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Abstract

Background: Computational approaches to transcription factor binding site identification have been actively
researched in the past decade. Learning from known binding sites, new binding sites of a transcription factor in
unannotated sequences can be identified. A number of search methods have been introduced over the years.
However, one can rarely find one single method that performs the best on all the transcription factors. Instead, to
identify the best method for a particular transcription factor, one usually has to compare a handful of methods. Hence,
it is highly desirable for a method to perform automatic optimization for individual transcription factors.

Results: We proposed to search for transcription factor binding sites in vector spaces. This framework allows us to
identify the best method for each individual transcription factor. We further introduced two novel methods, the
negative-to-positive vector (NPV) and optimal discriminating vector (ODV) methods, to construct query vectors to
search for binding sites in vector spaces. Extensive cross-validation experiments showed that the proposed methods
significantly outperformed the ungapped likelihood under positional background method, a state-of-the-art method,
and the widely-used position-specific scoring matrix method. We further demonstrated that motif subtypes of a TF
can be readily identified in this framework and two variants called the kNPV and kODV methods benefited
significantly from motif subtype identification. Finally, independent validation on ChIP-seq data showed that the ODV
and NPV methods significantly outperformed the other compared methods.

Conclusions: We conclude that the proposed framework is highly flexible. It enables the two novel methods to
automatically identify a TF-specific subspace to search for binding sites. Implementations are available as source code
at: http://biogrid.engr.uconn.edu/tfbs search/.

Background
Transcription of genes followed by translation of their
transcripts into proteins determines the type and func-
tions of a cell. Expression of certain genes even initiates
or suppresses differentiation of stem cells. It is there-
fore crucial to understand the mechanisms of transcrip-
tional regulation. Among them, transcription factor (TF)
binding is the one that has been given considerable atten-
tion by computational biologists for the past decade and is
still being actively researched. A TF is a protein or protein
complex that regulates transcription of one or more genes
by binding to the double-stranded DNA. A first step in
computational identification of target genes regulated by
a TF is to pinpoint its binding sites in the genome. Once
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the binding sites are found, the putative target genes can
be searched and located in flanking regions of the binding
sites.
In general, there are two approaches to computational

transcription factor binding site (TFBS) identification,
motif discovery and TFBS search. The former assumes
that a set of sequences is given and each of the sequences
may or may not contain TFBSs. An algorithm then pre-
dicts the locations and lengths of TFBSs. The term motif
refers to the pattern that are shared by the discovered
TFBSs. These algorithms rely on no prior knowledge of
the motif and hence are known as de novomotif discovery
algorithms. The latter assumes that, in addition to a set
of sequences, the locations and lengths of TFBSs are
known. An algorithm then learns from these examples and
predicts TFBSs in new sequences. Such algorithms are
also called supervised learning algorithms since they are
guided by the given sequences with known TFBSs. Plenty
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of efforts have been devoted to the de novomotif discovery
problem [1-11]. Comprehensive evaluation and compari-
son of the developed tools have been performed [12,13].
In this study, we focus on the problem of TFBS search. We
refer readers interested in the motif discovery problem to
the evaluation and review articles [12-14] and references
therein.
A typical TFBS search method searches for the binding

sites of a particular transcription factor in the following
manner. It scans a target DNA sequence and compare
each length l sub-sequence (l-mer) to the binding site
profile of the TF, where l is the length of a binding site.
Each of the l-mer is scored when comparing to the pro-
file. A cut-off score is then set by the method to select
candidate TF binding sites. The position-specific scoring
matrix (PSSM) [15] is a widely used profile representa-
tion, where the binding sites of a TF are encoded as a
4 × l matrix. Column i of the matrix stores the scores
of matching the ith letter in an l-mer to nucleotides A,
C, G and T, respectively. Depending on the method of
choice, the score of A at position i can be the count of A at
position i in the known TFBSs, the log-transformed prob-
ability of observing A at position i, or any other reasonable
number. Once computed, the scoring matrix of a TF can
be stored in a database. These matrices are used by tools
[16-21] to scan sequences for TFBSs.
One assumption the PSSM representation makes is that

positions in a binding site are independent, which is
often not the case. Osada et al. [22] exploited dependence
between positions by considering nucleotide pairs in scor-
ing methods. It was shown that incorporating nucleotide
pairs significantly improved the performance of a method,
meaning that most transcription factors studied demon-
strated correlation between positions in a binding site.
This result was reinforced in a recent study [23], in which
the authors showed correlations between two nucleotides
within a binding site by plotting the mutual informa-
tion matrix. A novel scoring method called the ungapped
likelihood under positional background (ULPB) method
was proposed in this study. The ULPB method models a
TFBS by two first-order Markov chains and scores a can-
didate binding site by likelihood ratio produced by the two
Markov chains. leave-one-out cross-validation results on
22 TFs with 20 or more binding sites showed that ULPB is
superior to the methods compared in their work.
In this work, we approach the TFBS search problem

