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Abstract

information.

mentioned within web pages.

Background: A scientific name for an organism can be associated with almost all biological data. Name
identification is an important step in many text mining tasks aiming to extract useful information from biological,
biomedical and biodiversity text sources. A scientific name acts as an important metadata element to link biological

Results: We present NetiNeti (Name Extraction from Textual Information-Name Extraction for Taxonomic Indexing),
a machine learning based approach for recognition of scientific names including the discovery of new species
names from text that will also handle misspellings, OCR errors and other variations in names. The system generates
candidate names using rules for scientific names and applies probabilistic machine learning methods to classify
names based on structural features of candidate names and features derived from their contexts. NetiNeti can also
disambiguate scientific names from other names using the contextual information. We evaluated NetiNeti on
legacy biodiversity texts and biomedical literature (MEDLINE). NetiNeti performs better (precision =98.9% and

recall =70.5%) compared to a popular dictionary based approach (precision =97.5% and recall = 54.3%) on a
600-page biodiversity book that was manually marked by an annotator. On a small set of PubMed Central’s full text
articles annotated with scientific names, the precision and recall values are 98.5% and 96.2% respectively. NetiNeti
found more than 190,000 unique binomial and trinomial names in more than 1,880,000 PubMed records when
used on the full MEDLINE database. NetiNeti also successfully identifies almost all of the new species names

Conclusions: We present NetiNeti, a machine learning based approach for identification and discovery of scientific
names. The system implementing the approach can be accessed at http://namefinding.ubio.org.

Background

There is a vast and ever growing amount of literature in
biology, ecology, biomedicine, biodiversity, genomics
and proteomics. The U.S National Library of Medicine’s
MEDLINE [1] database is one such source with more
than 18 million abstracts of journal articles in life
sciences with focus in biomedicine. Major efforts to
digitize legacy literature undertaken by consortiums like
the Biodiversity Heritage Library (BHL) [2] generate vast
amounts of text data from the Optical Character Recog-
nition (OCR) of scanned literature. Extraction of know-
ledge from sources like MEDLINE can significantly
speed up biomedical research by providing access to
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relevant information about diseases, genes, gene-protein,
protein-protein interactions, model organisms and
drugs. While gene/protein identifications and binary
interactions have been the focus of biomedical text min-
ing, more ambitious tasks like identifying complex
nested structures are also being pursued currently [3].
Identification of species names and the normalization
task of mapping them to identifiers in a database are
considered essential sub-tasks for many text mining pro-
jects [4,5] like recognizing gene names [6-8] or extract-
ing organism-specific information like life history,
geographic distribution and predator—prey relationships
from biodiversity and biomedical literature. A scientific
name is a genus name or a species level name with
genus followed by species or a name below the species
level with genus, species and subspecies information. It
can also be a higher order taxonomic name like family,
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order, etc. A scientific name is one of the named entities
that can be connected with other entities like gene
names, protein names, geographic locations, diseases,
common names of organisms and names of people who
first described the species. Recognition of named entities
is frequently a first step in the process of performing
more complex information extraction tasks like finding
relations between the named entities or for question
answering [9,10]. The name of an organism is one of the
few identifying elements associated with almost all bio-
logical data [11]. A scientific name extraction system will
be very useful in gathering all contexts in the form of
sentences or paragraphs associated with organism
names. These sentences and paragraphs can help enrich
the existing content and add new content for projects
like the Encyclopedia of Life (EOL), which aims to create
a webpage for every single species on Earth [12]. Natural
language processing and machine learning methods can
be applied to extract fine-grained, atomic information
that can be used to populate biological databases and re-
positories. The organism name serves as an important
metadata element for linking information from various
biological sources [13-16], so a species name identification
system is an essential tool in information integration.

Most of the approaches in the literature addressing the
problem of name finding from text sources primarily
rely on dictionaries with a list of scientific and/or
common names [4,14,17,18]. TaxonGrab [17] is a
dictionary-based approach that uses a dictionary gene-
rated by combining dictionaries of English words and
biomedical terms instead of a list of scientific names.
Words that do not appear in this dictionary (inverse
lexicon) and that follow simple rules for capitalization,
abbreviations, variants and subspecies mentions used in
scientific names are considered as organism names.
Approaches that primarily rely on this kind of an inverse
lexicon tend to have low precision as this can gather
many false positives from misspelled English words,
OCR errors and non-English words that pass through
the rule filters. The precision of the system can also vary
significantly from one text source to another depending
on the number of words covered by the inverse lexicon.
Hence such a system is also likely to perform very poorly
on non-English texts.

