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Abstract

Background: Gene set analysis is moving towards considering pathway topology as a crucial feature. Pathway
elements are complex entities such as protein complexes, gene family members and chemical compounds. The
conversion of pathway topology to a gene/protein networks (where nodes are a simple element like a gene/
protein) is a critical and challenging task that enables topology-based gene set analyses.
Unfortunately, currently available R/Bioconductor packages provide pathway networks only from single databases.
They do not propagate signals through chemical compounds and do not differentiate between complexes and
gene families.

Results: Here we present graphite, a Bioconductor package addressing these issues. Pathway information from
four different databases is interpreted following specific biologically-driven rules that allow the reconstruction of
gene-gene networks taking into account protein complexes, gene families and sensibly removing chemical
compounds from the final graphs. The resulting networks represent a uniform resource for pathway analyses.
Indeed, graphite provides easy access to three recently proposed topological methods. The graphite package is
available as part of the Bioconductor software suite.

Conclusions: graphite is an innovative package able to gather and make easily available the contents of the
four major pathway databases. In the field of topological analysis graphite acts as a provider of biological
information by reducing the pathway complexity considering the biological meaning of the pathway elements.

1 Background
A great deal of effort has been recently directed towards
the study of gene sets (hereafter GSA) in the context of
microarray data analysis. The aim is to identify groups
of functionally related genes with possibly moderate, but
coordinated, expression changes. Several GSA tests,
both univariate and multivariate, have been recently
developed. See [1] for a comprehensive review, and [2-4]
for a detailed description and a critical investigation of
the tested hypotheses.
These approaches, although effective, miss the informa-

tion of the topological properties of the pathways. To this
end, the seminal paper by Draghici et al. [5] proposed a
radically different approach (called impact analysis,
SPIA) attempting to capture several aspects of the data:
the fold change of differentially expressed genes (DEGs),

the pathway enrichment and the topology of signaling
pathways. In particular, SPIA enhances the impact of a
pathway if the DEGs tend to lie near its entry points.
Massa et al. [6] introduced an alternative approach that
is based on a correlation structure test. Specifically, the
graphical model theory is used to decompose the overall
pathway into smaller cliques, with the aim of exploring in
detail small portions of the entire model. Recently, Isci et
al. [7] proposed a Bayesian Pathway Analysis that models
each biological pathway as a Bayesian network (BN) and
considers the degree to which observed experimental
data fits the model. Finally, Laurent et al. [8] developed a
graph-structured two-sample test of means for problems
in which the distribution shift is assumed to be smooth
on a given graph.
In this perspective the retrieval of pathway informa-

tion and the subsequent conversion into a gene/protein
network is crucial. However, pathway annotations com-
prise a myriad of interactions, reactions, and regulations
which is often too rich for the conversion to a network.

* Correspondence: chiara.romualdi@unipd.it
† Contributed equally
1Department of Biology, University of Padova, via U. Bassi 58/B, Padova, Italy
Full list of author information is available at the end of the article

Sales et al. BMC Bioinformatics 2012, 13:20
http://www.biomedcentral.com/1471-2105/13/20

© 2012 Sales et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:chiara.romualdi@unipd.it
http://creativecommons.org/licenses/by/2.0


In particular, challenges are posed by the presence of
chemical compounds mediating interactions and by dif-
ferent types of gene groups (e.g. protein complexes or
gene families) that are usually represented as single
nodes. Available R packages (KEGGgraph, [9] and
NCIpath) share some drawbacks: i) they are focused
on a single pathway database each; ii) they do not con-
sider gene connections through chemical compounds;
iii) they do not handle differently the various kinds of
biological gene groups.
Here we present graphite (GRAPH Interaction

from pathway Topological Environment) a Bioconductor
package that provides networks from the pathways of
four databases (Biocarta; KEGG, [10]; NCI/Nature Path-
way Interaction Database, [11]; Reactome, [12]). It dis-
criminates between different types of biological gene
groups; propagates gene connections through chemical
compounds; allows the selection of edges by type of
interaction; uniformly converts heterogeneous node IDs
to EntrezGene IDs and HUGO symbols; and finally
allows the user to directly run SPIA, DEGraph, and
topologyGSA analyses over the provided networks.