from a different perspective. We propose to search for
binding sites in vector spaces. Specifically, l-mers are
placed in the Euclidean space such that each l-mer cor-
responds to a vector in the space. With known binding
sites of a TF, we construct a profile vector for the TF.
This profile vector can then be used as a query vector to
search for the unknown binding sites in the space given a
similarity measure between two vectors. The vector space

model has long been used in information retrieval (IR)
[24,25]. Under this model, each document in a collec-
tion is embedded in a t-dimensional space. That is, each
document is represented by a t-element vector, where t
is the number of distinct terms present in the document
collection or corpus. To search for documents on a par-
ticular topic, a query composed of terms relevant to the
topic is constructed. The query can be similarly embedded
in the t-dimensional space. Similarity between the query
and a document can then be measured by measuring the
similarity between the two corresponding vectors. In the
TFBS search problem, the entire genome or the collection
of promoter region sequences corresponds to the corpus,
whereas an l-mer is analogous to a document in IR. On
the other hand, a TF is analogous to a topic, while a TF
representation is the analog of a query for the topic.
In this framework, we propose two novel approaches

to constructing a query vector for a TF of interests.
We compare the proposed methods to a state-of-the-art
method, the ULPB method, as well as the widely-used
PSSM method. Performance of a method is assessed by
cross-validation experiments on two data sets collected
fromRegulonDB [26] and JASPAR [27], respectively. Inde-
pendent validation on human ChIP-seq data gives further
insights into the proposed methods. Finally, we discuss
the advantages of searching for TF binding sites in the
proposed framework.
The paper is organized as follows. In Methods, we

present the novel negative-to-positive vector and optimal
discriminating vector methods, in addition to introduc-
ing the existing methods compared in this work. Cross-
validation results on prokaryotic and eukaryotic tran-
scription factors are presented and discussed in Results
and Discussion. Finally, we give the concluding remarks in
Conclusions.

Methods
Data sets
To understand the compared methods in this work, we
experimented on prokaryotic as well as eukaryotic tran-
scription factors. The known prokaryotic TF binding sites
were collected from from RegulonDB [26] release 6.8.
Considered in [23], this data source contains binding sites
of TFs in the E. coli K-12 genome. We considered a data
set of 26 TFs with 17 or more known binding sites. The fil-
tering criterion ensures that, for each TF, we have enough
examples to learn from. Similar filtering criteria were used
in [23]. This data set is summarized in Table 1.
The known eukaryotic TF binding sites were collected

from JASPAR CORE database (the 4th release) [27]. TFs
of Homo sapiens and Mus musculus were filtered by two
criteria. A TF was kept only if it has at least 20 known
binding sites and the length of its binding sites is at least
6 nucleotides. The length criterion, arbitrarily chosen,
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Table 1 Statistics of the E. coli TFs in RegulonDB

Name Length # TFBSs Name Length # TFBSs

MetJ 8 29 Lrp 12 62

SoxS 18 19 H-NS 15 37

FlhDC 16 20 AraC 18 20

Fis 15 206 ArcA 15 93

IHF 13 101 OmpR 20 22

PhoB 20 17 GlpR 20 23

OxyR 17 41 CpxR 15 37

NarL 7 90 CRP 22 249

TyrR 18 19 NarP 7 20

Fur 19 81 LexA 20 40

NtrC 17 17 FNR 14 87

MalT 10 20 PhoP 17 21

ArgR 18 32 NsrR 11 37

ensures a TF under consideration is specific enough. This
data set is summarized in Table 2.

Notation
For clarity, we list and define functions and variables used
throughout this paper. Please see Additional file 1 for
more details.

• fi(u) denotes the probability of observing letter u at
position i of a TFBS, where u ∈ {A, C, G, T}.

• fi,j(u, v) denotes the probability of observing letters u
and v at positions i and j, respectively, where i < j
and u, v ∈ {A, C, G, T}.

• fi(v|u) denotes the position-specific conditional
probability of observing v at position i + 1 given u
has been seen at position i, where u, v ∈ {A, C, G, T}.

• f (v|u) denotes the background conditional
probability of observing v given u has been observed
at the previous position, where u, v ∈ {A, C, G, T}.

• Iu(·) is the indicator function given by

Iu(v) =
{
1 ifv = u,
0 otherwise, (1)

where u, v ∈ {A, C, G, T}.
• Iu1u2(·) is similarly defined as follows:

Iu1u2(v1v2) =
{
1 if v1 = u1 andv2 = u2,
0 otherwise, (2)

where u1,u2, v1, v2 ∈ {A, C, G, T}.
• ICi denotes the information content at position i of a

binding site. Information content is closely related to
entropy, a measure of uncertainty in information
theory. The entropy at position i is given by
Ei = − ∑

u∈{A, C, G, T} fi(u) log2
[
fi(u)

