paralellization
scheme. Previous experiments with the SWA by other
authors showed that, if the problem at hand is such that
the inter-task approach can be deployed, it consistently
outperforms the intra-task approach on SIMD [9] and
SIMT [12] architectures. The inter-task approach is more
communication-efficient since frequent synchronization
between threads operating on a single, shared dynamic
programming matrix is not required. Threads only need
to be synchronized once upon kernel termination. There-
fore, we did not further investigate the intra-task approach
for PaPaRa. Figure 2 depicts the inter-task parallelization
approach we use here.

Block-based matrix calculation
A straightforward approach for calculating the PaPaRa
dynamic programmingmatrix is to compute one row after
the other in a diagonal direction as shown in Figure 3. The
memory requirements of this approach depend on the size
of the inter-reference vector, since only the last matrix row
needs to be stored in memory for calculating the next row.
However, this approach requires off-chip global memory
and does not allow for using on-chip shared memory. The
main reason for this is that the size of the inter-reference
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The number of thread groups Q
is equal to the number of query
sequences to be aligned.The number of threads R_Pad 

in a thread group is equal to
the smallest muliple of 32 that
is larger than the number of
reference sequences in the 
inter−reference vector.

All threads in a thread group
align the same query sequence
to a different reference sequence.

Every thread group aligns
a different query sequence
to all reference sequences
in the inter−reference vector.

yy−1 y+1

Q
 thread groups

yy−1 y+1

R_Pad threads

Thread group i

Thread group i+1

Q
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Figure 2 Inter-task parallelization strategy. Example of the inter-task parallelization strategy. Thread y of group i aligns QS i to RS y. The number
of threads in a thread group depends on the number of RS in the inter-reference vector. The number of thread groups depends on the number of
QS. Every thread group aligns a different QS to all RS while all threads in a thread group align the same QS to all RS.
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Figure 3 Straightforward calculation of the PaPaRa scoring matrix. The straightforward approach for calculating the scoring matrix consists in
calculating one row after the other. In every row the values are calculated from left to right. Therefore, an entire row is calculated before proceeding
to the next one.

vector in real-world scenarios will typically exceed the
amount of shared memory available on a representative
SIMT platform. Furthermore, the entire row needs to be
calculated before proceeding to the next row. To alleviate
these shortcomings, and to be able to use shared mem-
ory, we devised a block-based approach. The matrix cells
are calculated in square or rectangular blocks of adjustable
size. The block size is a function of the length of the query
sequences, the amount of available shared memory, and
the number of RS. Figure 4 depicts this blocked matrix
calculation model.
Due to the diagonal direction of the PaPaRa matrix

calculations and the limited amount of on-chip mem-
ory, it is not possible to use shared memory efficiently
along the entire inter-reference vector. This means that
the very first and very last parts of it need to be calculated
using global memory for storing the intermediate values
of the row fraction they are operating on. The part of the
inter-reference vector residing in the rectangular blocks
can, however, be calculated using shared memory. Using
rectangular blocks at either end of the RS requires the
evaluation of additional conditional (if-else) statements
in the kernel code. Note that evaluating conditionals can
substantially deteriorate GPU performance. Thus, we use
global memory at either end as a trade-off to circum-
vent this problem and to avoid evaluating conditionals
that would slow down processing of the main part of the
inter-reference vector. Our approach only requires a fixed
amount of global memory, irrespective of the length of
the RS (stored in the inter-reference vector), since the full
length RS is processed by iterating over blocks of fixed
size. In the example provided in Figure 4, Blocks 1 and
4 use global memory while Blocks 2 and 3 operate on
shared memory.

