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Abstract

segmentation techniques is required.

dimension 2560 x 1920).

nuclear segmentation of IHC tissue images.

Background: live cell imaging is a useful tool to monitor cellular activities in living systems. It is often necessary in
cancer research or experimental research to quantify the dividing capabilities of cells or the cell proliferation level
when investigating manipulations of the cells or their environment. Manual quantification of fluorescence
microscopic image is difficult because human is neither sensitive to fine differences in color intensity nor effective
to count and average fluorescence level among cells. However, auto-quantification is not a straightforward
problem to solve. As the sampling location of the microscopy changes, the amount of cells in individual
microscopic images varies, which makes simple measurement methods such as the sum of stain intensity values or
the total number of positive stain within each image inapplicable. Thus, automated quantification with robust cell

Results: An automated quantification system with robust cell segmentation technique are presented. The
experimental results in application to monitor cellular replication activities show that the quantitative score is
promising to represent the cell replication level, and scores for images from different cell replication groups are
demonstrated to be statistically significantly different using ANOVA, LSD and Tukey HSD tests (p-value < 0.01). In
addition, the technique is fast and takes less than 0.5 second for high resolution microscopic images (with image

Conclusion: A robust automated quantification method of live cell imaging is built to measure the cell replication
level, providing a robust quantitative analysis system in fluorescent live cell imaging. In addition, the presented
unsupervised entropy based cell segmentation for live cell images is demonstrated to be also applicable for

1 Background

Live cell imaging is an useful tool to monitor cellular
activities in living systems and to study complex biologi-
cal processes in great detail [1]. In recent years, technolo-
gical advances include sensor sensitivity, computing
power, brighter and more-stable fluorescent proteins, but
expertise in the automated image analysis is required to
harness the full potential that live-cell microscopy offers.
Kitamura et al. [2] showed that live cell imaging reveals
replication of individual replicons in eukaryotic replica-
tion factories, using time-lapse microscopy. In our inves-
tigation on BRCA1 [3], p63 [4] and Scr [5] in breast cancer,
a negative correlation was discovered by manual observa-
tion in live cell imaging between the cell replication
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activities and stain expression level using fluorescence
microscopy (Figure 1). That is the higher degree of blue
stain appears, the less cell replication activity occurs. (More
information on the associated biological study has been
published in [6].)

However, manual quantification is subjective and
results tend to be poorly reproducible. Worse, the ability
of manual quantification is limited as human eye is not
sensitive to fine differences in color intensity, and only
restricted semi-quantitative mode can be provided. As a
result, an automated quantification approach of live cell
imaging is needed for monitoring cell proliferation
activities.

Auto-quantification of live cell imaging is not a
straightforward problem to solve. As the sampling loca-
tion of the microscopy changes, the amount of cells cap-
tured within each image varies, which makes simple
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Figure 1 Negative correlation between cell replication degree and stain level. We observed that Live cell imaging reveals cell replication
degree by negative correlation with stain level: (a) high cell replication with low stain for the Scr samples, (b) medium cell replication activity
with mediumn stain for BRCAT samples, (c) low cell replication with high staining level for p63 samples.

measurement methods such as the sum of blue intensity
values or the total number of positive blue stain within
images inapplicable. Scores by such simple quantification
models can vary a lot according to the camera sampling
location, and worse images with low quantity of cells and
high staining level can have similar scores with images
with high quantity of cells but medium staining level.
Hence, cell segmentation is required to identify regions
of interest prior to generate a robust measurement of the
fluorescence degree of cell expression, D. The quantifica-
tion of fluorescent degree can be formulated as follows.

D=Y"|> fi#A|/n (1)

i=1 \jcA

where n is the number of cells, A is the set of cell
locations, and f; is the fluorescence level at location j.