]
. When

fi(u) = 1
4 for all u ∈ {A, C, G, T}, Ei attains the

Table 2 Statistics of TFs in the JASPAR database

Musmusculus

ID Name Length # TFBSs

MA0039.2 Klf4 10 4336

MA0047.2 Foxa2 12 809

MA0062.2 GABPA 11 87

MA0065.2 PPARG::RXRA 15 839

MA0104.2 Mycn 26 85

MA0141.1 Esrrb 12 3613

MA0142.1 Pou5f1 15 1332

MA0143.1 Sox2 15 666

MA0144.1 Stat3 19 830

MA0145.1 Tcfcp2l1 14 3931

MA0146.1 Zfx 20 477

MA0147.1 Myc 10 682

MA0154.1 EBF1 10 21

Homo sapiens

ID Name Length # TFBSs

MA0037 GATA3 6 20

MA0052 MEF2A 10 31

MA0077 SOX9 9 45

MA0080.2 SPI1 7 35

MA0083 SRF 12 26

MA0112.2 ESR1 20 472

MA0115 NR1H2::RXRA 17 22

MA0137.2 STAT1 15 2082

MA0138 REST 19 22

MA0138.2 REST 11 871

MA0139.1 CTCF 11 944

MA0148.1 FOXA1 11 896

MA0149.1 EWSR1-FLI1 17 101

MA0159.1 RXR::RAR DR5 17 23

MA0258.1 ESR2 18 356

maximal entropy of 2 and we are most uncertain
about the letter at position i. ICi is simply defined as

ICi = 2 − Ei = 2 +
∑

u∈{A, C, G, T}
fi(u) log2

[
fi(u)

]
.

(3)

• ICi,j denotes the information content of the position
pair (i, j) of a binding site. Similarly,

ICi,j = 4 +
∑

u,v∈{A, C, G, T}
fi,j(u, v) log2

[
fi,j(u, v)

]
,

(4)
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where the maximal entropy of 4 is attained when
fi,j(u, v) = 1

16 for all u, v ∈ {A, C, G, T}.

Embedding short sequences in vector spaces
We describe how a short sequence of l nucleotides or
an l-mer is placed in a vector space. Let s be an l-
mer and si denote its ith nucleotide. Each nucleotide in
s is converted to 4 variables, that is, si is converted to
wiIA(si),wiIC(si),wiIG(si) andwiIT(si) for i = 1, 2, . . . , l.
Hence, s is converted to 4l variables, placing s in R

4l.
Figure 1 illustrates the conversion of each nucleotide in an
l-mer to 4 variables when wi = 1 for i = 1, 2, . . . , l.
We further consider nucleotide pair (si, sj), where

i < j. Only pairs in close proximity are considered
in this study. We consider (si, sj) only if j − i =
1 or 2, i.e., a pair of nucleotides is considered only
if they are adjacent or separated by one nucleotide.
Nucleotide pair (si, sj) is similarly converted to 16 vari-
ables, wi,jIAA(sisj),wi,jIAC(sisj), . . . ,wi,jITT(sisj), as there
are 16 possible nucleotide pairs, {AA, AC, . . . , TT}. We
use 32l − 48 additional variables to encode the pairs since
there are l − 1 adjacent pairs and l − 2 pairs separated
by one nucleotide. Consequently, considering individual
nucleotides and nucleotide pairs, each l-mer is converted
to a (36l − 48)-element vector.
In this study, we consider two choices of wi’s and wi,j’s.

For the first choice, all the nucleotides and nucleotide
pairs are given the same weight, i.e., wi = 1 and wi,j =
1 for all i and j. The second one assigns weight to the
ith nucleotide according to the information content at
position i. Similarly, it assigns weight to pair (i, j) accord-
ing to the information content at this pair of positions.
Specifically, wi = √

ICi and wi,j = √
ICi,j for all i and j.

Searching for TFBSs in vector spaces
Given a query vector t in space, we score an l-mer s as
follows:

Score(s) = sTt, (5)

where s denote the corresponding vector of s. In other
words, the score of s is obtained by taking the dot-product
between s and t. It can be seen that Score(s) measures the
similarity between s and t. Assuming that t corresponds to
an l-mer t, Score(s) counts the number of nucleotides and
nucleotide pairs shared between s and t when wi = 1 and

AGTG……CTCT

1000001000010010……0100000101000001
Figure 1 Illustration of embedding a short sequence in vector
space. Each nucleotide in the sequence is converted to 4 indicator
variables.

wi,j = 1 for all i and j. However, we note that t can be any
vector in the space and does not necessarily correspond to
an l-mer.
As described above, an l-mer is converted to a (36l−48)-

element vector. Hence, we use t to search for binding sites
in R

(36l−48). Our approach offers great flexibility in that it
easily allows searching for binding sites in a lower dimen-
sional subspace. By setting all but the first 4l elements in
t to zero, we are essentially searching for binding sites in
R
4l. In this work, we exploit this advantage and simul-

taneously search for transcription factor binding sites in
three subspaces. Two of them are R

4l and R
(36l−48). The

third one isR(16l−12). This subspace is obtained from con-
sidering only the first nucleotide and the l − 1 adjacent
nucleotide pairs as in a first order Markov chain.

The NPVmethod
We first introduce a simple approach to constructing a
query vector. Let P be the set of n+ binding sites and N
be the set of n− non-binding sites of a particular tran-
scription factor. We embed all the l-mers in P and N in
R

(36l−48). We then find the mean binding site vector

μ+ = 1
n+

∑
s∈P

s

as well as the mean non-binding site vector

μ− = 1
n−

∑
s∈N

s.

