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Abstract

Background: Histone deacetylase (HDAC) is a novel target for the treatment of cancer and it can be classified into
three classes, i.e., classes I, II, and IV. The inhibitors selectively targeting individual HDAC have been proved to be
the better candidate antitumor drugs. To screen selective HDAC inhibitors, several proteochemometric (PCM)
models based on different combinations of three kinds of protein descriptors, two kinds of ligand descriptors and
multiplication cross-terms were constructed in our study.

Results: The results show that structure similarity descriptors are better than sequence similarity descriptors and
geometry descriptors in the characterization of HDACs. Furthermore, the predictive ability was not improved by
introducing the cross-terms in our models. Finally, a best PCM model based on protein structure similarity
descriptors and 32-dimensional general descriptors was derived (R2 = 0.9897, Qtest

2 = 0.7542), which shows a
powerful ability to screen selective HDAC inhibitors.

Conclusions: Our best model not only predict the activities of inhibitors for each HDAC isoform, but also screen
and distinguish class-selective inhibitors and even more isoform-selective inhibitors, thus it provides a potential way
to discover or design novel candidate antitumor drugs with reduced side effect.

Keywords: Histone deacetylases inhibitors, Proteochemometric, Selective inhibitors
Background
All over the world, tumor is the second incurable disease
only to cardiovascular disease. A wide range of proteins
are found to be related to tumor formation and metasta-
sis. However, only proteins with widespread biological
significance for the tumor cells growth regulation are
most possible to be the targets of broad-spectrum low-
toxic antitumor drugs. In recent studies, histone deace-
tylases (HDACs) are proved to be novel epigenetic tar-
gets for the treatment of cancer [1-3]. Histone
deacetylase inhibitors (HDACi) have extensively demon-
strated the antitumor efficacy in vitro and in vivo. There-
fore, the related study of HDACi has become one of the
most important research fields of the antitumor drugs,
especially during the coming area of epigenetics.
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Histone deacetylases comprise a superfamily of 18 genes
which is divided into two families and four classes in
eukaryotic cells. Classes I, II, and IV consist of 11 family
members, which are referred to as “classical” HDACs,
whereas the 7 class III members are called “sirtuins” [4].
Classical HDACs which require Zn2+ as a cofactor for their
deacetylase activity are a promising novel class of anti-
cancer drug targets that can be inhibited by Zn2+ chelating
compounds such as hydroxamic acids. In contrast, these
compounds are not active against sirtuins as these class III
enzymes have a different mechanism of action in requiring
NAD+ as an essential cofactor [5]. Recent researches indi-
cate that sirtuins are linked to aging as well as metabolic
and neurodegenerative diseases [6].
Classical HDACs are classified based on their homology

to yeast proteins. HDACs 1, 2, 3, and 8 which belong to
Class I have homologies to yeast RPD3, and they are
located within the nucleus. HDACs 4, 5, 6, 7, 9, and 10
which belong to Class II have homologies to yeast HDA1
and located in both the nucleus and the cytoplasm. It
should be noted that Class II HDACs can be further subdi-
vided based on their sequence homolog and domain
. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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organization, i.e. Class IIa, which include HDACs 4, 5, 7,
and 9 containing an N-terminal extension with regulatory
function, and Class IIb, which include HDACs 6 and 10
containing two catalytic domains. HDAC 11 is categorized
into class IV with conserved residues in its catalytic center
that are shared by both classes I and II HDACs. The classi-
fication of classical HDACs is summarized in Table 1.
Histone deacetylase inhibitors (HDACi) that act on 11