2 Implementation
graphite was implemented using the statistical program-
ming language R and the package is included in the
open-source Bioconductor project [13]. In section 2.1
we report a brief state of the art of pathway formats,
databases and tools, while in section 2.2 we report the
rules that graphite uses to convert pathway topology
to gene networks.

2.1 Pathways Background
A variety of databases containing information on cell
signaling pathways have been developed in conjunction
with methodologies to access and analyse the data [14].
Pathway databases serve as repositories of current
knowledge on cell signaling. They present pathways in a
graphical format comparable to the representation pre-
sent in text books, as well as in standard formats allow-
ing the exchange between different software platforms
and further processing by network analysis, visualization
and modeling tools. At the present day, there exist a
vast variety of databases containing biochemical reac-
tions, such as signaling pathways or protein-protein
interactions. The Pathguide resource serves as a good
overview of current pathway databases [15]. It lists more
than 200 pathway repositories; over 60 of those are spe-
cialized on reactions of the human species. However,
only half of them provide pathways and reactions in
computer-readable formats needed for automatic retrie-
val and processing, such as Biological Pathway Exchange
(BioPAX, [16]), Systems Biology Markup Language
(SBML, [17]) and Biological Connection Markup

Language (BCML, [18]). Thus, different databases are
characterised by different annotations and only a part of
the whole set of reactions are confirmed by all the repo-
sitories. On the other hand, Cerami et al. [19] have
recently developed a web repository aiming at collecting
and integrating all public pathway data available in stan-
dard formats. It currently contains data from nine data-
bases with over 1400 pathways and 687,000 interactions.
From the graphical point of view, a number of soft-

ware tools [20-28] have been developed to visually build
computable models of pathways. For additional details
see the web page http://www.sbgn.org/. These tools are
usually based on graphical models in which nodes repre-
sent genes, proteins or chemical compounds, and edges
represent various types of interactions or associations.
In order to gather curated pathway data we collect

pathway information from the three public databases
that have emerged as reference points for the system
biology community. Reactome [12] (data was retrieved
in the BioPax format from the Reactome web site),
backed by the EBI, is one of the most complete reposi-
tories; it is frequently updated and provides a semanti-
cally rich description of each pathway. KEGG Pathways
[10] (retrieved in KGML format) provides maps for both
signalling and metabolic pathways, supplemented by 19
highly interconnected databases with genomic, chemical
and phenotypic information. BioCarta (http://www.bio-
carta.com) and NCI (NCI/Nature Pathway Interaction
Database) [11] whose data were retrieved in BioPax for-
mat from the PDI database web page.

2.2 Pathway topology conversion to gene network
Pathway topologies converted to gene-gene networks
(simple interaction format, hereafter SIF) is available
either on the Reactome [12] or on Pathway Commons
[19] web sites. However, they provide a single huge file
of protein-protein reaction for each database.
Unfortunately topological pathway analysis (TPA)

methods are not based on the analysis of the interaction
network as a whole, but needs a separate graph for each
pathway, in order to identify those that are significantly
involved in the biological problem under investigation.
Moreover, TPA benefits of long paths in which the gene
signal can spread across compounds and cell compart-
ments. Paxtools, a Java library for working with BioPAX
(http://www.biopax.org/paxtools.php), defines some
rules to convert a BioPax file to a SIF. However, it does
not take into account signal compound propagation and
gene group expansion. We start from Paxtools rules and
we extend them in order to reduce both BioPAX and
KGML interactions to pairwise relationships with com-
pound mediated signal propagation. Table 1 and Figure
1 report respectively pathway summary statistics and
nodes/edges distributions for the four databases
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obtained after the conversion. In the following we
describe in detail some of our rules.
2.2.1 Pathway definition
The KEGG database provides separate xml files, one for
each pathway. In the the other databases, we consider as
a pathway every instance of the BioPax class pathway.
2.2.2 Nodes with multiple elements
Within a pathway, nodes often correspond to multiple
gene products. These can be divided into protein com-
plexes (proteins linked by protein-protein interactions)
and groups containing alternative members (like gene
families, genes with similar biochemical functions). These
groups should be considered differently: the first kind
(hereafter group AND) should be expanded into a clique
(all proteins connected to the others), while the second
(hereafter group OR) should be expanded without con-
nections among them see Figure 2 (panel A and B).
In the KGML format there are two ways of defining