Loop unrolling
An advantage of the blocked approach over the straight-
forward approach is that the amount of global mem-
ory required for the computation of a single dynamic
programming matrix does not depend on the length of
the RS. Nevertheless, code complexity increases since
three nested for-loops are required to compute the entire
matrix: one loop iterates over the rectangular blocks, the
second loop iterates over the query sequence, and the
innermost loop iterates over the reference fraction in the
current block. We observed that the anticipated perfor-
mance gain by using shared memory was reduced by
the increased code complexity, which hindered the GPU
threads from efficiently executing the blocked version of
theOpenCL kernel. To solve this problem, we unrolled the
innermost for-loop that iterates over the fraction of the
reference corresponding to the rectangular block.
Loop unrolling significantly improved kernel perfor-

mance but comes at a cost: the number of RS that the ker-
nel can align is hard-coded. However, this limitation is not
problematic, since in typical real-world scenarios users
will align thousands of reference and query sequences. In
this case, the amount of dynamic programming matrices
to be computed is organized in groups that contain a fixed
number of RS. Thus, the OpenCL kernel can be launched
several times on those groups. We opted for using a fixed
number of RS based upon an in-depth investigation of the
impact of the shared memory size setting on OpenCL ker-
nel performance. In our implementation, we use 15 KB
of shared memory because a significant slow-down was
observed when using larger amounts of shared memory.
The number of RS per kernel launch is fixed (hard-coded)
to 320, which allows for unrolling the innermost loop
12 times. Thus, we were able to completely remove this
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Figure 4 Block-based calculation of the PaPaRa scoring matrix. The dynamic programming matrix is calculated in blocks, starting from the
left-most square block and proceeding toward the right-most square block. In every block the rows are calculated one after the other. Block 1 stops
when the last row of the matrix is reached. It operates on global memory due to its size. The main part of the reference is processed in rectangular
blocks (Blocks 2 and 3). These blocks are of significantly smaller size and operate on shared memory. Block 4 processes the last part of the reference
sequence in global memory. Blocks 1 and 4, which operate on global memory, represent an engineering trade-off for avoiding if-else conditional
statements in the GPU kernel that would slow down Blocks 2 and 3. To process real-world references, many more than 2 iterations over the
rectangular blocks are required.

loop because the selected shared memory size only allows
for processing 12 columns of the dynamic programming
matrix in each block.

Data compression
The global memory access pattern is also performance-
critical on SIMT platforms. Therefore, we compressed the
part of the inter-reference vector that is processed by the
blocks in sharedmemory to reduce the frequency of global
memory accesses. Every element (inter-reference vector
entry) in the inter-reference vector requires 5 bits (4 bits
for the parsimony state plus 1 bit for the phylogenetic gap
signal CGAP) which allows the use of one unsigned 32-bit
integer value to store 6 elements. This boils down to only
two global memory accesses for every 12 elements (or two
global accesses per rectangular block). Since square blocks
are not unrolled, the inter-reference vector entries in such
blocks are also not compressed for the sake of code sim-
plicity, and to allow for the efficient execution of threads.

Figure 5 outlines how the inter-reference vector is orga-
nized on the SIMT platform. The uncompressed initial
and final parts of the vector require one integer per ele-
ment while the compressed part requires one integer for
every 6 elements. Note that all three parts of the vector
(uncompressed initial and final parts and the compressed
intermediate part) are padded to a multiple of 32 unsigned
integers.

OpenCL application
The complete OpenCL application consists of tasks per-
formed by the CPU (host program) and operations that
are offloaded to the GPU (kernel functions). The host
program handles the inter-reference memory organi-
zation and compresses the input RS. Once the refer-
ences have been rearranged (organized into the inter-
reference vector) and compressed, they are stored in
pinned (non-pageable) contiguous memory space. The
query sequences are also stored in contiguous blocks,

A_0 B_0 . . . A_i−1 B_i−1 A_i+5 − A_i

non−compressed reference elements
1 integer per element

padded to a multiple of 32

B_i+5 − B_i . . . B_k−m A_k B_kA_k−m

padded to a multiple of 32
compressed reference elements

1 integer per 6 elemens

A_i+11 −A_i+6 B_i+11 − B_i+6

Figure 5 Compressed inter-reference memory organization. The non-compressed fractions of the vector are processed by the square blocks
while the compressed part is processed by the rectangular blocks.
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each the length of the longest query sequence. Allocating
pinned memory for the query and inter-reference vec-
tors allows for fast GPU data transfers via PCI Express.
After the data (query and reference sequences) have been
transferred to the global GPU memory, the host program
launches a one-dimensional kernel of size Q ∗ R Padded,
where Q is the number of query sequences and R Padded
the smallest multiple of 32 that is greater than the num-
ber R of RS. Those Q ∗ R Padded threads are organized in
Q local groups of size R Padded. This local, group-based
thread organization simplifies the indexing of the query
sequences in the kernel function. Note that the number
Q of query sequences that is aligned per kernel call usu-
ally only represents a fraction of the total amount of query
sequences in the input dataset, due tomemory limitations.
Finally, the kernel function implements the actual