zinc-dependent HDAC isozymes generally possess a zinc-
binding group which coordinates the zinc ion in the ac-
tive site, a cap substructure that interacts with amino
acids at the entrance of the N-acetylated lysine binding
channel, and a linker connecting the cap and the zinc-
binding group at a proper distance [18]. HDACi can be
categorized into four subtypes based on their chemical
structures: (1) short chain fatty acid; (2) hydroxamic acid;
(3) benzamides; and (4) cyclic peptides. Since HDACi do
not inhibit all HDAC isoforms to the same extent, they
can be categorized into pan-HDAC inhibitors and select-
ive HDAC inhibitors including class I-specific inhibitors,
class II-specific inhibitors, and class IV-specific inhibitors.
Currently, many HDAC inhibitors have already been
tested in clinical trials and shown certain antitumor or
other biological activity. However, some HDAC inhibitors,
especially pan-inhibitors, indicate serious side effects,
such as fatigue, nausea, anorexia, diarrhea, thrombus for-
mation, thrombocytopenia, neutropenia, anemia, myalgia,
hypokalemia, hypophosphatemia, etc. [3]. Thus, HDAC
inhibitors are possible to greatly improve the efficacy and
reduce the certain toxicities only when they target the
most relevant HDAC isoform rather than multiple ones.
Consequently, it should be useful to discover or design
novel antitumor drugs with fewer side effects when one
method can analyze the interaction of inhibitors against
Table 1 “classical” HDACs

HDAC Localization Chromosomal site References

Class I (RPD3 homologue)

HDAC1 Nucleus 1p34.1 [7]

HDAC2 Nucleus 6p21 [8]

HDAC3 Nucleus 5p31 [9]

HDAC8 Nucleus Xq13 [10]

Class II (HDA1 homologue)

IIa HDAC4 Nuc/Cyt 2q372 [11]

HDAC5 Nuc/Cyt 17q21 [12]

HDAC7 Nuc/Cyt 12q13 [13]

HDAC9 Nuc/Cyt 7p21-p15 [14]

IIb HDAC6 Mainly Cyt Xp11.22-33 [15]

HDAC10 Mainly Cyt 22q13.31-33 [16]

Class IV

HDAC11 Nuc/Cyt 3p25.2 [17]
multiple HDACs with further sorting out isoform- or
class-specific inhibitors.
As for in silico drug discovery, there are many meth-

ods available such as molecular docking [19,20],
pharmacophore models, quantitative structure-activity
relationship (QSAR) [21-23], protein-ligand interaction
fingerprint-based screening [24,25] and others [26-29].
QSAR is a widely applied computational method for pre-
dicting chemical compounds’ interactions with a single
target protein. However, when thousands of chemical
compounds interacted with 11 different HDAC isoforms,
11 separate QSAR models for each HDAC isoform are
needed to create, which is quite complicated and time
consuming. In addition, these separate models cannot
extended to predict inhibitions of new HDACs [30].
Therefore, a new method should be proposed to predict
cross-interactions of chemical compounds to multi-
HDAC isoforms simultaneously.
More recently, proteochemometric (PCM) modeling has

been widely used to study the cross-interactions between a
series of compounds and a series of proteins. In this area
Maris Lapinsh et.al studied melanocortin chimeric recep-
tors using partial least-squares projections (PLS) to deduce
PCM models [31,32]; Hanna Geppert et.al derived PCM
models of eleven proteases from four different protease
families by support vector machine [33]; Ilona Mandrika
and Maris Lapinsh et.al applied PLS to model interactions
of HIV mutants [30,34] and antibodies [35]. Contrary to
traditional QSAR, PCM is based on the similarity of a
group of ligands together with that of a group of targets
[36]. Consequently, PCM can integrate several separate
QSAR models into a global one. With the global PCM
model in hand, we can study the cross interactions of all
the ligands with all the targets in the data set or even out-
side the data set. By predicting the affinity for each ligand-
target pair, PCM models can describe the specific inter-
action between a ligand and a target and discriminate the
interaction strength between different ligand-target pairs.
Therefore, in our study PCM models were applied to study
the cross-interactions of a series of HDAC inhibitors to five
HDAC isoforms, i.e., HDAC2, HDAC4, HDAC6, HDAC7,
and HDAC8.

Results and discussion
Proteochemometric modeling
In our study, 18 proteochemometric models were cre-
ated from training set with combinations of different
descriptors. As shown in Table 2, goodness-of-fits (R2s)
of all models were higher than 0.9619 and their cross
validation coefficients Qcv

2 ranged from 0.5734 to 0.7162.
The model derived based on P1 and GD showed to be
the best model with the highest predictive ability
(Qcv

2 = 0.7162 and Qtest
2 = 0.7542). Accordingly P1-GD

model was used in the subsequent analysis.