TaxonFinder [14] is designed to find scientific names
from text with the help of separate dictionaries for spe-
cies and genus names. Though the approach is likely to
have fewer false positives, the number of false negatives
(the number of correct names missed) can be high as it
cannot find anything that is not a genus and species
combination from the dictionaries used in the approach.
Such an approach cannot find misspelled names, names
with OCR errors, new species names and other names
not present in the dictionary. Such a system can also
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have false positives due to the presence of incorrect
names, names that are spelled the same as some com-
mon English words and geo-location names (e.g. major,
Atlanta).

The approach “Linnaeus” [4] uses dictionaries for sci-
entific and common names to construct a DFA (Deter-
ministic Finite Automaton) [19] to match species names.
The system also tries to resolve acronyms for organisms
(e.g. HIV, CMV) using the frequencies of most com-
monly used acronyms in MEDLINE calculated using
Acromine [20]. Linnaeus only focuses on finding species
names and currently does not deal with genera or
other higher-order taxonomic units. Inherently being a
dictionary based approach, Linnaeus also will have
issues that were discussed above for approaches like
TaxonFinder. There are also other dictionary-based
approaches that identify species names based on the
NCBI taxonomy [21,22]. FAT (Find All Taxon names)
[18] is another tool that uses a combination of rules, dic-
tionaries of scientific names and non-names along with
input from users to find scientific names. Wang et al.
[8,23,24] developed approaches to tag and disambiguate
genes, proteins and protein-protein interaction with spe-
cies names from the NCBI taxonomy, Uniprot [25] and
manually created dictionaries using a rule based ap-
proach and/or with a machine learning based classifier.
Their main objective was to disambiguate gene/protein
or protein-protein mentions in text using species tags.

Here we focus on recognition/discovery of scientific
names of organisms from various text sources. The
problem of discovery of binomial and trinomial scientific
names along with genera and higher taxonomic units
can be quite complex. For example, biodiversity litera-
ture and legacy text sources like BHL (Biodiversity Heri-
tage Library) contain many names with OCR errors,
alternative names and misclassified names. Thousands of
new species are discovered every year and many are re-
classified. Some names are spelled the same as geo-
locations or people names and therefore disambiguation
of names is required. We have developed approaches
and built tools that address all of the above.

NetiNeti is a solution for scientific name recognition/
discovery. This approach enables finding scientific
names in literature from various domains like biomedi-
cine and biodiversity. It can discover new scientific
names and also find names with OCR errors and varia-
tions. The system is based on probabilistic machine
learning methods where a given string has a certain
probability of being a scientific name or not being a sci-
entific name depending on the name string itself and the
context in which it appears. NetiNeti builds a machine
learning classifier from both the structural features of a
string and its contextual features. In the process of clas-
sifying a string, the approach can differentiate between
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common words like names of places or people from sci-
entific names based on the context in which a name
appears. For example, Atlanta is a scientific name in the
sentence, “Atlanta is a genus of pelagic marine gastropod
molluscs”. However, in the sentence, “The city Atlanta is
in the state of Georgia”, Atlanta is a geographic location
and not a genus name. NetiNeti correctly recognizes the
word Atlanta as a scientific name in the first context
and does not recognize it as a scientific name in the sec-
ond context. Simple rules for capitalization and abbre-
viations in species names are applied as a pre-filtering
step to generate candidate names. Candidates with com-
mon English words were also removed in the pre-
filtering process. The candidate names along with their
contexts are then classified using a supervised machine
learning classifier. While the system can disambiguate
and discover what scientific names of organisms are
mentioned in a document, the approach is not about
discovering documents that are about specific organisms
based on their presence in the document.

We evaluated NetiNeti on legacy biodiversity texts
(BHL books) and biomedical literature (MEDLINE). We
compared results of NetiNeti and a dictionary based sci-
entific name finder with the results of manual annota-
tion of a BHL book. A comparison of some of the
probabilistic machine learning algorithms on our anno-
tated dataset for scientific name finding is presented.
We also present the results of running NetiNeti on other
biological text sources.