PaPaRa alignment kernel. The local group index in the
kernel references the query sequence while the thread
index references the RS. Thus all threads in a local group
align the same query sequence to all RS in device mem-
ory. The query and reference sequences are retrieved from
global memory and the intermediate values (the values of
the dynamic programming matrices) are either stored in
global memory (first and last square blocks) or in shared
memory (rectangular blocks). As described before, all
global memory accesses are correctly aligned to minimize
the performance impact of high-latency global memory
accesses.

Results
GPU Performance
To assess performance of the OpenCL SIMT implemen-
tation, we used a heterogeneous system equipped with
an Intel i7 2600 CPU running at 3.4 GHz (SIMD plat-
form) and a NVIDIA GeForce 560 GPU with 336 CUDA
cores and 1 GB DDR5 device memory (SIMT platform).
We measured total execution times as well as GCUPS
(giga cell updates per second) for kernel executions on
real-world datasets.

Initially, we focus on the performance of the OpenCL
kernel for different input dataset sizes. To this end, we
investigate the behavior of single kernel launches with dif-
ferent RS lengths between 500 and 500,000 nucleotides.
Every kernel launch aligns 1250 query sequences with an
average length of 100 nucleotides to 320 RS. As shown in
Table 1, the performance of the OpenCL implementation
improves with the RS length until the peak performance
of 22 GCUPS is reached. For very short RS (e.g., 500
nucleotides), kernel performance drops below 50% of peak
performance. As already stated, the block-based imple-
mentation uses global memory for the first and last square
blocks of the matrix and shared memory for the inter-
mediate rectangular blocks. When the RS is short, global
memory will predominantly be used for dynamic pro-
gramming matrix calculations, since the square blocks
almost cover the entire matrix. In other words, because
of the short reference length, the potential performance
gains by using shared memory are negligible, since the
majority of operations is conducted on global memory.
For longer sequences however, the majority of operations
is carried out on shared memory and therefore improved
GPU performance is attained.
SIMD performance behaves differently with increasing

RS length. The cumulative performance on 4 cores is high-
est for the short references with 500 base pairs (18.01
GCUPS) and decreases linearly to reference lengths of
10,000 base pairs (13.66 GCUPS). We observed a further
substantial performance deterioration on very long ref-
erence sequences (e.g., 6.25 and 2.22 GCUPS for lengths
of 50,000 and 500,000 respectively). This is due to the
increased number of cache misses when longer references
are analyzed. Our SIMD implementation keeps one line
of the dynamic programming matrix in memory. Each
matrix entry corresponds to a vector of 8x16-bit values
(16 bytes). A reference length of 10,000 requires a matrix
line size of roughly 160 KB, which fits into the L2 cache
(256 KB per core) of the Intel i7 2600 CPU. For a refer-
ence length of 50,000, the matrix row occupies 800 KB

Table 1 OpenCL kernel performance for RS with different lengths

Execution times GCUPS Speedup GPU vs

Reference length Seq SSE(4) GPU Seq SSE(4) GPU Seq SSE(4)