Table 2 Goodness-of-fit (R2) and predictive ability (Q2
cv,

Q2
test) of the obtained 18 models

Model R2 Q2
cv Q2

test Model R2 Q2
cv Q2

test

P0-DLIa 0.9616 0.6564 0.7292 P1-GD-Cb 0.9909 0.6732 0.7191

P0-GD 0.9895 0.6960 0.7331 P2-DLI-C 0.9883 0.6264 0.6519

P1-DLI 0.9619 0.6757 0.7427 P2-GD-C 0.9917 0.5734 0.6215

P1-GD 0.9897 0.7162 0.7542 C(P0,DLI)c 0.9860 0.6484 0.6941

P2-DLI 0.9614 0.6521 0.7272 C(P0,GD) 0.9914 0.6302 0.6772

P2-GD 0.9894 0.6858 0.7268 C(P1,DLI) 0.9811 0.6686 0.7227

P0-DLI-C 0.9871 0.6462 0.6944 C(P1,GD) 0.9904 0.6625 0.7190

P0-GD-C 0.9916 0.6319 0.6759 C(P2,DLI) 0.9898 0.6505 0.6067

P1-DLI-C 0.9846 0.6626 0.7251 C(P2,GD) 0.9941 0.5967 0.5597
a P0-DLI means this model is based on protein descriptor P0 and ligand
descriptor DLI.
b P1-GD-C means this model is based on protein descriptor P1, ligand
descriptor GD and cross-terms.
c C(P0,DLI) means this model is based on only cross-terms of P0 and DLI.

Table 3 R2 and Q2
test of 18 models grouped for comparing

three protein descriptors ability

Model R2 Q2
test Model R2 Q2

test

Group 1 Group 2

P0-DLI 0.9616 0.7292 P0-GD-C 0.9916 0.6759

P1-DLI 0.9619 0.7427 P1-GD-C 0.9909 0.7191

P2-DLI 0.9614 0.7272 P2-GD-C 0.9917 0.6215

Group 3 Group 4

P0-GD 0.9895 0.7331 C(P0,DLI) 0.9860 0.6941

P1-GD 0.9897 0.7542 C(P1,DLI) 0.9811 0.7227

P2-GD 0.9894 0.7268 C(P2,DLI) 0.9898 0.6067

Group 5 Group 6

P0-DLI-C 0.9871 0.6944 C(P0,GD) 0.9914 0.6772

P1-DLI-C 0.9846 0.7251 C(P1,GD) 0.9904 0.7190

P2-DLI-C 0.9883 0.6519 C(P2,GD) 0.9941 0.5597

The highest Qtest
2 s of every group are highlighted.

Wu et al. BMC Bioinformatics 2012, 13:212 Page 3 of 9
http://www.biomedcentral.com/1471-2105/13/212
P0 vs P1 vs P2
Three protein descriptors, i.e., sequence similarity de-
scriptor (P0), structure similarity descriptor (P1) and
geometry descriptor (P2), were used to describe HDACs
in our study. Sequence similarity descriptor is based on
the sequence identities of HDACs, while structure simi-
larity descriptor and geometry descriptor characterize
HDACs based on their 3D-structures. Protein descrip-
tors are different from ligand descriptors since proteins
have larger molecule structures to describe. If available,
proteins are likely to be described on the basis of crystal
structures. Protein structure similarity descriptor was
calculated by protein 3D-struture alignment with more
sufficient information considered. Contrary to P1, P0
only characterizes protein based on sequence alignment,
and may lose certain 3D information of proteins. Not
surprisingly, models derived from P1 showed a better
predictive ability than those of P0 (Table 3). In addition,
although P2 is also derived based on 3D-structure, it
only measures bond length, bond angle and dihedral
angle statistically without much of the detailed informa-
tion of proteins, thus it is not sufficient to characterize
proteins comprehensively. As a result, we also found
that models based on geometry descriptor obtained the
worst predictive ability (Qtest

2 of models based on P2 in
every group is the lowest) compared to the others.