Methods

Pre-filtering and candidate generation

The input text is first tokenized using a tokenization
scheme that breaks the characters in a stream of charac-
ters in natural language text into distinct meaningful
units called tokens. We followed the conventions used
by the Penn Treebank project [26] to tokenize text.
Word trigrams, which are groups of three tokens along
the token-sequence are then generated from the toke-
nized text and each trigram is then passed through a
simple rule filter which checks if the tokens in the tri-
gram have the right capitalization, abbreviations, etc.
and checks if the trigram has no common English
words. Each trigram that passes through the rule filter is
then classified by a machine learning classifier as
“scientific-name” or “not-a-scientific-name” using the
structural and contextual features of the trigram. The
trigram that was classified as a scientific name corre-
sponds to a trinomial name, which is a name below the
species level with genus, species and usually a subspe-
cies. If a trigram fails to pass though the rule filter, the
first two tokens (word bigram) of the trigram are then
tested to see if they can become a candidate for a bino-
mial name, with genus followed by a species mention.
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The classifier then classifies such candidate bigrams.
Similarly, the first token of a failed bigram is analysed if
it can become a candidate for a uninominal name (genus
or higher order taxonomic unit), which gets classified
accordingly if it is deemed as a candidate. NetiNeti also
resolves abbreviated species names by noting that an ab-
breviation can be used for a species after a mention of
its genus or an abbreviation can follow a mention of a
full name (genus-species combination) or an abbreviated
name for a species can be used after a mention of an-
other species name from the same genus.

Machine learning based classification

We applied probabilistic machine learning algorithms
like Naive Bayes and Maximum Entropy to classify can-
didate names. The objective is to estimate the probability
of a label (whether a name is scientific or not) given a
candidate string along with its contextual information.
Naive Bayes and Maximum Entropy classifiers learn or
estimate the probabilities from a training set.

P(ci,s)
P(s)
B P(Sl'|CiP)(C,') 1

K
= ~ P Ci P Ci
P(s;) P(s;) ( )11:]1: Vles

Pcilsj) =

(1)

K
label = arg max,cc | log(P(c;)) + Z log(P(fx|c:))
k=1

(2)

We are primarily interested in the conditional prob-
ability of a class label, ¢; € C = {'yes’, no'} given an in-
put string and its contexts s; as in Eq.1. The ‘yes’ and
‘no’ labels correspond to whether a string is a scientific
name or not. Once we get these conditional probabil-
ities, we simply choose the label with the highest prob-
ability for a given string. The Naive Bayes classifier
[27-29] as seen in Eq.1. actually models the joint prob-
ability P(c,s) of a class ¢ and a string s and makes an as-
sumption that all the featuresfi,fs,...fx for the string
and its contexts given the class label are independent as
in Eq.1 This independence assumption is strong, but it
helps to easily estimate the probability P(s|c;), of a
string s; given the class label ¢; from a training set of la-
belled examples. Even with this independence assump-
tion, the Naive Bayes classifier performs surprisingly
well in many document classification tasks [27,29].
P(fx|c;) can be estimated from the number of training
examples having the feature value f;, and the number of
examples with class label ¢; and also having the feature
value fi We can then get the class label for a string
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(along with its contexts) from Eq.2 with probabilities
taken in the log scale.

The Naive Bayes approach is called generative as it is
based on a model of the joint distribution P(c, s). The max-
imum entropy classifier, also known as a logistic regression
classifier, is called a discriminative approach as it is based
on the model of the conditional distribution P(c|s)
Maximum entropy is widely used for many natural
language processing tasks like text segmentation [30],
parts-of-speech tagging [31], language modelling [32], text
classification [33] and Named Entity Recognition (NER)
[9,10]. The principle behind the maximum entropy ap-
proach is to model all that is known and assume nothing
about what is unknown [34]. Given a collection of facts (in
the form of a training set), the approach chooses a model
that is consistent with all facts with a distribution that is as
uniform as possible i.e., the distribution that allocates its
probability as evenly as possible obeying all the con-
straints derived from the training set. The conditional
probability of a label ¢; given the string context s; takes
the following exponential form [35] in Eq.3.