500 40.79 1.11 1.89 0.49 18.01 8.4 21.58 0.59

1000 90.45 2.58 2.5 0.44 15.52 14.4 36.18 1.03

5000 494.65 14.30 9.23 0.40 14.30 21.2 53.59 1.55

10000 1006.1 29.27 18.31 0.40 13.66 21.6 54.95 1.60

50000 5103.4 319.92 90.95 0.39 6.25 21.9 56.11 3.52

100000 10369 1785.8 181.31 0.38 2.24 22.0 57.19 9.85

500000 51448 9005.3 906.21 0.39 2.22 22.1 56.77 9.94

Execution times (in seconds) to align 1250 QS to 320 RS.
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and does not fit into the L2 cache. Therefore, most matrix
cell calculations need to access the slower L3 cache (8 MB
shared by all cores). The slowdown is even larger for the
longest sequences under examination, where the data do
not fit into L3 cache either. Currently, we do not expect
these slowdowns to be problematic for real-world sce-
narios because current sequencing devices rarely produce
reads exceeding a length of 1000 base pairs [18]. How-
ever, when future sequencing technologies (e.g., PacBio
www.pacificbiosciences.com) are capable of generating a
large number of reads longer than 1000 base pairs, then
a blocking technique similar to the one devised for the
SIMT implementation could also be applied to the SIMD
implementation.
We also investigated the performance of the OpenCL

kernel for different numbers of query sequences. We
chose a fixed RS length of 5000 since this represents
an average case scenario, and this is close to our GPU’s
peak performance levels. Keeping the reference length
constant, we launched the kernel multiple times using dif-
ferent query sequence numbers. The results of this perfor-
mance assessment are provided in Table 2. While kernel
performance is practically independent of the number of
query sequences, there is a slight performance improve-
ment up to 500 QS for the SIMD implementation. This is
caused by the initial overhead required for transforming
the RS into their inter-reference representation, which has
to be done once for each block ofW RS but is independent
of the QS number. For more than 500 QS this initial over-
head becomes negligible. As expected, the performance
of the sequential implementation is completely indepen-
dent of the QS number. We did not conduct any tests to
examine the performance of the kernel for different aver-
age query sequence lengths, as the PaPaRa algorithm has
been designed for aligning short read QS (e.g., Illumina or
454 reads) to a RA.

Hybrid CPU-GPU approach
To achieve the maximum possible performance for a typ-
ical CPU-GPU system, we also designed a hybrid PaPaRa

version that simultaneously uses all available cores as well
as a GPU. In addition to multi-threading (available in the
original implementation [1]), the CPU part of the hybrid
system uses the SIMD implementation described earlier
with a vector/group-width W = 8 and 16-bit scores. Ini-
tially, the algorithm generates and groups the RS into
‘blocks’ ofW sequences. These blocks are stored in a work
queue, and are sequentially retrieved by multiple worker
threads simultaneously. Each worker thread aligns all QS
against the W reference sequences in the block. Once all
queued blocks have been calculated, the master thread
resumes control and, for each QS, only re-computes the
alignment for the respective best-scoring QS/RS pair to
perform the backtracking step.
The GPU part of the hybrid system extends this mech-

anism by an additional GPU thread. In analogy to the
CPU threads, the GPU thread consumes blocks from the
same work queue. A key difference is that, while each CPU
thread only removes one block from the queue at a time
(i.e., W matches the native vector width of the CPU), the
GPU works on a higher number of RS at a time (e.g.,
320). The GPU thread can remove up to 40 blocks from
the work queue at a time. The GPU thread continues to
obtain and work on multiple blocks until the block queue
is empty. Thereby, the CPU cores and the GPU compete
for RS. For a sufficiently large number of RS this yields
good load balance between the CPU cores and the GPU.
This approach can also be extended for using more than
one GPU.
The GPU DRAM size limits the number and the length

of QS that can be transferred to the GPU at each invoca-
tion of the alignment kernel. While the number of QS per
invocation has to be small enough to fit into the available
DRAM when the QS are long, for short QS the num-
ber has to be high enough to achieve good performance
(aligning a small number of short QS greatly reduces the
performance of the GPU aligner, data not shown). The
hybrid CPU-GPU algorithm dynamically optimizes the
number of QS based on the available amount of DRAM
and the actual QS lengths. Thereby, we ensure that each

Table 2 OpenCL kernel performance for different number of query sequences

Execution times GCUPS Speedup GPU vs

Number of queries Seq SSE(4) GPU Seq SSE(4) GPU Seq SSE(4)