GD vs DLI
Similar to protein descriptors, two typical kinds of ligand
descriptors, i.e., General Descriptor (GD) and Drug-Like
Index (DLI) were applied. Our result indicates that there
was no significant difference between Q2 values of mod-
els based on GD and DLI (Table 4), with p-value bigger
than 0.1 by paired t-test.
It should be noted that there are a large number of

different descriptors available for ligands, and there
is no optimal one suitable for all the data sets.
Therefore, it is wise to try several different descrip-
tors to identify the optimal one in a particular sce-
nario [37]. In our study, we used two different ligand
descriptors, GD and DLI to create PCM models.
These two kinds of descriptors characterize physical
properties and topological indices of ligands respect-
ively. For our particular data set, there was no statis-
tically difference in predictive ability between these
two ligand descriptors.

Model performance with or without cross-terms
A multiplied cross-term was used in our models and it
was shown to be helpless in the improvement of the pre-
dictive ability of PCM models. The Qtest

2 of models with
cross-terms is lower than that without cross-terms in
every group (Table 5).
Although cross-terms are intended to describe the

properties of the interface between ligand and protein,
there is still no good descriptor for the representation of
local receptor-ligand interfaces [37], which may possibly
result in the worse performance of the multiplied cross-
term in our PCM models. Recently, a new Protein-
Ligand interaction fingerprint was derived for in silico
screening [24,25]. This interaction fingerprint is a local
descriptor to represent the interfaces of receptor-ligand
and proved to be a good candidate cross-term in PCM.
Theoretically, it should achieve better performance if the
crystal complex structure exists. However, since there is
no crystal structure available for most of the receptor-
ligand pairs in our data set, thousands of complex struc-
tures have to be produced by molecular docking to apply
interaction fingerprint, which may result in biases.
Therefore, the interaction fingerprint was not adopted in
our study.



Table 4 Q2
test of 18 models grouped by ligand descriptors

X P0-X P1-X P2-X P0-X-C P1-X-C P2-X-C C(P0,X) C(P1,X) P(P2,X)

GD 0.7331 0.7542 0.7268 0.6759 0.7191 0.6215 0.6772 0.7190 0.5597

DLI 0.7292 0.7427 0.7272 0.6944 0.7251 0.6519 0.6941 0.7227 0.6067

Paired t test: t = 1.746.
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Selective ability of proteochemometric model
In our study, we aimed to exploit an effective method to
screen selective HDAC inhibitors which has selective ac-
tivity on a single or a specific class of HDAC isoforms.
For this purpose, proteochemometrics was applied to
analyze the interaction strength of inhibitors against
multiple HDACs, and then select out isoform-specific,
class-specific as well as pan inhibitors. To verify the per-
formance of the derived PCM models, an external valid-
ation of ten inhibitors was carried out to predict affinity
with the best model (P1-GD model). The predicted
values are compared with the corresponding experimen-
tal ones as shown in Table 6.
Among the ten inhibitors for external validation,

TSA, SAHA, LBH589 and PXD-101 are reported as
pan-HDAC inhibitors and almost all their predicted
affinity values are high for all the HDAC isoforms in
our test (e.g. LBH HDAC2 0.742, HDAC8 0.391,
HDAC4 0.524, HDAC7 0.347, HDAC6 0.996). In
addition, MGCD0103, FK228 and Apicidin are
reported as class I-specific inhibitors and our results
also indicated that the predicted values for class I
HDACs are higher than those of others (e.g. Apicidin
HDAC2 0.238, HDAC8 0.096, HDAC4 -0.501, HDAC7
-0.176, HDAC6 -0.120). Finally APHA, Tubacin and
NCT-10a are reported as class II-specific inhibitors and
our results are consistent with the validation data that
their predicted values are higher for class II HDACs
(e.g. NCT-10a HDAC2 -0.405, HDAC8 -0.731, HDAC4
0.137, HDAC7 0.159, HDAC6 0.010).
Table 5 R2 and Q2
test of 12 models grouped by with- or