nodes with multiple elements: protein complexes (group
AND defined by entry type = “group”, see Figure 2A)
and groups with alternative members (group OR defined
by entry type = “gene”, see Figure 2B). An example of

the KGML for AND and OR groups can be seen in Addi-
tional file 1.
BioPax allows only one type of group: protein com-

plexes (group AND) corresponding to the complex
class. However, it often happens that a protein
instance contains multiple xrefs pointing to alternative
elements of the process (group OR). An example of Bio-
Pax definitions for both the AND and the OR groups
can be seen in Additional file 1.
2.2.3 Compound mediated interactions
Compound-mediated interactions are interactions for
which a compound acts as a bridge between two elements
(see Figure 2C). As chemical compounds are not usually
measured with high-throughput technologies, they should
be removed from the network. However, the trivial elimi-
nation of the compounds will strongly bias the topology
interrupting the signals passing through them. If element A
is linked to compound c and compound c is linked to ele-
ment B, then A should be linked to B. Moreover, to best fit
the biological model we take into account cell compart-
ment membership: the connection among genes A and B is
established only if the shared compound c has the same

Table 1 Number of pathways converted to networks with
average number of edges and nodes according to the
selected database.

Database N. of
pathways

Mean (Median)
nodes

Mean (Median)
edges

KEGG 232 71.86 (54) 211.12 (75.5)

Reactome 1070 33.22 (14) 780.64 (33)

BioCarta 254 15.18 (14) 36.88 (28)

NCI 177 76.79 (48) 165.18 (81)

Figure 1 Edges and nodes distribution of networks after
pathway conversion according to the selected database.

Figure 2 Toy examples of nodes with multiple elements
converted to gene-network. Group AND (protein complexes,
Panel A), group OR (member of gene family, Panel B) and
compound mediated signal (panel C).
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localization in both the reactions. However, there are some
chemical compounds that are highly frequent in map
description (such as hydrogen, H2O,...). Signal propagation
through them would lead to degenerate and long chains of
compounds. To remove this artifact, we decided to ignore
these compounds during the signal propagation. After par-
sing all the BioPax and KGML data we obtain compound
chains whose distribution are reported in Table 2.
Within the KGML format there are two different ways

of describing a compound mediated interaction: i) direct
interaction type = “PPrel” (A interacts to B through
compound c) and ii) indirect one type = “PCrel” (A
interacts to compound c and c interacts to B).
The BioPax format, on the other hand, provides only

an indirect way of defining compound mediated signals
(see Additional file 1).
2.2.4 Relation attributes
graphite allows the user to see the single/multiple
relation types that characterize an edge. The edge types
have been kept as close as possible to those annotated in
the original formats. Some new types have been intro-
duced due to the needs of the topological conversion.

3 Results and discussion
In sections 3.1 and 3.2 we provide two examples of
pathway topologies converted to gene networks by
graphite, while in section 3.3 we show the core func-
tions to retrieve, convert and display graphite net-
works. In section 3.4 we perform a simulation study to
verify the efficacy of our signal propagation strategy in
terms of topological analyses. In section 3.5 we run an
example of topological gene set analysis using gra-
phite networks and in section 3.6 we critically com-
pare graphite with other available R/Bioconductor
packages providing pathway topologies.

3.1 Pathway conversion example 1: Insulin
signaling pathway
Figure 3 represent an example in which the simple elim-
ination of compounds leads to an incorrect network
topology.