100 39.60 1.14 0.78 0.40 14.10 20.2 50.8 1.46

250 98.31 2.78 1.87 0.41 14.27 20.9 52.6 1.48

500 197.57 5.57 3.7 0.40 14.33 21.1 53.4 1.51

750 296.23 8.40 5.5 0.40 14.24 21.1 53.9 1.53

1000 395.59 11.20 7.4 0.40 14.28 21.2 53.4 1.51

1250 494.65 14.30 9.23 0.40 14.29 21.2 53.6 1.52

Execution times (in seconds) to align the QS to 320 RS with length 5000.

www.pacificbiosciences.com
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kernel invocation operates on the largest possible QS
number. This dynamic load balancing allows for stable
performance over different dataset shapes with different
sequence length distributions (see next section).
Currently, the OpenCL implementation faces a techni-

cal difficulty on NVIDIA GPUs. Once a kernel is invoked,
an internal thread of the GPU driver executes a busy-
wait, apparently (the driver is closed-source) waiting for
the GPU to finish. If a clFinish call is deployed on
the CPU side to wait for completion of the GPU ker-
nel, this will, in addition to the internal driver thread,
cause the calling thread to execute a busy-wait, effec-
tively wasting the computational power of two CPU cores.
While CUDA offers a method for selecting between a
busy-wait (for fine-grain, fast kernels) and a lazy-wait,
this option does not yet exist in OpenCL. From the val-
ues shown in Table 2, we can roughly estimate that the
speedup of the GPU over two CPU cores is approximately
three-fold (assuming that 14 GCUPS are obtained on 4
cores) in the best case. This effectively means that wasting
two CPU cores for interacting with the GPU has a neg-
ative impact on overall system performance. An analysis
of the NVIDIA OpenCL library showed that the inter-
nal busy-wait implementation executes sched yield
function calls which should yield CPU cycle time to
other threads. In practice, this call has no positive effect
and overall system performance decreases in propor-
tion to the number of threads that are executing a
busy-wait. This busy-wait issue is a well-known Linux
problem (see e.g., http://www.mail-archive.com/linux-
kernel@vger.kernel.org/msg91605.html). To temporarily
circumvent this issue, we use a customized shared library
to replace (using LD PRELOAD) all sched yield calls
by usleep calls. This actually yields CPU cycles to other
threads at the cost of increased kernel call latency, but only
of the order of a few milliseconds. This latency increase
is not critical here because each GPU kernel invocation
requires a few seconds to complete when the number of
QS is sufficiently large (see previous section). Using this
work-around, we can leverage the entire computational
power of the GPU and all CPU cores.

System performance
We assessed overall performance of the hybrid CPU-GPU
algorithm using two representative real-world datasets.
The experiments were performed on the same system as

described above (i7-2600 CPU, GeForce GTX 560), using
all 4 CPU cores. The first test dataset (1604.PRANK)
has already been used to evaluate the original implemen-
tation of PaPaRa in [1]. This dataset contains 802 RS
of length 3060 and 16,040 QS with a mean length of
100 base pairs. We did not use other datasets from the
original study because the hybrid CPU-GPU algorithm
targets larger datasets. The second dataset (16S.B.ALL) is
from a recent study comparing PaPaRa to a newly devel-
oped algorithm [19]. The unoptimized, proof-of-concept
implementation of PaPaRa performs better than compet-
ing alignment approaches on the latter real-world dataset
at the cost of substantially higher runtimes. This dataset
consists of 13,822 RS of length 6857 and 13,820 QS of
lengths that vary between 29 and 483.
Table 3 shows the performance of the hybrid CPU-