without- cross-terms

Model R2 Q2
test Model R2 Q2

test

Group 1 Group 2

P0-DLI 0.9616 0.7292 P1-GD 0.9897 0.7542

P0-DLI-C 0.9871 0.6944 P1-GD-C 0.9909 0.7191

Group 3 Group 4

P0-GD 0.9895 0.7331 P2-DLI 0.9614 0.7272

P0-GD-C 0.9916 0.6759 P2-DLI-C 0.9883 0.6519

Group 5 Group 6

P1-DLI 0.9619 0.7427 P2-GD 0.9894 0.7268

P1-DLI-C 0.9846 0.7251 P2-GD-C 0.9917 0.6215

The highest Qtest
2 s of every group are highlighted.
As a conclusion, our best PCM model performs well
in screening selective HDAC inhibitors and distinguish-
ing pan-HDAC inhibitors, class I-specific inhibitors and
class II-specific inhibitors successfully. Therefore, this
model can be further used to screen class-selective inhi-
bitors as well as isoform-selective inhibitors of HDACs
with fewer side effects.
Conclusion
Although more and more HDAC inhibitors have been
identified to date, the number of class-selective inhibi-
tors or isoform-selective inhibitors is insufficient. Thus,
it is important to find these selective inhibitors which
are candidate therapeutic agents for tumor with reduced
side effects. In this study, proteochemometric models
were derived to analyze the inhibitory activity of 1275
compounds with 5 HDAC isoforms simultaneously.
Among these models, the best one, P1-GD model, was
highly predictive (Qtest

2 = 0.7542) and presented powerful
ability to distinguish selective HDAC inhibitors from the
pan ones. As a conclusion, proteochemometric modeling
proves to be a suitable methodology for the prediction
of inhibitor interactions with HDAC isoforms. Our study
also indicates that the obtained optimal model can be
potentially used for designing candidate antitumor drugs
which can selectively target on a single HDAC or a spe-
cific class of HDAC isoforms.
Methods
Data set
To describe proteins more efficiently, five HDAC iso-
forms with known crystal structures were selected
(Table 7). Among these isoforms, HDAC2 and HDAC8
are Class I HDACs; HDAC4, HDAC6, and HDAC7 are
Class II HDACs, and more specifically, HDAC4 and
HDAC7 belong to Class IIa; HDAC6 belongs to Class
IIb.
The half maximal inhibitory concentration (IC50)

values for 1443 chemical compounds (Additional file 1:
Table S4) interacting with these HDAC isoforms were
collected from the Binding Database (BindingDB, http://
www.bindingdb.org). After filtration, the data set was
reduced to 1275 compound-HDAC pairs with IC50
values, and it contained 215 pairs for HDAC2, 197 for
HDAC4, 531 for HDAC6, 46 for HDAC7, and 286 for
HDAC8 respectively (Table 8).

http://www.bindingdb.org
http://www.bindingdb.org


Table 7 HDACs’ sequences and 3D structures from NCBI
and PDB

Protein PDB entry NCBI entry Length(aa) Class

HDAC2 3MAX NP_001518 488 I

HDAC4 2VQJ NP_006028 1084 IIa

HDAC6 3C5K NP_006035 1215 IIb

HDAC7 3C0Z NP_056216 991 IIa

HDAC8 1 T69 NP_060956 377 I

HDAC1 nda NP_004955 482 I

HDAC3 nd NP_003874 428 I

HDAC5 nd NP_005465 1122 IIa

HDAC9 nd NP_478056 1011 IIa

HDAC10 nd NP_114408 669 IIb

HDAC11 nd NP_079103 347 IV
a nd means no data published.

Table 8 The distribution of binding affinity IC50 data

Type Total Training set Test set

HDAC2/ligands 215 139 76

HDAC4/ligands 197 128 69

HDAC6/ligands 531 345 186

HDAC7/ligands 46 29 17

HDAC8/ligands 286 186 100

Total 1275 827 448

Table 6 The activity data and P0-GD model predict
affinity data of ten HDAC inhibitors a

Class I Class IIa Class IIb

HDAC2 HDAC8 HDAC4 HDAC7 HDAC6

Pan-HDAC inhibitors

TSA

S W S S S

−0.720 0.342 1.027 0.660 0.087

SAHA

S W S S S

−0.464 −1.092 0.687 1.031 −0.094

Panbinostat(LBH589)