Insulin is an hormone controlling the balance between
mobilization and storage of energy molecules. Insulin
binds the Insulin Receptor (IR) and through phosphori-
lation of the IRS adaptors is able to recruit and activate
PI3K. PI3K is a kinase that converts PIP2 in PIP3 which
is a secondary messenger involved in the regulation of
various processes. The conversion between PIP3 into PI
(3,4)P2 or PI(4,5)P2 operated by phosphatases like
SHIP1/2 or PTEN induce a depletion of PIP3 levels and
of consequence a reduced activity on its downstream
targets [29].
PIP3 associates with the inner lipid bilayer of the

plasma membrane to promote the recruitment of pro-
teins with pleckstrin homology (PH) domains, like
PDPK and AKT, which is a crucial mediator of various
cell process, such as apoptosis, cell cycle, protein synth-
esis, regulation of metabolism [30].
Among other functions, AKT activates also the cyclic

nucleotide phosphodiesterases (PDEs), that is a group of
enzymes able to regulate the localization, duration, and
amplitude of the cyclic nucleotides. Signaling PDEs are

Table 2 Frequency of compound chains that we
propagate according to different databases.

Chain length KEGG Reactome Biocarta NCI

2 19790 55155 502 2790

3 0 874 9 134

4 0 736 8 11

5 0 140 0 0

6 0 39 0 0

7 0 6 0 0

8 0 17 0 0

9 0 1 0 0

Figure 3 Differences in signal reconstruction of a selected
portion of the insulin signaling pathway of KEGG (hsa04910).
Panel A. The original signal cascade. Panel B. graphite signal
reconstruction through chemical compound propagation. Numbers
represent EntrezGene IDs. Panel C. KEGGgraph signal
reconstruction.
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therefore important regulators of signal transduction
mediated by these second messenger molecules [31]. In
this pathway, PDE, depleting cAMP, indirectly inhibits
the PKC mediated phosphorilation, and the activation of
LIPE that is a lipase able to mobilize lipid energy stores.
PDE acts, in this way, as a anti-lipolytic agents [32].
This hormonal mediated signaling cascade, from the

insulin receptor to the inhibition of HSL, involves two
“second messenger” compounds (PIP3 and cAMP) cru-
cial for the transduction of the signal.
In panel A of Figure 3 we report a part of the insulin

signaling pathway of KEGG (hsa4910) that contains
three groups OR (PDE3, AKT and PKA), and two com-
pound mediated interactions (through PIP3 and cAMP).
This is a clear examples of a signal cascade in which the
propagation of the signal through compounds is crucial
to keep the whole signaling path. In panel B we report
graphite reconstructed signal cascade while in panel
C the KEGGgraph partially reconstructed signal.
An extract of the xml file corresponding to the signal

reported in Figure 3 of the main text is present in Addi-
tional file 1. From the xml definition it is evident how
entry 2 (SKIP) and entry 3 (SHIP) are linked to com-
pound 15 (PIP3) while there is no direct interaction
between compound 15 (PIP3) and entry 62 (PDK1/2).
This is why KEGGgraph misses the signal, while gra-
phite captures it by splitting the relation between
entry 52 (protein complex P13K) and 62 (PDK1/2)
through compound 15 (PIP3) into both 52 to 15 and 15
to 62. This dissection allows the reconstruction of the
signal, otherwise impossible.

3.2 Pathway conversion example 2: catalysis and cleavage
of Notch 1 by Gamma Secretase Complex
We selected the reaction 1784.3 from the Reactome
pathway called “A third proteolytic cleavage releases
NICD”. Gamma secretase is a multi-subunit protease
complex, itself an integral membrane protein, that
cleaves single-pass transmembrane proteins at residues
within the transmembrane domain. Here represented
the processing of the Notch 1 protein. The gamma-
secretase complex is composed of Presenilin homodimer
(PSEN1 variant 1 or 2 or 3 or 4 or 5 and PSEN2 variant
1 or 2), Nicastrin (NCSTN variant 1 or variant 2),
APH1 (APH1A or APH1B) and PEN2. Maturation of
the Notch receptor involves a cleavage of the protein,
the intracellular domain is liberated from the plasma
membrane that can enter into the nucleus to engage
other DNA-binding proteins regulating gene expression.
The cleavage is catalyzed and performed by Gamma
Secretase Complex.
Figure 4 shows Reactome representation of the reac-

tions (Panel A), the BioPax information as it is stored in
owl model and in Cytoscape plug-in for BioPax

(respectively panel B and C) and the graphite final
network (panel D). In the graphite network the
nodes are annotated using the XRefs informations while
edges preserve the type of the reaction annotated the
OWL model. Distinction between OR complexes
(formed by all the possibile variants of each protein)
nested inside the AND complex of the Gamma secretase
are topologically preserved in the resulting graph.