GPU algorithm on the two datasets. Column Tscoring
provides the runtime for the scoring phase. Column
Tall shows the overall runtime for the whole algorithm,
including the pre-processing of input files and the gen-
eration of the actual alignments. These pre- and post-
processing steps are unoptimized sequential tasks that
are performed on the CPU. The overall CPU perfor-
mance is shown in column GCUPSCPU , which provides
the accumulated performance on 4 CPU cores. Over-
all GPU performance is provided in column GCUPSGPU .
On both datasets, the relative contribution of the CPU
cores and of the GPU are very similar; the CPU and
GPU contribute 40% and 60% of the overall GCUPS to
the accumulated CPU-GPU system performance, which is
shown in the last column (GCUPSall). All GCUPS values
refer to sustained GCUPS since they include the over-
head induced by load imbalance between the CPU and
the GPU. Load imbalance is observed when either one
of the CPU threads or the GPU finish last and require
the other computational resources to wait. The sustained
real-world performance of the hybrid system corresponds,
almost exactly, to the performance we obtained for the
synthetic benchmarks.

Discussion
Intuitively, the PaPaRa algorithms exhibits a similar com-
plexity to the SWA, since they both are dynamic program-
ming kernels. However, specific features for incorporating
phylogenetic signal in the PaPaRa algorithm make it more
challenging to implement than the SWA. In PaPaRa, the

Table 3 System performance of the hybrid CPU-GPU algorithm

Dataset Tscoring (s) Tall(s) GCUPSCPU GCUPSGPU GCUPSall
1604.PRANK 227.21 273.12 13.38 20.04 33.42

16S.B.ALL 12943.9 13111.4 13.87 20.00 33.87

Runtimes (in seconds) for the scoring phase and the whole algorithm.

http://www.mail-archive.com/linux-kernel@vger.kernel.org/msg91605.html
http://www.mail-archive.com/linux-kernel@vger.kernel.org/msg91605.html
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reference input sequences are parsimony state vectors.
Hence, 4 bits are required for representing parsimony
vector entries for DNA data. In SWA, reference input
sequences are simply plain characters and not parsi-
mony states. Thus, SWA requires only 2 bits for each
nucleotide, which means that PaPaRa exhibits higher
memory requirements than SWA. Furthermore, PaPaRa
calibrates gap penalties by using an additional CGAP flag.
This model increases the gap calculation cost and does
not allow for optimizing gap-open penalty calculations as
used in SWIPE [9]. The fact that the SWA algorithm can
therefore be mapped in a more compact way to x86 and
SIMT platforms explains the higher GCUPS performance
obtained [9,13].
The PaPaRa kernel was implemented in OpenCL. Sev-

eral informed design decisions and optimization tech-
niques were applied to achieve the best possible perfor-
mance. The inter-reference memory organization allowed
for efficient use of global memory, while the block-based
approach was devised to exploit on-chip shared mem-
ory. The block-based implementation gave rise to apply-
ing loop unrolling and data compression, which further
improved performance. Apart from the thoroughly opti-
mized OpenCL implementation, we also developed a
SSE4.1 vectorized version of the kernel to investigate how
state-of-the-art SIMD platforms perform for PaPaRa. Via
the competing programmer approach, we hope to provide
an as fair as possible performance comparison between
two fundamentally different hardware architectures. On
an Intel i7 2600 CPU (using all 4 physical cores), we
obtained a x86 SIMD peak performance of 18 GCUPS
and an average performance of 12.3 GCUPS. A mid-range
gaming GPU like the GTX 560 delivered peak and average
performance of 22.1 and 18.4 GCUPS.
We developed and optimized theOpenCL kernel mainly

for the NVIDIA Fermi GPU architecture. Nonetheless,
we also executed some exploratory tests on an AMD/ATI
GPU (a RADEON HD 6970 with a theoretical peak per-
formance of 2703 GFLOPS). As expected, the OpenCL
kernel could be executed on the ATI system without any
substantial modifications, but we observed poor perfor-
mance. We measured performance of 13.2 GCUPS (the
NVIDIA GTX 560 GPU with 1075 GFLOPS peak per-
formance delivered 18.9 GCUPS on this dataset) on a
subset of the real-world dataset used to evaluate the per-
formance of the hybrid CPU-GPU system. One would
expect a 3 to 4 times better GCUPS performance for a
fully ATI-tuned kernel. Note however that, in contrast to
the NVIDIA Fermi architecture, the AMD/ATI architec-
ture heavily relies on Instruction Level Parallelism (ILP).
Thus, it may become necessary to re-write the alignment
kernel such that the OpenCL compiler can group simi-
lar instructions more efficiently in an SIMD-like manner
to attain peak performance. Thus, while OpenCL code is

portable, achieving satisfying performance still requires
an architecture-aware tuning.
Finally, we combined and coupled the SIMD and