Plel) = 5 09 S ) o

Where eachg,, (ci,sj) is a binary valued feature func-
tion defined on the class label and the string context,
Ams are the weights to be learned from the training
set for mthe feature functions and  Z(s;) =

Z exp(z Angn(ci,s)) is a normalizing factor that

c m=1

ensures that ZCP(ci|sj) = 1. The parameters )\, are
estimated via hill climbing approaches like Improved
Iterative Scaling (IIS) [35] or Generalized Iterative
Scaling (GIS) [36]. Limited-Memory Variable Metric
optimization methods like L-BFGS [37] have been
found to be effective for Maximum Entropy parameter
estimation [38]. In our scientific name recognition
task, we have applied and compared the IIS, GIS and
L-BFGS methods for parameter estimation on a corpus
that was manually annotated with scientific names. For
both Naive Bayes and the Maximum Entropy classi-
fiers, we used the Python [39] implementations in the
NLTK [40] package. MEGAM [41] optimization pack-
age was used for L-BFGS optimization.

Training set generation

An initial set of about 5,000 names was used as a posi-
tive example set. Candidate strings from unigram,
bigram and trigrams of a tokenized BHL book [42],
which does not contain any scientific names, was used
as an initial negative example set. An initial maximum
entropy classifier was trained with the initial training set
using only the structural features of strings. A set of
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MEDLINE abstracts, a small portion of content from
EOL [12] and biodiversity texts from BHL were segmen-
ted into sentences using the sentence tokenizer in
NLTK, pre-filtering and candidate generation steps were
performed for each sentence, and the initial classifier
was used to get scientific names that were identified
with high confidence. The scientific names along with
the sentences in which they occur together form the
positive example set. Features were derived from the sci-
entific names and a neighborhood of word contexts
appearing around the scientific names in the sentences.
We tokenized a geography book from the Internet arch-
ive [42] and the strings derived from word unigrams,
bigrams, and trigrams in the tokenized text of the book
form the negative example set. About 10,000 positive
examples with contextual information, another 10,000
examples from scientific names without contextual in-
formation were used as the positive example set. Abbre-
viated names from these examples were also added to
the positive example set. A total of about 40,000 positive
examples together with another set of about 43,000
negative examples were used to generate a training set
of 83,000 examples for the two class labels. Features
used include the last three, last two and the last charac-
ters along with the first and second characters of the
unigram, bigram, and trigram candidates. Binary features
like whether the last, second last, and third last charac-
ters are present in different partitions of the set,
[@e)ijosus;m’] were also used. Presence or absence of a
particular word in unigram, bigram, and the trigram
candidates in a dictionary of genus and species combina-
tions were also part of the binary features. When a word
token is part of the dictionary of names it contributes to
the conditional probability of the candidate name given
the structural and contextual features. Numerical fea-
tures like the number of vowels in various parts of the
candidate names were also used. For contextual features,
words appearing in the neighborhood of candidate
names and their parts-of-speech tags were used.

Results and discussion

Evaluation sets

NetiNeti focuses on discovering/identifying scientific
names of organisms including names with spelling and
OCR errors from text sources across domains like bio-
diversity and biomedicine. We present the results of
running NetiNeti on three different text sources.

BHL is a rich source of biodiversity data with over
80,000 volumes corresponding to over 30 million
scanned pages converted to text. A gold-standard bio-
diversity corpus marked with scientific names by an an-
notator was created, as there are no previously reported
annotated corpora for biodiversity information. Also, the
evaluation sets that were previously reported were not
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specifically annotated for scientific names of species
along with errors and variations. All the scientific names,
including names with OCR errors, occurring in a 600
page BHL book “American Seashells” [43] were
extracted manually by the annotator. We used NetiNeti
to identify all names in this book and compared our
results to the list of names that were manually extracted.
We also compared our results with the results of the
dictionary-based TaxonFinder [44] and the FAT tool
integrated into the GoldenGATE editor [45] for finding
scientific names The comparison results have been sum-
marized in Table 1. We also ran NetiNeti on MEDLINE,
which contains over 18 million bibliographic records
from journal articles in life sciences with a concentration
on biomedicine. We present the results of running two
of the best performing algorithms against the MEDLINE
database summarized in Table 2. We also evaluated
NetiNeti on a small subset of 136 tagged PubMed Cen-
tral’s (PMC) [46] open access full-text articles. These
136 articles were selected from the evaluation set used
by Linnaeus species identification system [4] with only
scientific name tags, as their full PMC evaluation set
consists of articles also tagged with common names.