3.3 graphite functions
To access the Reactome, KEGG, Biocarta and NCI data-
bases graphite uses respectively the lists reactome,
kegg, biocarta and nci. A pathway network can be
retrieved from one of the lists using the name of the
pathway,
> names(biocarta)[1:3]
[1] “acetylation and deacetylation of

rela in nucleus”
[2] “actions of nitric oxide in the heart”
[3] “activation of camp-dependent pro-

tein kinase pka”
> biocarta[["ras signaling pathway"]]
“ras signaling pathway” pathway from

BioCarta
Number of nodes = 18
Number of edges = 22
Type of identifiers = native
Retrieved on = 2011-05-12
or its position in the list of pathways:
> p <- biocarta [[175]]
> p@title
[1] “ras signaling pathway”
In the network, nodes represent genes and edges func-

tional relationships among them. Nodes can have het-
erogeneous IDs (according to the pathway original
annotation) and edges can be characterized by multiple
functional relationships.
The function pathwayGraph builds a graphNEL

object from a pathway p:
> g <- pathwayGraph(p)
> g
A graphNEL graph with directed edges
Number of Nodes = 18
Number of Edges = 23
> edgeData(g) [1]
$ ‘EntrezGene:10928 | EntrezGene:5879’
$ ‘EntrezGene: 10928 | EntrezGene:5879

‘$weight
[1] 1
$ ‘EntrezGene:10928 | EntrezGene:5879

‘$edgeType
[1] “catalysisOut (ACTIVATION)”
The function converterIdentifiers allows the

user to map such variety of IDs to a single type (Entrez-
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Gene or Gene Symbol). For the ID conversion gra-
phite uses the data provided by the Bioconductor
package org.Hs.eg.db. This mapping process, how-
ever, may lead to the loss of some nodes (not all identi-
fiers may be recognized) and has an impact on the
topology of the network (one ID may correspond to
multiple IDs in another annotation or vice versa).

> pEntrez <- convertIdentifiers (p,
“entrez”)
> pEntrez
“ras signaling pathway” pathway from

BioCarta
Number of nodes = 20
Number of edges = 20

Figure 4 Catalysis and cleavage of Notch 1 by Gamma Secretase Complex. Reactome representation of the reactions (Panel A), BioPax
information as it is stored in owl model and in Cytoscape plug-in BioPax dedicated (respectively panel B and C) and the graphite final
network (panel D).
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Type of identifiers = Entrez Gene
Retrieved on = 2011-05-12
> nodes(pEntrez)[1:10]
[1] “10928” “1147” “3265” “387” “4303”

“5295” “572” “5879” “5894” “5898”
Several pathways have a huge number of nodes and

edges, thus there is the need of an efficient system of
visualization. To this end graphite uses the Rcytos-
cape package to export the network to Cytoscape [27].
Cytoscape is a Java based software specifically built to
manage biological network complexity and for this rea-
son it is widely used by the biological community. Run
Cytoscape with RPC plugin enabled and type at the R
command prompt:
> cytoscapePlot(convertIdentifiers(a

$’toll-like receptor pathway’, “symbol”))
The network will be automatically loaded into Cytos-

cape. See Figure 5 for the result of this operation.