S W S S W

0.742 0.391 0.524 0.347 0.996

Belinostat(PXD-101)

S W S S S

0.327 −0.330 1.183 0.643 1.339

Class I-specific inhibitors

MGCD0103

S N N N N

0.296 −0.946 −0.557 −1.018 −0.963

depsipeptide(FK228)

S nd W nd N

0.954 −0.095 0.687 0.438 −0.167

Apicidin

S W N N N

0.238 0.096 −0.501 −0.176 −0.120

Class II-specific inhibitors

APHA

nd nd S nd nd

−0.196 −0.089 −0.204 −0.194 0.271

Tubacin

nd nd nd nd S

0.148 −0.687 −0.293 −0.301 1.414

NCT-10a

nd nd W nd S

−0.405 −0.731 0.137 0.159 0.010
a S, W,N and nd is the experimental affinity of inhibitors and the numerical
number is the predicted affinity data. Those predicted values larger than 0 are
supposed to have inhibition with highlighted.
S strong inhibition.
W weak inhibition.
N no inhibition.
nd no data pubilshed.
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The distribution of data set for every HDAC isoform is
unbalanced. Therefore, we divided the data set into a
training set (65%) and a test set (35%) by stratified sam-
pling [38] (Additional file 2: Table S1, Additional file 3:
Table S2).
Description of proteins
Three different sets of descriptors were used to
characterize the five HDAC isoforms, i.e. sequence simi-
larity descriptor (P0) [32], structure similarity descriptor
(P1) and geometry descriptor (P2).

Sequence similarity descriptor
The amino acid sequences of all the HDACs were
retrieved from NCBI (the entries are listed in Table 7).
EMBOSS [39,40] was used to calculate sequence iden-
tities of the five selected HDAC isoforms with all the
HDAC isoforms. Finally we obtained 11 sequence simi-
larity descriptors (Table 9).

Structure similarity descriptor
This descriptor extends protein sequence alignment to
structure alignment based on sequence similarity descrip-
tor. By pairwise structure alignment using Protein Com-
parison Tool [41], we calculated pairwise structure
identities of the five selected proteins and obtained five
descriptors (Table 10).

Geometry descriptor
Protein contains various bonds like C-N, C-O, C-N-
CA, and CA-C-O etc. By measuring the various bond



Table 9 11 sequence similarity descriptors of HDAC2, 4, 6, 7 and 8

Class I Class IIa Class IIb Class IV

HDAC1 HDAC2 HDAC3 HDAC8 HDAC4 HDAC5 HDAC7 HDAC9 HDAC6 HDAC10 HDAC11

Class I

HDAC2 85.1 100.0 51.9 30.7 10.2 9.6 9.7 9.9 9.4 14.2 18.9

HDAC8 30.8 30.7 34.4 100.0 9.0 8.4 9.9 10.8 8.1 13.6 21.4

Class IIa

HDAC4 11.1 10.2 9.5 9.0 100.0 58.4 46.9 54.3 20.6 11.1 8.6

HDAC7 10.0 9.7 10.5 9.9 46.9 40.5 100.0 39.7 19.1 13.0 9.6

Class IIb

HDAC6 9.5 9.4 7.7 8.1 20.6 17.2 19.1 16.6 100.0 23.4 7.4

For all possible HDACs pairs, sequence identities (in %) are reported.
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length, bond angle and dihedral angle [42], 30 pro-
tein Geometry descriptors were obtained for each
HDAC protein (Additional file 4: Table S3).

Description of inhibitors
In our study, the HDAC inhibitors were represented by
two kinds of feature space, i.e. 32-dimensional General
Descriptors (GD) and 28-dimensional Drug-Like Index
(DLI). These descriptors are widely applied to the con-
struction of QSAR models. For general descriptors, they
include atomic contributions to van der waals surface area,
log P (octanol/water), molar refractivity, and partial charge.
GD characterize physical properties and describe organic
compounds in boiling point, vapor pressure, free energy of
salvation in water, solubility in water, thrombin/trysin/
factor Xa activity, blood–brain barrier permeability, and
compound classification etc. [43]. On the other hand,
DLI characterize simple topological indices of com-
pounds and measure the hierarchy of drug structures in
terms of rings, links, and molecular frameworks [44].