SIMT implementations to create a hybrid CPU-GPU sys-
tem that can now exploit all available computational
resources of a representative modern desktop system
(GTX 560 GPU and i7 2600 CPU). The total system
peak performance amounts to 33.8 GCUPS. By efficiently
exploiting all computational resources, we are able to fun-
damentally improve the applicability of the highly accu-
rate PaPaRa algorithm to large real-world datasets. For
dataset 16S.B.ALL, the major concern regarding PaPaRa
expressed in [19] is the relatively long program runtimes
of the original (unvectorized and unoptimized) proof-of-
concept implementation. In terms of alignment quality,
PaPaRa outperforms all alternative approaches that have
been assessed on large real-world datasets according to
this independent study. To test the current limits of CPU
performance using PaPaRa, we conducted additional tests
on an overclocked system (Intel i5 2500k CPU running
at 4.5 GHz). This type of CPU has an unlocked clock-
frequency generator and can therefore be overclocked
without additional hardware modifications, except for
providing appropriate cooling. On the overclocked CPU,
wemeasured a peak performance of 21.9 GUPS on 4 cores
(using 1250 QS and 320 RS of length 1000). This corre-
sponds to an improvement of 20% over the i7 2600 CPU.
We did not experience any stability issues for the spe-
cific overclocking configuration during these tests. Based
on the performance data published at http://www.spec.
org/cpu2006/results/cpu2006.html, we conclude that this
CPU, when pushed to its technical limits, currently offers
the highest per-core performance of any available CPU on
the market. Finally, our results corroborate the observa-
tions made in [9] that the computational capabilities of
modern CPUs and GPUs are in the same order of magni-
tude provided that highly optimized alignment kernels are
developed on both platforms.

Conclusions
In this paper we described the adaptation and acceler-
ation of a novel phylogeny-aware short-read alignment
kernel named PaPaRa to modern x86 and SIMT architec-
tures. For the SIMT architecture we used OpenCL while
for the SIMD platform we deployed multi-threading and
SSE4.1 vector intrinsics. We observed that state-of-the-
art CPUs and GPUs deliver comparable performance for
sequence alignment algorithms if properly optimized. We
also demonstrated that overall system performance can be
substantially improved when all computational resources
are used (CPU and GPU).
The SIMD and SIMT implementations were devel-

oped using the “competing programmer approach”. Thus,
the programming time and tuning effort spent on both

http://www.spec.org/cpu2006/results/cpu2006.html
http://www.spec.org/cpu2006/results/cpu2006.html
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implementations was comparable. The performance of
the resulting codes is analogous to the performance
obtained for previous SIMD and SIMT accelerations of
the related, yet not identical SWA. We conclude that,
for representative dynamic programming kernels, deploy-
ing SIMD vector intrinsics is as challenging as port-
ing the algorithm to an SIMT platform. In both cases,
a thorough understanding of the underlying hardware
architecture is required (also with respect to perfor-
mance results on the AMD/ATI platform). An under-
standing of CPU architectures can help to reduce cache
misses and/or pipeline stalls. Understanding how threads
are launched on a GPU can help to reduce/eliminate
memory access conflicts among parallel threads and
therefore increase the number of executed instructions
per cycle.
Regarding future work, we intend to also explore CUDA

as an alternative to OpenCL as well as to devise an anal-
ogous performance comparison. Furthermore, we plan to
investigate how a OpenCL code, as optimized for a GPU,
performs on multi-core CPUs. We also intend to ana-
lyze the programming effort that is required to transform
a GPU-optimized OpenCL implementation into a CPU-
optimized one. Finally, we plan to implement a block-
based CPU version of the kernel for further reducing
cachemisses and for improving CPU performance on very
large reference sequences.
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