3.4 Simulation study: compound propagated signal
improves topological analysis
In order to verify our signal propagation strategy we
perform a simulation study. Using the insulin signaling
pathway of the KEGG database we select as differentially
expressed 22 genes lying on the signal paths highlighted
in Figure 6A. These genes are connected if propagation
is employed, otherwise they are disconnected (see Figure
6C and 6D for propagation and non-propagation respec-
tively). We expect that propagation will lead to better
results in terms of topological analyses.
Our simulation is based on the following steps: 1) we

randomly generate μFC ~ U (2, 10); 2) we randomly gen-
erate log fold change values (δi for i = 1,..., 22) of the
differentially expressed genes as δi ~ N (μFC, 2) (interac-
tions of the signal paths selected are characterized all by
activation, thus, fold changes have the same sign); 3) we
run the SPIA[5] algorithm on the Insulin signaling
pathway with and without signal propagations and we

take the p-value of the topological analysis (pPERT); 4)
we repeat from step 1 10,000 times.
As shown in Figure 6B the distribution of the topolo-

gical significance p-values in case of signal propagation
is shifted towards lower values with respect to the case
of non-propagation. Propagation p-value distribution is
not only centered on 0.1 (while the one with non-propa-
gation is centered on 0.3) but is also less variable. As
expected the same results are obtained simulating nega-
tive fold changes (data not shown). This finding demon-
strate that compound mediating signal propagation
improves topological analyses giving more reliable
results.

3.5 Example of topological analysis: B-lineage Adult Acute
Lymphocytic Leukemia
3.5.1 Data
The dataset, recently published by [33], characterizes
gene expression signatures in acute lymphocytic leuke-
mia (ALL) cells associated with known genotypic
abnormalities in adult patients. Several distinct genetic
mechanisms lead to acute lymphocytic leukemia (ALL)
malignant transformations deriving from distinct lym-
phoid precursor cells that have been committed to
either T-lineage or B-lineage differentiation. Chromo-
some translocations and molecular rearrangements are
common events in B-lineage ALL and reflect distinct
mechanisms of transformation. The relative frequencies
of specific molecular rearrangements differ in children
and adults with B-lineage ALL. The BCR breakpoint
cluster region and the c-abl oncogene 1 (BCR/ABL)
gene rearrangement occurs in about 25% of cases in
adult ALL, and much less frequently in pediatric ALL.
Data is available at the Bioconductor site (http://www.

bioconductor.org/help/publications/2003/Chiaretti/chiar-
etti2/) Expression values, appropriately normalized
according to rma and quantile normalization, derived
from Affymetrix single channel technology, consist of 37
observations from one experimental condition (n1 = 37,
BCR; presence of BCR/ABL gene rearrangement) and 41
observations from another experimental condition (n2 =
41, NEG; absence of rearrangement). Probes platform
have been annotate using EntrezGene custom CDF ver-
sion 14 [34]. Given the involvement of BCR and ABL
genes in the chimera rearrangement, we expect these
genes playing a central role in the gene set analysis;
thus, most of the pathways containing BCR and/or ABL
genes should be found as significant.
3.5.2 Results
We report the results obtained by SPIA[5] and topo-
logyGSA[6] on the graphite networks. These statis-
tical tests are based on completely different null
hypotheses; while SPIA needs the list of differentially
expressed genes, topologyGSA performs two statistical

Figure 5 Visualization of graphite network using RCytoscape
package.
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tests (to compare the mean and the variance of the
pathway between two groups) on the entire list of genes
belonging to a pathway. Here, differentially expressed
genes required for SPIA package have been identified
using RankProd test [35] (F D R <0.01), while the test
on the mean has been chosen for topologyGSA
package.

Tables 3 and 4 reports the list of significant pathways
identified by the above approaches; pathways marked
with ✓ are those containing BCR and/or ABL genes. It
is interesting to observe that several pathways contain-
ing either BCR and ABL genes were identified as
deregulated especially with topologyGSA. Then, as
expected, several additional pathways associated to

Figure 6 Results of the simulation study on the Insulin signaling pathway compound mediated signal propagation. Panel A. Signal
paths selected to be differentially expressed. Panel B. p-value distribution of the topological analysis SPIA (pPERT) with and without
propagation. Panel C. graphite network obtained from insulin pathway with propagation. Panel D. network obtained from insulin pathway
without propagation.
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cancer progression, apoptosis, cell cycle, cell prolifera-
tion and inflammation have been selected as significant.
Leaving the comparison between topological analyses

aside (because it is out of the scope of the present
work), the results testify the feasibility of performing
analyses using graphite and the ability to obtain reli-
able results independently of the chosen analysis
method. In addition, for the first time, thanks to gra-
phite all the topological methods gain the access to
pathway repositories previously not considered.
Our results highlight that the hierarchical pathway