Protein-inhibitor cross-terms
Evidently, ligand-receptor recognition can only be partially
explained by linear combinations of ligand and receptor
Table 10 Five protein structure similarity descriptors of
HDAC2, 4, 6, 7 and 8

Class I Class IIa Class IIb

HDAC2 HDAC8 HDAC4 HDAC7 HDAC6

Class I

HDAC2 1.000 0.407 0.182 0.182 0.031

HDAC8 0.407 1.000 0.180 0.186 0.048

Class IIa

HDAC4 0.182 0.180 1.000 0.706 0.027

HDAC7 0.182 0.186 0.706 1.000 0.036

Class IIb

HDAC6 0.031 0.048 0.027 0.036 1.000
descriptors. In reality, protein-ligand interactions are gov-
erned by complex processes that depend on the comple-
mentarity of the properties of the interacting entities. In
PCM, this is accounted for by protein-inhibitor cross-
terms [31,36], which in the simplest case is obtained by
multiplication of mean centered descriptors of proteins
and inhibitors. Therefore, we obtained 11 × 32 = 352, 5 ×
32 = 160, 30 × 32 = 960, 11 × 28 = 308, 5 × 28 = 140, 30 ×
28 = 840 cross-terms for P0-GD, P1-GD, P2-GD, P0-DLI,
P1-DLI, and P2-DLI respectively.

Preprocessing of data
To reduce the bias of the model, all descriptors were
mean centered and scaled to unit variance prior to the
calculation of protein-ligand cross-terms. Moreover, the
binding affinities (IC50) were logarithmically trans-
formed to pIC50 and then mean centered and scaled to
unit variance.

Proteochemometric modeling
Support vector machine (SVM) is a non-linear mod-
eling technique applied multiple times in PCM
[33,45-50]. We created PCM models using support
vector regression (SVR) built in Weka suit (Weka
implementation “SMOreg”). Eighteen different combi-
nations of descriptor blocks were constructed to de-
rive PCM models, i.e., six combinations of protein
and ligand descriptors (P0-DLI, P1-DLI, P2-DLI, P0-
GD, P1-GD, and P2-GD), six combinations of protein
and ligand descriptors with cross-terms, and the only
six kinds of cross-terms.
There are a lot of kernel functions used in SVM,

such as Normalized Poly Kernel (normalized polyno-
mial kernel), Poly Kernel (polynomial kernel), Precom-
puted Kernel Matrix Kernel, Puk (Pearson VII
function-based universal kernel), RBF Kernel (Radial
Basis Function kernel), and String Kernel. Although
Poly Kernel and RBF Kernel are most commonly used
kernel functions, Puk Kernel is considered as a
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universal kernel that is capable of serving as a generic
alternative to the common linear, polynomial and RBF
kernel functions [51]. In fact, we also found that Puk
kernel had a stronger mapping power than the other
kernels for our data set. For this reason, all models
were created using SVR with Puk kernel.
Validation of PCM models
For each combination of descriptors, 10-fold cross-valid-
ation was carried out for the model. The performance of
the derived eighteen models was assessed by the
goodness-of-fit (R2) and predictive ability (Qcv,

2 Qtest
2 ).
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Figure 1 General framework for our proteochemometric modeling.
Finally, ten known inhibitors [4] were selected as the ex-
ternal validation dataset to assess the specificity perform-
ance of the best model. These inhibitors are listed in
Table 6 including four pan-HDAC inhibitors (TSA, SAHA,
panbinostat, and belinostat), three class I-specific inhibitors
(MGCD0103, depsipeptide, and apicidin), and three class
II-specific inhibitors (APHA, Tubacin, and NCT-10a). We
predicted all the affinity values of the ten inhibitors against
all the HDACs with the best model. According to the pre-
dicted results, we analyzed the interaction strength of the
inhibitors with multiple HDACs and then select out iso-
form-specific, class-specific as well as pan inhibitors.
The framework of this work is presented in Figure 1.
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