The query vector t is found by subtracting μ− from μ+,
that is, t = μ+ − μ−. The query vector t can be seen as
the vector pointing from the center of the non-binding site
vectors to the center of the binding site vectors. Hence,
we call it the negative-to-positive vector (NPV) method.
Figure 2 illustrates the idea.
The score of an l-mer s given by the NPV method is

therefore

Score(s) = sT(μ+ − μ−) = sTμ+ − sTμ−. (6)

We can see that it computes the similarity between s
and the mean binding site vector as well as the similar-
ity between s and the mean non-binding site vector. It
then scores s by the difference of the two similarity scores.
The more similar s is to the mean binding site vector,
the higher the score. The less similar s is to the mean
non-binding site vector, the higher the score.
From the perspective of geometry, we note that Score(s)

in (5) is proportional to Score(s)/||t|| , where ||t|| is the
length of the query vector t. Moreover, by virtue of the
equality

sTt = ||s|| ||t|| cos θ ,

we know Score(s)/||t|| equals the orthogonal projection
of s onto t, where θ is the angle formed by vectors s
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Figure 2 Illustration of the NPVmethod. The solid arrow represents
the negative-to-positive vector μ+ − μ− , pointing from μ− to μ+ .
The hallow triangles denote the known binding sites, whereas the
circles represent the known non-binding sites. The center of the
binding site vectors is marked by the solid triangle, while the center
of the non-binding site vectors is marked by the solid circle.

and t (see Figure 3 for an illustration). The computation
of Score(s) is therefore equivalent to computation of the
orthogonal projection of s onto t. Similarly, the computa-
tion of Score(s) in (6) is equivalent to computation of the
orthogonal projection of s onto μ+ − μ−. In Figure 2, we
observe that vector μ+ − μ− is pointing to the left and,
projected onto this vector, most of the binding sites are on
the left of the non-binding sites. This implies that most of
the binding sites have a higher score than the non-binding
sites.

The ODVmethod
We have described the NPV method, which offers a
heuristic way of constructing a query vector. We now
introduce a way of finding an optimal query vector β ∈
R

(36l−48). Suppose that |P| = n+ and |N | = n−, that is,
there are n+ binding sites and n− non-binding sites for

s t

Figure 3 The orthogonal projection of s onto t. It can be seen that
the projection of s onto t is equal to Score(s)/||t|| ∝ Score(s).

a particular TF. Let P = {s(1), s(2), . . . , s(n+)} and N =
{s(n++1), s(n++2), . . . , s(n)} , where s(i) denotes the ith l-mer
in the union of the two sets and n = n+ + n−. We find the
optimal β by solving the following minimization problem:

min
β ,b,ξ

1
2
||β||2 + C

n+

n+∑
i=1

ξi + C
n−

n∑
i=n++1

ξi (7)

subject to
Score(s(i))

||β|| ≥ b + 1 − ξi
||β|| fors(i) ∈ P, (8)

Score(s(i))
||β|| ≤ b − 1 + ξi

||β|| fors(i) ∈ N , (9)

ξi ≥ 0 ∀i. (10)

The constraint in (8) ensures that the projection of a
TFBS s(i) onto the vector β , Score(s(i))

||β|| , exceeds the thresh-
old b+1

||β|| . On the other hand, the constraint in (9) ensures
that the projection of a non-TFBS s(i) onto β stays below
the threshold b−1

||β|| . Flexibility is given to the thresholds by
introducing ξi’s with cost captured by the last two terms in
(7). Finally, to clearly distinguish TFBSs from non-TFBSs,
the squared difference between the two thresholds ( b+1

||β||
and b−1

||β|| ) is made as large as possible. This amounts to

maximizing
(

2
||β||

)2
or, equivalently, minimizing 1

2 ||β||2,
which is the first term in (7). We call this approach the
optimal discriminating vector (ODV) method.
The optimization problem in (7) is known as a quadratic

programming problem with linear inequality constraints
specified in (8), (9) and (10). There are p + n + 1 vari-
ables and 2n constraints, where p = 36l − 48 is the
dimension of β . We can see that (8) and (9) specify n
constraints whereas (10) imposes n constraints on the
variables. Quadratic programming [28] is well-studied
and hence general solvers are available, e.g., the OpenOpt
framework [29]. To solve this problem, the parameterC(>

0) is first arbitrarily chosen. A solver then searches for val-
ues of β = (β1, . . . ,βp)T, b and ξ = (ξ1, . . . , ξn)T such that
the objective function in (7) is minimized while the con-
straints in (8), (9) and (10) are satisfied simultaneously. It
can be seen that an optimal solution to (7) always exists
since the search space of {β , b, ξ} is never empty. To find
a feasible solution, one can arbitrarily pick β �= 0 ∈ R

p

and b ∈ R. For s(i) ∈ P, one can pick ξi ∈ R such that the
constraint in (8) is satisfied. Similarly, for s(i) ∈ N , one can
pick ξi ∈ R such that the constraint in (9) is met. We can
then compute the value of the objective function as the
values of all the variables are known. One way to choose
the parameter C in (7) is to search for C in a range by
cross-validation. The parameter is TF-dependent in gen-
eral, but experiments showed that a small C = 2−6 will
usually suffice and hence we set C = 2−6 for all the ODV
experiments in this study.
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The PSSM and ULPBmethods
We briefly describe the ungapped likelihood under posi-
tional background (ULPB) method proposed in [23] and
the position-specific scoring matrix (PSSM) method com-
pared therein. We refer readers to section Notation for
functions and variables used here. Consider a specific TF
with binding sites of length l. The PSSMmethod scores an
l-mer s by

l∑
i=1

log
[
fi(si)