Comparison of machine learning classifiers

We performed a series of training experiments with the
Naive Bayes classifier using different neighbourhoods for
contextual features, different sizes of positive and nega-
tive training examples and evaluated the resulting classi-
fiers with the precision and recall measures on the
“American Seashells” book [43] using the manually
extracted set of names from it. Precision is the fraction
of the retrieved names that are relevant scientific names
and recall is the fraction of scientific names retrieved
from all the scientific names in a document. “cspan” in
Figure 1 indicates the number of contextual features.
When no contextual features were used, increasing the
number of training examples did not yield any signifi-
cant improvements in precision or recall as in Figure 1A
indicated by the red circles which all clustered together.
Figure 1B illustrates this more clearly, where all the red
circles are close to each other in the P-R space. The blue
circles are the result of using classifiers with a single
contextual feature on either side of the candidate name.
We can see that all the classifiers corresponding to the
blue circles perform better than any of the classifiers

Table 1 Precision and recall values for NetiNeti,
TaxonFinder and FAT on the american seashell book

APPROACH PRECISION RECALL F-SCORE
NetiNeti 0.989 0.705 0.8231
TaxonFinder 0.975 0.543 0.6975
FAT 0.840 0402 0.5437
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Table 2 Results of running NetiNeti with Naive Bayes and
MaxEnt (GIS) on MEDLINE

Algorithm Unique Binomial and PMIDs
Trinomials covered

Naive Bayes 227796 193596 1883750

MaxEnt 214352 188606 1551176

corresponding to the red circles that did not use any
contextual information during the training phase. All the
circles colored other than red in Figures 1A and 1B rep-
resent the precision and recall values of classifiers
trained with one or more contextual features on either
side of the candidate names.

Figure 1C illustrates the effect of increasing number of
contextual features and increasing the number of posi-
tive examples in the training set. For example, the blue
stars in Figure 1C correspond to using five contextual
features on either side of the candidate name with in-
creasing positive example size during training. This was
more clearly represented in Figure 1D, where we used
five contextual features (cspan=>5) on either side of the
candidate name for each classifier with increasing sizes
of positive example sets form 3,000 to 19,000 in incre-
ments of 2,000 for training. It can be seen from
Figure 1D that increasing the positive example set con-
tributed to the better precision of the corresponding
classifier with a slightly lower value for recall.

In our subsequent experiments we compared the pre-
cision and recall values of Naive Bayes and Maximum
Entropy classification algorithms with various parameter
estimation methods like GIS, IIS, and L-BFGS on the
manually annotated American Seashell book. We also
compared the Decision Tree Learning algorithm [28,47]
implemented in the NLTK toolkit. For the comparison
of the algorithms, we used a context span of 1 corre-
sponding to features derived from a word on either side
of the candidate name for which the recall was higher
than the other configurations with a good precision (>
0.8). Comparison of the algorithms was performed both
with and without the use of a stop-list of English words
used as part of the pre-filtering process as described in
Methods. The results are summarized in Table 3. The
Naive Bayes algorithm has the highest F-score (harmonic
mean of precision and recall values) compared to other
algorithms for this dataset when applied with and with-
out a stop-list during pre-filtering. All the algorithms
with the exception of the Decision Tree learning algo-
rithm performed well with a better precision when a
stop-list was used, although it did not have much impact
on the recall values. Having a stop-list eliminates English
words or other common words to generate a cleaner set
of candidate names. However, the results from Decision
Tree learning algorithm, which is an implementation of
the C4.5 algorithm [47], are not significantly improved



Akella et al. BMC Bioinformatics 2012, 13:211
http://www.biomedcentral.com/1471-2105/13/211

Page 6 of 10

0.94 T T T T T
1o @® cspan=0
092 [el¥e} ® cspan=1[]
@ cspan=2
09F © cspan=3 ]
@® cspan=4
0.88 O cspan =5[]
® cspan=6
0.86 O cspan =7 [
0.841 E
0.82[ i
08F 2
0.78 H 1
076 A “ .
0.74 . . . . . . . .
0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 07
0.94 T T T T
O cspan=0
0.92F cspan>1 4
y O  cspan=1
0.9F ) 4
0.881 DO 0 1
0.86 1
0.84 B
082 4
0.8 g
0.78 1
0.76 B R
0.74 . L L L ! L ! L
0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7

Figure 1C.