Accurate segmentation is a crucial step for the quantita-
tive microscopic image analysis. In biomarker analysis,
accurate segmentation of nuclei is an important step for
the quantitative immunohistochemistry (IHC) image ana-
lysis of nuclear malignancy; among the most useful fea-
tures for cytological applications have been measures of
nuclear size, pleomorphism and chromatin appearance [7].
To evaluate and analyze the properties of nuclei, segmen-
tation of nuclear regions are needed. However, accurate
segmentation of nuclei is often difficult because of the het-
erogeneous cellular staining and nuclear overlapping. The
simplest approach for segmenting nuclei is a global thresh-
olding, which is adjusted manually or determined by the
measurement of the image histogram. Such method works
well in high-contrast-feature tissue images such as applica-
tions to measure oestrogen and progesterone receptor
levels in breast cancer [8], but is not suitable for tissue
images with varying image features (in Figure 2(a), some
nuclei appear distinct but in the highlighted region, the
contrast of image features is low). Mao et al. [9] presented
a supervised learning image segmentation method for P53

IHC images by separating two classes of image pixels
(background and nuclei) from color image, using the
learnt transformation formula from the dataset of back-
ground and nuclei pixels of the studied images, and
thresholding the extracted nuclear image pixels using otsu
clustering. Adaptive local thresholding techniques, which
utilize local content information and automatically
separates image pixels into different classes, produce
significantly better results in comparison to the global
thresholding method; we tested two commonly adopted
techniques (Otsu clustering [10] and K-means clustering
[11]), showing that the unsupervised local thresholding
methods are still not sufficient for nuclear segmentation
(Figure 2(b,c,d)).

Another popular approaches for nuclear detection are
watershed algorithms [12]. As in practice, the Vincent-
Soille watershed tends to produce an over-segmentation
(Figure 2(e)), we tested a watershed algorithm (adapted
from [13]) and marker-controlled watershed method
[14] with optimized empirically-set parameters (Figure 2
(g,f)). However, the watershed methods still produce
many false positives and false negatives. As a result, a
robust method for nuclear segmentation in challenging
[HC tissue images is needed, and in this study, an
entropy-based method is presented, which can also be
extended for nuclear segmentation in IHC tissue images
(an output by the proposed method is shown in Figure
2(h)).

In live cell images, two commonly adopted techniques
(Otsu clustering [10] and K-means clustering [11]) were
tested, showing that the unsupervised local thresholding
methods are still not sufficient for cell segmentation on
the fluorescent images. Figure 3 compares the cell seg-
mentation results by Otsu clustering in (c), which con-
tains lots of misdetection and false positives, by K-means
clustering in (b), which still contains some misdetection
and by the presented method in (d), which contains
much less misdetection and false positives. To sum up,
conventional Otsu clustering and K-means clustering are
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Figure 2 Performance comparison with K-means clustering, Otsu clustering, the proposed entropy-based method. (a) an IHC Lung
carcinoma tissue image, (b) poor segmentation by Otsu unsupervised clustering, which automatically separates the image into two classes but
contains a lot of false detection, (c)(d) poor segmentation by K-means clustering, which automatically separates the image into three classes
here but the resulting clusters are poor in nuclear segmentation, (e) over-segmentation by Vincent-Soille watershed algorithm [12] (f) poor
segmentation result by marker-controlled watershed method [14] (g) segmentation result with many false positives by optimized watershed
transformation (adapted from [13]) (h) improved nuclear segmentation by the proposed entropy-based method.

Figure 3 Comparison of automatic cell segmentation results by K-means clustering, Otsu clustering and a proposed method.
Comparison of cell segmentation results, with the segmented regions by individual techniques highlighted in white: (a) raw image, (b) cell
segmentation by K-means clustering with various misdetections pointed by the red arrows, (c) cell segmentation by Otsu clustering with plenty
misdetections pointed by the red arrows and false detection pointed by the blue arrows (d) cell segmentation by the presented method with
greatly improved outcome (much less misdetection and false detection).
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poor in segmentation of the IHC tissue images and high
resolution fluorescent live cell images as these methods
suffer from serious local variations and produce poor seg-
mentation results.

In this paper, an entropy based cell segmentation
method is developed for fluorescent microscopic images
and an automated quantification system of live cell ima-
ging is built to analyze the cell replication level. The
method is invariant to the camera sampling location and
the amount of cells appearing in the image. In addition, it
takes less than 0.5 second to process each image with
dimension 2560 x 1920.