]
, (11)

where si denotes the ith letter in s. We note that usually the
ratio fi(si)/f (si) is used in place of fi(si), where f (si) is the
background probability of si. The simpler form in (11) was
compared in [23] and hence it serves as a baseline method
in this study.
The ULPB models a TFBS by a first-order Markov chain

andmodels the background by another first-orderMarkov
chain. The background transition probabilities are esti-
mated using the entire genome of a species and hence the
ULPB method uses negative examples implicitly. It scores
an l-mer s by

log f1(s1) +
l−1∑
i=1

log
(
fi(si+1|si)
f (si+1|si)

)
. (12)

AlthoughULPB does not consider background probability
in the first term of (12), the score is approximately the log-
likelihood ratio of the two Markov chains.
The main difference between the PSSM method and

the NPV, ODV and ULPB methods is that the PSSM
method does not score nucleotide pairs nor does it utilize
a background distribution. The NPV and ODV methods
explicitly take advantage of negative binding sites, while
the ULPBmethod does it implicitly by using a background
distribution. The flexibility of the proposed framework
allows the NPV and ODV methods to easily search in
subspaces, further distinguishing the PSSM and ULPB
methods from the proposed ones.

Results and discussion
Performance assessment and evaluation metrics
The performance of a TFBS search method is evaluated
by ν-fold cross-validation (CV). Consider a TF with n+
TFBSs of length l with flanking regions on both sides. A
set of negative examples, Ntest, called the test negatives is
constructed from the TFBSs of the other TFs with filtering
as in [22]. Another set of negative examples, Ntrain, called
the training negatives is collected from sequences embed-
ding the n+ binding sites. It is comprised of all the l-mers
except for the TFBSs and two neighboring l-mers of each
TFBS.

The n+ TFBSs are first divided into ν sets, each of which
contains 	n+

ν

 or 	n+

ν

 + 1 TFBSs. At each iteration of ν-

fold CV, one of the ν TFBS sets called the test TFBS set
Ptest is left out. The rest of the TFBSs are therefore called
the training TFBSs. A scoring function is obtained using
the training TFBSs and non-TFBSs randomly sampled
from the training negatives, where the ratio of numbers of
non-TFBSs to TFBSs is set to 10. The test TFBSs in Ptest
along with the non-TFBSs in Ntest are then scored by the
scoring function. To score a test sequence, both the for-
ward and reverse strands are scored and, in case the test
sequence is longer or shorter than l, the l-mer producing
the highest score is used. For each test TFBS t ∈ Ptest,
we find its rank relative to all the non-TFBSs in Ntest. For-
mally, the rank of t equals 1 + |{s ∈ Ntest|Score(s) ≥
Score(t)}|.
After the ν-fold CV, we end up with n+ ranks, each of

which corresponds to a TFBS. To allow comparison of
methods, we use the area under the ROC curve (AUC) to
gauge the performance of a method on the TF. The ROC
curve is a plot of true positive rate (TPR) against false
positive rate (FPR), displaying the trade-off between TPR
and FPR. We refer readers to [30] for an introduction to
this metric. In this study, ν = 10 for all the CV experi-
ments. For the NPV and ODV methods, the best weight
and subspace combination is obtained at each iteration of
the ν-fold CV. Specifically, another (ν − 1)-fold CV is per-
formed on the ν − 1 sets of TFBSs to search for the best
combination.

Prokaryotic transcription factor binding sites
To understand the behavior of search methods on
prokaryotic TF binding sites, we conducted 10-fold cross-
validation experiments on the 26-TF RegulonDB data set.
The proposed NPV and ODV methods were compared to
the ULPB method [23]. The PSSM method, considered in
[23], was also included for comparison since it served as a
simple baseline method.
Figure 4a shows the plot of area under the ROC curve

(AUC) across the 26 TFs for each method. We can see
that the ODV method has the best AUC on 12 out of
26 TFs and the NPV method has the best AUC on 9
out of 26 TFs whereas the ULPB and PSSM methods
have the best AUC on 1 and 4 TFs, respectively. To
gauge the relative performance between two methods,
statistical tests [31] were performed on all the 6 pairs
of methods. Figure 4b shows the p-values of the pair-
wise comparisons. We first notice that, consistent with
the results in [23], ULPB outperformed PSSM with a
slightly larger p-value of 0.0679 than the usual 0.05 sig-
nificance cut-off. As seen in Figure 4b, the NPV and
ODV methods are significantly better than the PSSM and
ULPB methods. We can see that the ODV method ben-
efited from optimization albeit minimizing the objective
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(b)

(a)

Figure 4 Comparison of the PSSM, ULPB, NPV and ODVmethods on the RegulonDB data set. (a) Plot of AUC values across the 26 prokaryotic
TFs for each method. (b)Matrix of p-values from pair-wise comparisons. A red solid circle in row i and column j indicates that method i
outperformed method j, while a blue one in row i and column j indicates that method i is inferior to method j. The size and darkness of a circle imply
the significance of the relationship between two methods. The larger and darker a circle, the more significant the relationship. White background
indicates exceeding the usual 0.05 significance cut-off, while gray background indicates the opposite.

function in (7) does not guarantee maximization of the
AUC.