Precision

Figure 1 Precision and recall plots for various parameter values and settings on the American Seashells test data. A, Plot of precision
and recall (P-R) values with different training set sizes and different neighborhoods for contextual features indicated with cspan values
corresponding to the number of contextual features from 0 to 7. B, This plot has precision and recall values with cspan=0 (no contextual
information), cspan =1 and cspan > 1. C, P-R plots with increasing training set of positive examples and different context spans (cspan=1 to 7).
D, Summarization of the results in C for cspan =5 corresponding to 5 contextual features on either side of the candidate name. The stars in
Figure 1C corresponding to cspan =5 were all summarized in Figure 1D with different symbols. The star is Figure 1D is 4™ star from the top in

09 T T T T T T T T
—*— cspan =1
A cspan=2
0.88 “— O cspan=3 ||
—¥— cspan =4
—sk— cspan =5 | |
0.86 —@— cspan =6
. 0 cspan =7
0.841 1
0.82f B
08 “’%} 8
Hiah AA " ,
0.76 . . . . . L . .
0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68
Recall
0.87 T T T T T T
> * 3000
X 5000
086 ¢ A 7000 |
= 9000
0.85f * 11000 [
. * * 13000
15000
0.84 * 17000 |
> 13000
0.83 1
]
0.82} 1
A
0.81 1
X
0.8 =]
0.79 L L . L . L
0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67

through use of the stop-list. If we have more labelled
datasets for scientific name recognition, it would be
interesting to see how well the learned decision tree per-
forms on them. The Maximum Entropy algorithm with
the limited memory variant of the BFGS algorithm also

Table 3 Precision and recall values for naive bayes,
maximum entropy (iis, gis, I-bfgs) and decision tree
learning algorithms on the american seashells book

ALGORITHM STOPLIST  PRECISION  RECALL  F-SCORE
Naive Bayes Yes 0.9487 0.6897 0.7987
Naive Bayes No 0.7901 0.6877 0.7353
MaxEnt (IIS) Yes 0.9563 0.5951 0.7336
MaxEnt (I1S) No 08175 0.5933 06875
MaxEnt (GIS) Yes 0.9541 06118 0.7455
MaxEnt (GIS) No 08151 06108 06983
MaxEnt (L-BFGS)  Yes 09707 0.5481 0.7006
MaxEnt (L-BFGS) No 0.8883 05410 06724
Decision Tree Yes 0.9820 0.5969 0.7424
Decision Tree No 0.9793 0.5882 0.7349

performs well with a high precision of 0.97 with a stop-
list and 0.88 without the stop-list, but the recall values
are relatively lower. However, with the GIS estimation,
the Maximum Entropy approach has the second best F-
score of 0.7455 after the Naive Bayes algorithm as shown
in Table 3.

Results on biodiversity text with errors

Figure 2 summarizes the results of running the NetiNeti
with Naive Bayes algorithm on the annotated corpus
(“American Seashell” book). We also compare our
results with those of TaxonFinder. It can be seen that
NetiNeti performs better both in terms of precision and
recall. We further analysed the 81 names that did not
match the manual lookup from NetiNeti and 115 names
from TaxonFinder and noticed that among the 81
names, about 22 names were true false positives like
geographic locations, common names and author names.
The remaining 59 names were either a part of a scien-
tific name, a different variant of a string that the system
found from the one that was annotated, etc. Among the
115 names missed by TaxonFinder, about 40 names were
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NetiNeti

NetiNeti Manual lookup

Precision = 98.9

Recall = 70.5

Ubio-Taxon Finder
Precision =97.5

Recall = 54.3 Ubio-Taxon Finder

Figure 2 Comparison between NetiNeti and TaxonFinder on
American Seashells Book in BHL.

true false positives and the rest of the names again were
only part of a name or a different variant of a scientific
name. The 14 names that are present in NetiNeti and
TaxonFinder but not in the manual list were mostly
parts of scientific names identified by both approaches
and some common true false positives.