2 Results and Discussion
In evaluation, the quantification scores were tested with
one-way ANOVA, Tukey HSD and Least square difference
(LSD) using SPSS software [15]. In Table 1, the overall
one-way ANOVA results are significant, indicating that
the mean scores of three groups are significantly different.
Next, multiple post hoc comparisons were conducted to
compare mean difference between two groups. In Table 2,
the results by both Tukey HSD and LSD tests show that
the mean differences between any two groups are statisti-
cally significant (p-values < 0.01). To sum up, the tests
show that the quantitative cell replication score is distinc-
tive and varies according to the cell replication level.
Furthermore, the quantification score is stable and con-
sistent, invariant to the amount of cells appearing in indi-
vidual images. Figure 4 displays images from the three
different cell replication groups (row 1 for p63; row 2 for
Brca; row 3 for Scr), showing that scores for images con-
taining a large number of cells or comparably low number
of cells are consistent and distinct among different groups.
In addition, a means plot generated by SPSS software is
illustrated in Figure 5. Regarding the system processing
speed, the imaging system is implemented in java, and
without code optimization, it takes less than 0.5 second
for each image on a standard PC with CPU 3.16 GHz.

2.1 Results of the extension to IHC tissue images

An extended version of the proposed entropy-based seg-
mentation technique is built for nuclear segmentation of

Table 1 ANOVA Test on the quantification score

sum of df mean F  Significance
squares square
Between 1429.6 2 7148 43.754 < 0.001
groups
Within groups 98.022 6 16.337
Total 1527.622 8

The overall one-way ANOVA results show that the mean difference is
significant, indicating that the mean scores of three groups are significantly
different.

The test shows that the quantitative cell replication score is distinctive and
varies according to the cell replication level in our experiments.
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Table 2 Multiple Comparison using Tukey HSD and LSD
tests

Dataset Dataset mean diff. std.  Significance
(U] () (1-J)) error
Tukey p63 BRCA1 -15.29 33 0.008*
HSD
Scr -30.87 33 < 0.001*
BRCA1 p63 15.29 33 0.008
Scr -15.579 33 0.008*
Scr p63 30.87 33 < 0.001*
BRCA1 15.58 33 0.008*
LSD p63 BRCA1 -15.29 33 0.004*
Scr -30.87 33 < 0.001*
BRCA1 p63 15.29 33 0.004
Scr -15.579 33 0.003*
Scr p63 30.87 33 < 0.001*
BRCA1 15.58 33 0.003*

Multiple post hoc comparisons were conducted to compare mean difference
between two groups. Results of both Tukey HSD and LSD tests show that the
mean differences between any two groups are statistically significant (p -
values < 0.01). This test further confirms that the quantitative cell replication
score is distinctive and varies according to the cell replication level.

IHC images. A quantitative performance evaluation was
conducted by comparing the ground truth data and the
system output. In pixel-based quantitative performance
evaluation, the system achieves 92% precision and 75%
recall rates and has been demonstrated to be promising in
nuclear cell detection on lung tissue images. In biomarker
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Figure 4 Consistent quantification results in variant to the
number of cells appearing. The proposed cell replication scores
are stable with consistent outputs for images in the same cell
replication level, invariant to the number of cells captured in the
image: three live cell images from individual cell replication group
were selected; the first column contain low quantity of cells and the
second and third columns contain high quantity of cells. The scores
for each row are consistent. (a,b,c) from the low cell replication
group (p63), (d,ef) from the medium cell replication group (BRCA1),

(g,h,)) from the high cell replication group (Scr).
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Figure 5 Means Plot of Quantification Scores. This figure displays
the means plot of the three group from the low cell replication

group (p63) to the high cell replication group (Scr).

discovery applications, the extracted regions of nuclei can
then be used to analyze nuclei malignancy; it can be used
to quantify the percentage or intensity levels of positively
stained nuclei as shown in Figure 6.

3 Conclusions

It is often necessary in experimental research to quantify
the dividing capabilities of cells when investigating
manipulations of the cells or their environment. The
presented technique provides a new type of information
in monitoring cell replication activity and greatly
empowers live cell imaging in studying cellular process.
The availability of this novel technique should facilitate
a more precise and comprehensive evaluation of cell
proliferation and aid in the interpretation of results.