Eukaryotic transcription factor binding sites
Here we compare the proposed NPV and ODV methods
to the ULPB and PSSM methods on eukaryotic TF bind-
ing sites. As in the previous section, we conducted 10-fold
cross-validation experiments on the 28-TF JASPAR data
set. Figure 5a shows the plot of AUC across the 28 TFs
for each method. We can see that both the ODV and NPV
methods have the best AUC on 13 out of 28 TFs while the
ULPB and PSSM methods have the best AUC on 6 and 4
TFs, respectively. All the methods have the best AUC of

1 on MA0149.1 and MA0115, while the ODV, NPV and
PSSMmethods have the best AUC of 0.999 onMA0137.2.
Similarly, statistical tests [31] were performed on all the

6 pairs of methods. Figure 5b shows that the NPV and
ODV methods are significantly better than the PSSM and
ULPB methods. ULPB is significantly better than PSSM,
which is again consistent with the results reported in
[23]. Overall, performance of the four methods remain
unchanged as we shift from prokaryotic transcription fac-
tors to eukaryotic ones. This implies that a TFBS search
method effective on prokaryotic transcription factors will
perform equally well on eukaryotic transcription factors
and vice versa.
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(a)

(b)

Figure 5 Comparison of the PSSM, ULPB, NPV and ODVmethods on the JASPAR data set. (a) Plot of AUC values across the 28 eukaryotic TFs
for each method. (b)Matrix of p-values from pair-wise comparisons. A red solid circle in row i and column j indicates that method i outperformed
method j, while a blue one in row i and column j indicates that method i is inferior to method j. The size and darkness of a circle imply the
significance of the relationship between two methods. The larger and darker a circle, the more significant the relationship. White background
indicates exceeding the usual 0.05 significance cut-off, while gray background indicates the opposite.

Motif subtype identification in vector spaces
It has been shown that the binding sites of a TF can be
better represented by 2 motif subtypes than by a sin-
gle motif [32,33]. In search for new binding sites, two
position-specific scoring matrices are used to score an l-
mer and the higher score of the two is assigned to this
l-mer. Searching with two PSSMs was shown to be supe-
rior to searching with a single PSSM by cross-species
conservation statistics in these studies.
We demonstrate that motif subtypes can be readily

identified once we embed l-mers in a vector space. The
purpose here, however, is not to compare motif subtype
identification algorithms. We adopted a slightly different

approach to motif subtype identification from those in
previous work [32,33], while the idea is similar. As usual,
all the l-mers were first embedded in a vector space.
The known binding sites of a TF were clustered into
two subtypes by the k-means algorithm [34]. Immediately,
we have a variant of the NPV method called the kNPV
method, where k = 2 denotes the number of motif sub-
types. The kNPVmethod first computes the mean vectors
of these two subtypes, μ+1 and μ+2, and scores an l-mer
s by

Score(s) = max
{
sT

(
μ+1 − μ−

)
, sT

(
μ+2 − μ−

)}
,



Lee and Huang BMC Bioinformatics 2012, 13:215 Page 9 of 12
http://www.biomedcentral.com/1471-2105/13/215

Figure 6 Illustration of the kNPVmethod. The solid arrows
represent the negative-to-positive vectors μ+1 − μ− and μ+2 − μ− ,
pointing from μ− to μ+1 and μ+2, respectively. The hallow triangles
denote the known binding sites, whereas the circles represent the
known non-binding sites. The centers of the binding site vectors are
marked by the solid triangles, while the center of the non-binding site
vectors is marked by the solid circle.

where μ− is the mean vector of the non-binding sites.
Figure 6 illustrates the kNPV method.
Similarly, the kODVmethod scores an l-mer s by

Score(s) = max
{
sTβ+1/||β+1||, sTβ+2/||β+2||

}
,

where β+i is obtained using TFBSs in cluster i, i = 1, 2.
Unlike the kNPVmethod, the lengths of β+i’s may be very
different and hence β+i’s are scaled to unit vectors so as

not to bias the scoring function. We note that the choice
of k = 2 came from previous studies [32,33]. Generally, k
can be greater than 2 or even automatically selected [35].
This however is beyond the scope of this study and may
be investigated in the future.
We assessed the kNPV and kODV methods by 10-fold

cross-validation on both the RegulonDB and JASPAR
data sets. Figure 7 shows the results in terms of AUC.
We observe in Figure 7a that overall introducing motif
subtypes into the NPV and ODV methods improves
the search performance (p-values: 6.41 × 10−7 and
8.31 × 10−5, respectively). Results in Figure 7b also
support this observation (p-values: 1.61 × 10−3 and
3.04 × 10−3, respectively). The kNPV and kODV are
comparable on both the RegulonDB and JASPAR data
sets (p-values: 0.197 and 0.47, respectively). These results
are consistent with those reported in [32,33].