structure and the reduced dimension of the pathways
characterizing respectively the Reactome and Biocarta
databases jointly with the specialized cancer pathways of

the NCI databases allow the user to have deeper insight
into the data.
To highlight the usefulness of topological analysis in

the context of transcriptomic data interpretation, we
report two graphite networks identified as signifi-
cantly altered in the previous analysis.
Chronic myeloid leukemia pathway includes both

genes, BCR and ABL1, and was identified as differen-
tially expressed between BCR/ABL positive and negative
patients by topologyGSA. Figure 7 shows the chronic
myeloid leukemia graphite network from KEGG
database with differentially expressed genes mapped
with different colors according to fold change sign. It is
interesting to note the presence of several OR groups (e.

Table 3 Pathway analysis performed using SPIA statistical test on graphite networks.

Name FDR Signal Database BCR ABL

1 Leishmaniasis 0.03 Activated KEGG

2 Phase 1 - Functionalization of compounds 0.02 Activated Reactome

3 Syndecan-4-mediated signaling events 0.00 Activated NCI

4 Regulation of RAC1 activity 0.00 Activated NCI

5 RAC1 signaling pathway 0.00 Activated NCI

6 RhoA signaling pathway 0.00 Activated NCI

7 Regulation of RhoA activity 0.00 Activated NCI

8 Noncanonical Wnt signaling pathway 0.00 Activated NCI

9 Wnt signaling network 0.00 Activated NCI

10 BCR signaling pathway 0.00 Inhibited NCI

11 IL6-mediated signaling events 0.00 Inhibited NCI

12 Hypoxic and oxygen homeostasis regulation of HIF-1-alpha 0.00 Inhibited NCI

13 Stabilization and expansion of the E-cadherin adherens junction 0.00 Activated NCI

14 E-cadherin signaling in the nascent adherens junction 0.00 Activated NCI

15 E-cadherin signaling events 0.00 Activated NCI

16 HIF-1-alpha transcription factor network 0.00 Inhibited NCI

17 ALK1 signaling events 0.01 Activated NCI

18 Canonical Wnt signaling pathway 0.02 Activated NCI

19 ALK1 pathway 0.02 Activated NCI

20 S1P2 pathway 0.02 Inhibited NCI

21 Regulation of nuclear SMAD2/3 signaling 0.02 Activated NCI

22 Regulation of cytoplasmic and nuclear SMAD2/3 signaling 0.02 Activated NCI

23 TGF-beta receptor signaling 0.02 Activated NCI

24 C-MYB transcription factor network 0.02 Activated NCI

25 Osteopontin-mediated events 0.02 Inhibited NCI

26 Direct p53 effectors 0.02 Inhibited NCI

27 Validated transcriptional targets of AP1 family members Fra1 and Fra2 0.03 Activated NCI

28 Regulation of nuclear beta catenin signaling and target gene transcription 0.03 Activated NCI

29 S1P4 pathway 0.03 Inhibited NCI

30 amb2 Integrin signaling 0.03 Activated NCI

31 p38 MAPK signaling pathway 0.04 Activated NCI

32 Posttranslational regulation of adherens junction stability and dissassembly 0.04 Activated NCI

33 N-cadherin signaling events 0.04 Activated NCI

34 Lissencephaly gene (LIS1) in neuronal migration and development 0.05 Activated NCI ✓

35 C-MYC pathway 0.06 Inhibited NCI

36 p53 pathway 0.06 Activated NCI
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g. PI3K, AKT, IKK, CBL gene families), single members
of which resulted to be differentially expressed. Two
clear deregulated paths starting from BCR and ABL1
genes towards apoptosis and NFKB pathways highlight
the power of topological analysis to deeper investigate
signal cascades within large pathways.