In addition, we have presented an unsupervised
entropy-based system to detect nuclei in IHC lung tissue
slides. The method has shown to perform well in image
segmentation in the experiments. Furthermore, the
extracted nuclei information is demonstrated to be useful
in quantitative IHC. In addition, apart from analyzing
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nuclei activity, we would like to extend the method for
cancer subtypes classification in lung cancer. We plan to
utilize the identified nuclei architecture information for
automated classification of cancer subtypes. Figure 7
shows two types of lung carcinomas, including adenocar-
cinoma and squamous carcinoma. The characteristic his-
tologic feature of Adenocarcinoma is glandular structure
(Figure 7(a)), where nuclei form snake-like shapes. On
the other hand, the characteristic feature of squamous
carcinoma(Figure 7(b)) is sheet-like structure. Hence,
after obtaining nuclei architecture information (Figure 7
(c,d)) by the proposed method, scene abstraction func-
tion can be applied (Figure 7(e,f)) to remove isolated or
small islands of nuclei. In future work, we plan to utilize
the extracted connecting components (Figure 7(g,h)) as
patterns to distinguish the two non-small cell lung can-
cers by detecting large regions of connecting components
as glandular structures and recognizing the tissue slides
as adenocarcinoma cases.

4 Methods

4.1 Materials in fluorescence microscopy images

Nikon TiS inverted fluorescence microscopy is used to
capture live cell images. The image dimension of each
image is 2560 x 1920 with file size 14.1 megabytes.
Three breast tumour samples stained with different pro-
teins were used to generate three representative data
sets, which cover a spectrum of cell replication levels;
samples stained with p63 represent the group with low
cell replication activity, samples stained with BRCA1
represent mediumn cell replication group, and samples
stained with Scr represent the group with highly active
cell replication activity. For each cell sample, twenty live
cell images were captured, and from each image set,
three images were manually selected to represent a
spectrum of cell quantity level (high, medium and low).
The presented method was tested on these images of
each group to generate quantification scores, and the
distribution of the output scores by the presented
method is illustrated in Figure 8.
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Figure 6 Nuclear segmentation in IHC tissue image analysis. Extracted nuclei (middle) can be used for quantitative IHC analysis such as the
percentage or intensity levels of positively stained nuclei (right), where gray areas are positively nuclei and blue areas are negatively stained
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structure for pattern recognition of adenocarcinoma.

Figure 7 Cancer subtype classification based on nuclear layout patterns. (a) adenocarcinoma tissue image with snake-like glandular
structure, (b) squamous carcinoma tissue image with sheet-like structure, (c,d) extract nuclei architecture, (e,f) scene abstraction to remove
isolated or small islands of nuclei, (gh) detect connecting components and look for large regions of connecting components as glandular

4.2 Materials in immunohistochemistry tissue images

An extended version of the proposed entropy-based seg-
mentation technique is built for nuclear segmentation of
IHC images. A tissue microarray (TMA) slide was scanned
using Aperio Scanscope CS2 (Aperio Technologies Inc.
San Diego USA), at 40x objective magnification. Nine dif-
ferent tissue cores were randomly selected for evaluation;
the image size of individual tissue cores is around 2896 x
2756 and the nuclear areas of each tissue core were manu-
ally marked to produce ground truth data. A quantitative
performance evaluation was conducted by comparing the
ground truth data and the system output.

4.3 Automatic cell based quantification approach in
fluorescent microscopic images

In general image data, the color of the image pixels
represents the appearance of the surface of an object.
This however is not always applicable to the microscopic
images. In the fluorescent microscopic images, the gray
color of the background regions can not represent the
true appearance of specimens. These background areas
are in fact transparent and become gray when captured
using a digital microscopic system. Hence, segmentation
by general unsupervised clustering techniques, such as
Otsu or K-means, based on the raw digital image

Raw Fluorescent Live Cell Image

Extract Potential
Foreground
Wavelengths

‘ Spectrum
| Color Deconvolution ‘
| )
Y
Background Foreground

I

Unsupervised Local
Entropy-based

Extract stains of
interest

Foreground

Y Segmentation

Quantification Score «

Cell-based
Quantification

Recognizeregions of
interest: cell
segmentation

level of the stain of interest within the cell regions.