When calculating the precision and recall reported in
Figure 2, we have taken into account only the true false
positives. We can see that the recall for TaxonFinder is
significantly lower compared to NetiNeti, while the pre-
cisions are comparable. For a dictionary-based approach
like TaxonFinder, it is less likely to have many false posi-
tives as it only retrieves what is already present in a
known set of names in the dictionary and so can have
higher precision, but the recall can be very low as we
have seen in the results summarised in Figure 2, the
number of false negatives (the number of correct names
missed) can be high as it cannot find anything that is
not a genus and species combination from the dictionar-
ies used. Such an approach also cannot handle mis-
spelled names, names with OCR errors, new species
names, or other names not present in the dictionary.
NetiNeti on the other hand will handle these well and it
is a name discovery tool. A comparison of NetiNeti,
TaxonFinder and FAT tool for the BHL book is pre-
sented in Table 1. The FAT approach has lower precision
and recall values compared to NetiNeti and TaxonFinder
approaches for this corpus. The names marked up by
the FAT tool were compared with the manual mark up.
869 of the names identified by FAT did not match with
the manually marked up set of names. Most of these un-
matched names are species epithets with authorship in-
formation. We further analyzed a random sample of 100
names out of these 869 names and examined genus in-
formation interpreted by the tool in the marked up tags.
32 of the 100 mismatched names have correctly inter-
preted genus names and the remaining are all true false
positives with incorrect genus tags. We estimated that
278 of these 869 are correct identifications and the
adjusted precision and recall values for the FAT ap-
proach were summarized in Table 1. For many of the
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true false positives, the FAT tool tags the species epithet,
but does not seem to recognize the genus name immedi-
ately preceding the species name.

Results on new species web pages

We have also conducted several small experiments on
web pages with information about newly discovered spe-
cies along with their scientific names. NetiNeti success-
fully discovers almost all the new species from the
descriptions while the dictionary based TaxonFinder
finds in most cases either only the genus or does not
recognize the new name at all. The results were sum-
marized in Table 4. The double starred names are those
that were detected by NetiNeti and not detected by
TaxonFinder. A few uninominal names that were not
detected by NetiNeti but identified by TaxonFinder are
displayed with a single star in the table. In this set, it can
be seen that NetiNeti has only one false positive (indi-
cated by ‘FP’) and was able to discover almost all of the
new species’ mentions in web pages with new species.
The name “Stephania” in the first entry in Table 4 corre-
sponding to TaxonFinder is a false positive as the name
in the context refers to a photographer not the genus
“Stephania”.

Results on PMC full text and MEDLINE

The results of running NetiNeti with Naive Bayes algo-
rithm for classification on 136 PMC full text articles are
summarized in Figure 3. Here we chose a subset of the
articles that were specifically tagged with scientific
names from the set of articles tagged with both com-
mon names and species names as an evaluation set in
Linnaeus system. Among the 81 names that did not
match with the manual annotation, 76 names are scien-
tific names with misspellings mostly in one or two char-
acters and names that were missed by the annotators.
Only 5 names were true false positives that do not
correspond to any scientific names. So the precision and
recall for NetiNeti on this data set were 0.985 and 0.962
respectively. The Linnaeus system deals with species
level names including common names, so we cannot
make a direct comparison with our system.

We also analysed the results of running NetiNeti on
the whole of MEDLINE with Naive Bayes and Maximum
Entropy (GIS) classifiers, which were the top two algo-
rithms in terms of F-scores in Table 2. The results were
summarized in Table 2. NetiNeti with the Naive Bayes
algorithm found 193,596 unique binomial and trinomial
names while the Maximum Entropy algorithm found
188,606 names. That is more than 3 times the number
of species found by the dictionary-based Linnaeus sys-
tem even though we focus only on scientific names. In
the names extracted from MEDLINE, the errors include
disease names like Enterohepatitis, terms like Amputatio
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Table 4 Comparison of NetiNeti and TaxonFinder on web pages with new species descriptions
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URL