3.6 R/Bioconductor packages
Currently there are two Bioconductor packages that try
to convert pathway to the SIF model. KEGGgraph[9]

that parses KGML format but i) considers all group of
genes as groups OR and ii) completely removes com-
pounds without propagation and NCIgraph that
imports BioPax models from Cytoscape [27] without
taking into account groups and compound propagation
(compounds become nodes of the network) and uses
internal IDs as node labels. The package allows to retain
only nodes with EntrezGene IDs loosing all the other
nodes. Thus, both of them are not suitable for topologi-
cal pathway analyses.

Table 4 Pathway analysis performed using topologyGSA statistical test on graphite networks.

Name FDR Database BCR ABL

1 CDO in myogenesis 0.00 Reactome ✓

2 Regulation of cytoskeletal remodeling and cell spreading by IPP complex components 0.00 Reactome

3 Role of Abl in Robo-Slit signaling 0.00 Reactome ✓

4 NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 0.01 Reactome

5 TNF signaling 0.01 Reactome

6 G1 Phase 0.02 Reactome

7 mTOR signalling 0.02 Reactome

8 PI3K Cascade 0.02 Reactome

9 Cyclin D associated events in G1 0.02 Reactome

10 PI-3K cascade 0.03 Reactome

11 E2F mediated regulation of DNA replication 0.04 Reactome

12 Cyclin A/B1 associated events during G2/M transition 0.04 Reactome

13 Intrinsic Pathway for Apoptosis 0.04 Reactome

14 Extrinsic Pathway for Apoptosis 0.05 Reactome

15 Lissencephaly gene (LIS1) in neuronal migration and development 0.00 NCI ✓

16 ErbB4 signaling events 0.01 NCI

17 Regulation of retinoblastoma protein 0.00 NCI ✓

18 Canonical NF-kappaB pathway 0.01 NCI

19 p73 transcription factor network 0.01 NCI ✓

20 Atypical NF-kappaB pathway 0.02 NCI

21 Neurotrophic factor-mediated Trk receptor signaling 0.00 NCI ✓

22 Pathogenic Escherichia coli infection 0.00 KEGG ✓

23 Chronic myeloid leukeamia 0.00 KEGG ✓ ✓

24 Cell cycle 0.0 KEGG ✓

25 Axon guidance 0.00 KEGG ✓

26 Neurotrophin signaling pathway 0.00 KEGG ✓

27 mtor signaling pathway 0.01 Biocarta

28 nf-kb signaling pathway 0.01 Biocarta

29 tnf/stress related signaling 0.02 Biocarta

30 p53 signaling pathway 0.03 Biocarta

31 tnfr1 signaling pathway 0.02 Biocarta

32 integrin signaling pathway 0.02 Biocarta

33 erk and pi-3 kinase are necessary for collagen binding in corneal epithelia 0.02 Biocarta

34 rb tumor suppressor/checkpoint signaling in response to dna damage 0.03 Biocarta

35 egf signaling pathway 0.04 Biocarta

36 tgf beta signaling pathway 0.04 Biocarta

37 role of mitochondria in apoptotic signaling 0.04 Biocarta

38 inhibition of cellular proliferation by gleevec 0.04 Biocarta

39 atm signaling pathway 0.05 Biocarta ✓

40 influence of ras and rho proteins on g1 to s transition 0.05 Biocarta
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4 Conclusions
It is evident that gene set analysis is moving towards con-
sidering pathway topology as a crucial feature. A correct
conversion of the pathway topology to a gene network
becomes therefore important. Available packages are not
able to correctly reconstruct the signal transduction in
most cases. graphite, on the other hand, is an innovative
package able to gather and make easily available the con-
tents of the four major pathway databases. In the field of
topological analysis graphite acts as a provider of biolo-
gical information by reducing the pathway complexity con-
sidering the biological meaning of the pathway elements.

5 Availability and requirements
• Project name: graphite
• Project home page: http://www.bioconductor.org/

packages/devel/bioc/html/graphite.html • Operating sys-
tem(s): Platform independent
• Programming language: R
• Other requirements: Bioconductor
• License: GNU AGPL
• Any restrictions to use by non-academics: none

Additional material

Additional file 1: Example of KGML and owl. Additional file 1: bmc-
supp.pdf, 116 K. http://www.biomedcentral.com/imedia/
1501537976613594/supp1.pdf
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