Independent validation on ChIP-seq data
To evaluate the proposed NPV and ODV methods on the
whole genome scale, we built TF models using TFBSs in
the JASPAR database to scan all the human (build hg19)
1000-base promoter sequences obtained from the UCSC
Genome Browser database [36]. ChIP-seq peaks from the
ENCODE project were also retrieved [37]. Specifically,
the wgEncodeRegTfbsClusteredV2 table of build hg19 was
obtained. We checked TFs in Table 2 against the annota-
tions and found 14 JASPAR TFs, recognized by 17 anti-
bodies present in the ENCODE annotations. Themapping
is listed in the first 3 columns of Table 3.
For the NPV and ODV methods, the best weight

and subspace combination was found by 5-fold cross-
validation on the JASPAR TFBSs, while flanking genomic

Figure 7 The kNPV (kODV) method versus the NPV (ODV) method. The number of motif subtypes k is set to 2. (a) Plot of AUC values across the
26 prokaryotic TFs for each method. (b) Plot of AUC values across the 28 eukaryotic TFs for each method.
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Table 3 Results of independent validation on ChIP-seq data

ENCODE JASPAR Name PSSM ULPB NPV S IC ODV S IC

GATA3 (SC-268) MA0037 GATA3 0.48922 0.46841 0.50963 1 Y 0.51441 1 Y

MEF2A MA0052 MEF2A 0.42566 0.45955 0.35283 3 Y 0.34807 3 N

PU.1 MA0080.2 SPI1 0.50631 0.49267 0.57575 3 Y 0.58014 3 N

SRF MA0083 SRF 0.34299 0.38457 0.43920 2 N 0.43183 3 N

NRSF
MA0138 REST 0.50615 0.46371 0.46603 1 N 0.47956 2 N

MA0138.2 REST 0.48031 0.48299 0.49070 3 Y 0.49522 3 N

ERalpha a MA0112.2 ESR1 0.53980 0.49058 0.52414 3 N 0.52146 1 N

STAT1 MA0137.2 STAT1 0.55348 0.58555 0.61733 1 N 0.62338 1 Y

CTCF

MA0139.1 CTCF

0.60370 0.60377 0.63785

2 Y

0.64769

2 YCTCF (C-20) 0.44108 0.44696 0.53181 0.54306

CTCF (SC-5916) 0.46729 0.47047 0.54097 0.55028

FOXA1 (C-20)
MA0148.1 FOXA1

0.48083 0.48698 0.48994
3 Y

0.49853
3 N

FOXA1 (SC-101058) 0.48897 0.48326 0.49945 0.50986

EBF
MA0154.1 EBF1

0.50011 0.51202 0.56084
3 Y

0.59172
3 N

EBF1 (C-8) 0.42214 0.43705 0.52067 0.53207

FOXA2 (SC-6554) MA0047.2 Foxa2 0.48328 0.39496 0.45500 3 Y 0.47906 3 N

STAT3 MA0144.1 Stat3 0.39145 0.33052 0.38094 3 Y 0.43807 3 Y

POU5F1 (SC-9081) MA0142.1 Pou5f1 0.42151 0.42793 0.40855 3 N 0.45449 3 N

Subspaces (S)R4l ,R(16l−12) andR
(36l−48) are denoted by 1, 2 and 3, respectively.

sequences of the TFBSs were the sources of negative
binding sites. To assess the 4 compared methods, we con-
sidered the part of a ROC curve where FPR is at most 0.01
and calculated the AUC scaled to between 0 and 1. This is
nearly equivalent to allowing at most 10 false positive hits
per promoter on average. As a peak spans about 200 bases,
it is considered recalled when it fully contains a predicted
binding site. Similarly, a predicted binding site must be
fully covered by a peak to be a true positive hit.
In Table 3, we observe that ODV, NPV, ULPB and PSSM

produced the best AUC on 13, 1, 1 and 3 out of 18
tests, respectively. Statistical tests showed that ODV sig-
nificantly outperformed the other 3 methods (p-values ≤
0.0028), NPV significantly outperformed ULPB and PSSM
(p-values ≤ 0.0449), and ULPB and PSSM are compara-
ble (p-value: 0.433). We notice that both NPV and ODV
performed worse than the other two methods on MEF2A.
As NPV and ODV both sample negative examples from
flanking sequences of TFBSs, we suspect that this is one
example where the flanking sequences do not represent
well the entire promoters. ODV performed consistently
across tests corresponding to the same JASPAR ID such as
the three for CTCF. Examining the best weight and sub-
space, we can see that the subspace agrees on 11 out of
14 TF models, while the weight agrees on only 7 of them.
The latter may be because ODV optimizes the β vector
and hence is less sensitive to the weight used to embed an
l-mer.