Figure 8 System framework. An overview of the presented automatic quantitative method is illustrated. The algorithm contains three main
parts, including a color deconvolution algorithm to extract the potential foreground wavelength and extract the stains of interest, an
unsupervised local entropy-based segmentation to identify the areas where cells locate, and a cell-based quantification function to measure the
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appearance information does not produce good segmen-
tation results because those information can be
misleading.

As in the background empty regions, all excitation light
can be reflected and the emission light can all pass
through, the non-stained empty background regions there-
fore contains different wavelength from the foreground
cell regions, and the stained specimen components show
different wavelengths (with broad spectrum) from the
background regions. Therefore, a method is built to
extract possible foreground specimen wavelengths first,
and then utilizes this true appearance information for
further cell segmentation using a localized entropy-based
segmentation approach. Then, a quantification system is
built to test the method. The framework of the quantifica-
tion system is illustrated in Figure 9.

4.3.1 Extraction of Foreground Color Information

Color representation The Lambert-Beer’s law describes
an exponential relationship between the intensity of
monochromatic light transmitted through a specimen
and the amount of stain present in the specimen:

Li(3) = Io(%) exp(—a - ¢(1)) (2)

where I;(A) is the intensity of light of wavelength A
transmitted through the specimen (the intensity of light
detected), Io(A) is the intensity of light of wavelength A
entering the specimen, « is the amount of stain per unit
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area of the specimen, and c(A) is a wavelength-dependent
factor reflecting the absorption characteristics of the par-
ticular stain.

The CCD RGB cameras use three broad-band filters to
capture color images in three channels. As the relative
intensity I,, I, I, in each of the RGB channels depends on
the concentration of stain in a nonlinear way [16], the
intensity values of the image can not directly be used for
separation and measurement of each of the stains, but
the optical density (OD) for each channel can be defined
as

D=1n<11)=a~c (3)
Iy

The OD for each channel is linear with the amount of
stain, given the absorption value, and can therefore be
used for extracting the amount of stain in a specimen.
Each stain can be characterized by a specific OD for the
light in each of the three RGB channels, which can be
represented by a 3 x 1 OD vector describing the stain
in the OD-converted RGB color space [17]. Hence, in
the case of two stains, the color system can be described

as
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Figure 9 Color deconvolution. Color separation for foreground cells and background color and cell segmentation based on the extracted color
information: color deconvolution is applied to separate the blue stain (b) and background color (c). The extracted blue color is further applied
with multistage entropy-based segmentation to segment the cell area (d) for quantification.
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where each row represents a specific stain and each
column represents the OD as detected by RGB channels
for individual stain.

Color deconvolution [17] can be used to obtain inde-
pendent information about each stain’s contribution
based on orthonormal transformation of the RGB infor-
mation, and the transformation has to be normalized to
achieve correct balancing of the absorbtion factor for
separate stains. For normalization, each OD vector is
divided by its total length to obtain a normalized OD
array A. If C is the 2 x 1 vector for amounts of the two
stains at a particular pixel, then the vector of OD levels
detected at that pixel is D = CA. Defining K = A" as
the color-deconvolution array, we can therefore obtain
individual stain information by C = KD.

In this study, color deconvolution is used to separate
the potential single stain channel information from the
background color channel, and the color-deconvolution
array is defined as:

(5)

K= 0.6443 0.7167 0.2669
~\0.1754 0.9723 0.1546

where the first row vector is used to compute the
blue stain channel information (Figure 10(b)), Iz, and
the second row is for the background color channel
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information (Figure 10(c)). Cell segmentation (section
4.3.2) is based on the extracted blue color information
to identify the foreground cell (Figure 10(d)) for
quantification.

4.3.2 Local Entropy-based Cell Segmentation

Given the extracted color image, Iz, the cell is segmented
by local entropy-based segmentation. According to Shan-
non’s theorem [18], if the event i occurs from a set of valid
events with the probability p;, the amount of uncertainty
related to the event is equal to H; = -log(p;)(bits/symbol),
and the amount of the uncertainty that the source of the
events generates is equal to H = - X (p; log(p,))(bits). The
idea behind local entropy method is to divide the pro-
cessed image into separate regions and then to analyze
each region separately as information source.