NetiNeti

TaxonFinder

http://www livescience.com/environment/
top-10-new-species-1.html

http://news.mongabay.com/2010/041
9-hance_ microbes.html

http://species.asu.edu/2009_speciesO5

http://species.asu.edu/2010_species09

http://species.asu.edu/2010_speciesO3

http://species.asu.edu/2010_speciesO2

http://species.asu.edu/2010_speciesO1

http://species.asu.edu/2009_species06

http://species.asu.edu/2010_species06

Desmoxytes purpurosea **

Electrolux addisoni **

Gryposaurus monumentensis **

Malo kingi **

Megaceras briansaltini **
Narkidae

Oxyuranus temporalis
Philautus

Styloctenium mindorensis
Tecticornia bibenda **

Xerocomus silwoodensis

Ceratium longipes
Culexiregiloricus trichiscalida **
Lebbeus clarehanna **
Valdiviella insignis

S. ysbryda **

Selenochlamys ysbryda **

Trigonochlamydidae

G. carapo

Gymnotus carapo
Gymnotidae

Gymnotus

Gymnotus omarorum **
Dioscorea orangeana
Dioscorea sambiranensis
Dioscoreaceae
Acrocirridae

Swima bombiviridis **

Nepenthes attenboroughii **
Nepenthaceae
Diplommatinidae

O. vermiculum **
Opisthostoma vermiculum **
Nephila

Nephila komaci **

Nephila turneri

Nephilidae **

Habitus-FP

Desmoxytes

Gryposaurus

Megaceras

Narkidae
Oxyuranus temporalis
Philautus maia*

Stephania-FP

Styloctenium mindorensis

Tecticornia

Xerocomus silwoodensis

Ceratium longipes
Chlamydophrys*
Lebbeus
Valdiviella insignis
Selenochlamys
Stylommatophora
Testacella *
Trigonochlamydidae
G. carapo
Gymnotidae
Gymnotiformes*
Gymnotus
Gymnotus carapo

Dioscorea orangeana

Dioscorea sambiranensis

Dioscoreaceae
Acrocirridae
Bombus
Viridis-FP
Nepenthaceae
None-FP
Diplommatinidae
None-FP
Opisthostoma
Nephila

Nephila turneri



http://www.livescience.com/environment/top-10-new-species-1.html
http://www.livescience.com/environment/top-10-new-species-1.html
http://news.mongabay.com/2010/0419-hance_ microbes.html
http://news.mongabay.com/2010/0419-hance_ microbes.html
http://species.asu.edu/2009_species05
http://species.asu.edu/2010_species09
http://species.asu.edu/2010_species03
http://species.asu.edu/2010_species02
http://species.asu.edu/2010_species01
http://species.asu.edu/2009_species06
http://species.asu.edu/2010_species06
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NetiNeti Manual

Figure 3 Comparison of results of netiNeti with 136 PMC full
Text open access articles.

interilio-abdominalis which was extracted from title of a
PubMed article in Russian, chemical names like
Aminoanthracene. Some of the errors in biodiversity text
include terms like Operculum corneous, words associated
with some geographic locations like Panaina. Biological
terms and certain words associated with geographic
locations can be the kind of errors common to both the
corpora. Also, named entities with Latin-like endings
can be incorrectly identified as scientific names of
organisms by the system especially when there is little or
no contextual information.

The system is highly scalable and we ran name finding
on the recent update of MEDLINE with over 18 million
abstracts in under 9 hours on a 2.8 Ghz intel core i7
based machine running Mac OX 10.6 using 6 cores.

As NetiNeti also extracts names with errors and varia-
tions, a need to map the names to known identifiers in a
master list of names or a database arises. We are work-
ing on highly efficient methods based on suffix-trees to
do such a mapping.

Availability and requirements

The software system implementing NetiNeti can be
accessed at http://namefinding.ubio.org. Currently a
Naive Bayes classifier is applied by default for name
finding. The American Seashell book and a list of
PubMed Central ids used for evaluation of NetiNeti can
be found at http://ubio.org/netinetifiles

Conclusions

In this article, we presented an approach for recogniz-
ing/discovering scientific names along with spelling
errors and variations from various text sources in
domains like biodiversity and biomedicine. We present
NetiNeti as a solution to name discovery that uses ma-
chine learning techniques to classify candidate names
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generated by applying rules and pre-filtering methods on
text. NetiNeti is highly scalable and configurable.

Whether to know the number of scientific names cov-
ered in a text, to extract all the sentences/paragraphs
associated with scientific names or to tag mentions of
genes, protein or other entities with scientific names
or whether to incorporate species names as meta data
elements for search, etc. or for taxonomic indexing, an
identification and discovery tool like NetiNeti is very
useful.
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