Conclusions
In this work, we proposed to search for transcrip-
tion factor binding sites in vector spaces. The novel
NPV and ODV methods were introduced to construct
a query vector to search for binding sites of a TF. We
compared our methods to a state-of-the-art method,
the ULPB method, and the widely-used PSSM method.
Cross-validation experiments revealed that the NPV and
ODV methods significantly outperformed the ULPB and
PSSM methods on prokaryotic as well as eukaryotic
TF binding sties. Independent validation on human
ChIP-seq data further verified that the NPV and ODV
methods are significantly better than the other compared
methods.
One of the advantages of our framework is that it allows

one to easily search for binding sites in various sub-
spaces. Hence, one can search in the best subspace for
each individual TF since one can hardly find an opti-
mal subspace for all the TFs. Another advantage is that
under the proposed framework one can readily identify
motif subtypes for a TF. Hence, to exploit this advantage,
we introduced the kNPV and kODV methods, immediate
variants of the NPV andODVmethods.We demonstrated
that, consistent with results in previous studies, kNPV
(kODV) significantly improved NPV (ODV) on the two
data sets.
Our future work aims for extending our proposed

methods to handling known binding sites of variable
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lengths. We will seek to approach this problem without
resorting to multiple sequence alignment, which is notori-
ously time-consuming. In the meantime, we will also seek
to identify additional promising subspaces to search for
TF binding sites in.
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Abreu-Goodger C, Rodŕıguez-Penagos C, Miranda-Rı́os J, Morett E,
Merino E, Huerta AM, Treviño-Quintanilla L, Collado-Vides J: RegulonDB
(version 6.0): gene regulation model of Escherichia coli K-12
beyond transcription, active (experimental) annotated promoters
and Textpresso navigation. Nucleic Acids Res 2008,
36(suppl 1):D120–D124.

27. Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E,
Yusuf D, Lenhard B, Wasserman WW, Sandelin A: JASPAR 2010: the
greatly expanded open-access database of transcription factor
binding profiles. Nucleic Acids Res 2010, 38(suppl 1):D105–D110.

28. Bertsekas DP: Nonlinear Programming. 2nd Edition. Belmont, MA: Athena
Scientific; 1999.

29. Kroshko DL: OpenOpt 0.36 2011. http://openopt.org/.
30. Fawcett T: An introduction to ROC analysis. Pattern Recogn Lett 2006,

27:861–874.
31. Wilcoxon F: Individual Comparisons by Ranking Methods. Biometrics

Bulletin 1945, 1(6):80–83.
32. Hannenhalli S, Wang LS: Enhanced position weight matrices using

mixture models. Bioinformatics 2005, 21(suppl 1):i204–212.
33. Georgi B, Schliep A: Context-specific independence mixture

modeling for positional weight matrices. Bioinformatics 2006,
22(14):e166–e173.

34. de Hoon MJ, Imoto S, Nolan J, Miyano S: Open source clustering
software. Bioinformatics 2004, 20(9):1453–1454.

35. Jain AK: Data clustering: 50 years beyond K-means. Pattern Recognit
Lett 2010, 31(8):651–666.

36. Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS,
Goldman M, Barber GP, Clawson H, Coelho A, Diekhans M, Dreszer TR,
Giardine BM, Harte RA, Hillman-Jackson J, Hsu F, Kirkup V, Kuhn RM,
Learned K, Li CH, Meyer LR, Pohl A, Raney BJ, Rosenbloom KR, Smith KE,

http://www.biomedcentral.com/content/supplementary/1471-2105-13-215-S1.zip
http://openopt.org/


Lee and Huang BMC Bioinformatics 2012, 13:215 Page 12 of 12
http://www.biomedcentral.com/1471-2105/13/215

Haussler D, Kent WJ: The UCSC Genome Browser database: update
2011. Nucleic Acids Res 2011, 39(suppl 1):D876–D882.

37. Rosenbloom KR, Dreszer TR, Pheasant M, Barber GP, Meyer LR, Pohl A,
Raney BJ, Wang T, Hinrichs AS, Zweig AS, Fujita PA, Learned K, Rhead B,
Smith KE, Kuhn RM, Karolchik D, Haussler D, Kent WJ: ENCODE
whole-genome data in the UCSC Genome Browser. Nucleic Acids Res
2010, 38(suppl 1):D620–D625.

doi:10.1186/1471-2105-13-215
Cite this article as: Lee and Huang: Searching for transcription factor
binding sites in vector spaces. BMC Bioinformatics 2012 13:215.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Data sets
	Notation
	Embedding short sequences in vector spaces
	Searching for TFBSs in vector spaces
	The NPV method
	The ODV method
	The PSSM and ULPB methods

	Results and discussion
	Performance assessment and evaluation metrics
	Prokaryotic transcription factor binding sites
	Eukaryotic transcription factor binding sites
	Motif subtype identification in vector spaces
	Independent validation on ChIP-seq data

	Conclusions
	Additional file
	Additional file 1

	Competing interests
	Author's contributions
	Acknowledgements
	References