Therefore, we separate the foreground cell and back-
ground as two different information sources, by search-
ing the maximum local entropy to obtain the cut-off
point. Given the input color information, we first com-
pute the normalized image histogram information,
P ={po,....p2c—1} where the valid intensity scales from 0
to 2° - 1. Then, the image entropy E(P) is calculated
using discrete histogram P as follows.

E(P) = H(P) = {Ho...Hy_1} ©6)

a : (bY's = 7019363

{C) s = 76.3786

(d) s =86.2691 (e)s = 885797 (f) s = 95.0596

< T

g)s =103.3889 h) s = 105.6128 (i) s= 103.7029

Figure 10 Positive correlation between the quantitative results by the presented technique and the actual cell replication level. The
distribution of the quantitative cell replication scores by the proposed technique is positively correlated to the actual cell replication level.
Moreover, each score sub-distribution of each group is distinctive as there is no overlap of score distribution between any two groups with
different cell replication level. Table 2 also proves that scores of different groups are statistically significantly different.
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where

j

H(A) = — Z pilogp; @)
i=0
201

H(B) == pilogp; ®
i

H(A H(B
H;j = —log P(A) — log P(B) — p((A)) - P((B)) ®

where j € {0..2°- 1}, A = {0..j} and B = {2° - 1..j}.

The entropy maximum is calculated as E,,,,(P) = max H
(P), which defines the cut-off point j for assigning image
pixels into different classes where H(P) = {Hp...Ha:_1}.
Here we compute the optimal cut-off point and categorize
pixels of an input image into 2 classes (Figure 10(d)),
including foreground cells and background.

j* = argmax H(P) (10)
spy. ] 0 i=]
I(pl)_{26_1i>j* (11)

where i e {0..2° - 1}.
4.3.3 Quantification Function
Given the blue stain channel information I3(X,Y) and
segmented image [*(X,Y), the cell replication quantifica-
tion score is formulated as follows.

s Z(m,n) IB(m' n)

|I*(m, n) 12)

| (m,n)e(X,Y)AI*(m,n)=0

4.4 Software

The developed software is platform independent and
thus can be executed in different operation systems
such as Windows, Linux or Mac. The software with
some test images can be downloaded from the author’s
website (http://www-o.ntust.edu.tw/~cweiwang/Cell/).

4.5 Extension to IHC tissue images

An extended version of the proposed entropy-based seg-
mentation technique is built for nuclear segmentation of
IHC images. Given an IHC image, we first separate
independent DAB and Haematoxylin stain contributions
by the color deconvolution approach [17], and assign a
normalized optical density (OD) matrix, M, to describe
the colour system for orthonormal transformation as
follows:
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0.65 0.704 0.286 | Haematoxylin
0.072 0.99 0.105 Eosin
0.268 0.57 0.776 DAB

(13)

Next, a multistage entropy-based segmentation of
nuclei is applied. After calculating 2D image histogram
entropy function, we first apply an eight stage maximum
entropy function to automatically separate input image
into eight layers, and then a two stage entropy function
to extract potential regions of nuclei, which is then pro-
cessed by morphological operations to produce final
nuclear segmentation results. The algorithm is described
below.

« divide histogram into four equal sub-histograms
Py, P,, Ps, P,, obtaining ji, j3, js where j € 0..2° - 1

+ compute maximum entropy points jo, jo, ja, je for
the four different P intervals, where j, = arg max H
(P1), jo = arg max H(P,), j4 = arg max H(Ps), jo = arg
max H(P,).

* use jo..je to categorize input image into eight layers
« calculate new histogram P*

+ compute j* = arg max H(P*) and categorize input
image into 2 categories, including nuclei and non-
nuclei.

« apply the morphological operations described
below

The purpose of the morphological function is both to
reduce spurious false positive detection and increase low
contrast true negative detection. The method re-assigns
each image pixel value using the most frequent intensity
level within its neighborhood. Given an image (X, Y)
and neighborhood radius r, the output image I'(X, Y) is
formulated as follows.

I'(x,y) = arg max(#(K, L)) (14)
where K = {x - r,., x + 7}, L ={y - r,..., y + 1}, and r is
empirically set as 3.
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