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Abstract

Background: High-density oligonucleotide microarray is an appropriate technology for genomic analysis, and is
particulary useful in the generation of transcriptional maps, ChIP-on-chip studies and re-sequencing of the
genome.Transcriptome analysis of tiling microarray data facilitates the discovery of novel transcripts and the
assessment of differential expression in diverse experimental conditions. Although new technologies such as
next-generation sequencing have appeared, microarrays might still be useful for the study of small genomes or for
the analysis of genomic regions with custom microarrays due to their lower price and good accuracy in expression
quantification.

Results: Here, we propose a novel wavelet-based method, named ZCL (zero-crossing lines), for the combined
denoising and segmentation of tiling signals. The denoising is performed with the classical SUREshrink method and
the detection of transcriptionally active regions is based on the computation of the Continuous Wavelet Transform
(CWT). In particular, the detection of the transitions is implemented as the thresholding of the zero-crossing lines. The
algorithm described has been applied to the public Saccharomyces cerevisiae dataset and it has been compared with
two well-known algorithms: pseudo-median sliding window (PMSW) and the structural change model (SCM). As a
proof-of-principle, we applied the ZCL algorithm to the analysis of the custom tiling microarray hybridization results of
a S. aureusmutant deficient in the sigma B transcription factor. The challenge was to identify those transcripts whose
expression decreases in the absence of sigma B.

Conclusions: The proposed method archives the best performance in terms of positive predictive value (PPV) while
its sensitivity is similar to the other algorithms used for the comparison. The computation time needed to process the
transcriptional signals is low as compared with model-based methods and in the same range to those based on the
use of filters. Automatic parameter selection has been incorporated and moreover, it can be easily adapted to a
parallel implementation. We can conclude that the proposed method is well suited for the analysis of tiling signals, in
which transcriptional activity is often hidden in the noise. Finally, the quantification and differential expression analysis
of S. aureus dataset have demonstrated the valuable utility of this novel device to the biological analysis of the S.
aureus transcriptome.
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Background
The complete deciphering of the information contained in
the genome would be helpful to improve our understand-
ing of the biological processes occurring in living organ-
isms. High-density oligonucleotide-based whole-genome
microarray is an extensively used technology to detect the
expression of all RNA species including protein coding
RNAs and non-coding RNAs. It is particularly suitable for
the analysis of whole small-sized genomes such as those
corresponding to bacteria. For these organisms high res-
olution can be achieved with the microarrays currently
provided by the manufactures.
Applications of tiling array technology include the

generation of transcriptional maps and annotations of
genomes, the identification of transcription factor bind-
ing sites, the analysis of alternative splicing events, the
analysis of methylation states, the discovery of geno-
typing and polymorphism, and the re-sequentation of
genomes [1].
The emerging high-throughput next generation DNA

sequencing (NGS) technologies [2] have revolutionized
transcriptomics by allowing RNA analysis through cDNA
sequencing on a massive scale (RNA-seq). Several limita-
tions inherent to microarray technologies are overcome
by NGS technologies, in particular, it is not necessary to
design appropriate probes and the experimental repro-
ducibility is guaranteed. However, the microarray design
presented in [3] allowed a comprehensive examination of
gene expression and genome-wide identification of alter-
native splicing as well as detection of coding and non-
coding transcripts. This microarray (Affymetrix GG-H
array) was compared with RNA-seq in [3]. The repro-
ducibility in the estimation of gene and exon abundance
was high and even more sensitive than RNA-seq at the
exon level. This microarray design contains as targets near
50000 highly transcribed fragments of unknown func-
tions from Affymetrix tiling microarray data [4]. The
NGS experiments highlighted that 49% of these fragments
had uniquely mapped reads, revealing a high degree of
concordance between both technologies.
The analysis of a tiling microarray experiment starts

with a two-step process that generates a discrete signal.
First, the DNA or RNA samples are hybridized in the cus-
tom designed tiling array. Second, for each probe, the raw
intensities are converted to a score [5]. The result is a
discrete intensity signal with a value per probe.
The workflow shown in Figure 1 summarizes the

methodology. It consists of four basic blocks: (1) sig-
nal pre-processing (DNA normalization, non-uniform to
uniform resampling and de-noising); (2) segmentation to
detect abrupt intensity changes; (3) definition of tran-
scriptionally active regions (TARs) and (4) biological
knowledge extraction (for example, differential expression
analysis of genes).

Transcriptome analysis refers to the detection of seg-
ments where the noisy tiling signal is constant. The
start and end points of these segments correspond to
transcript start and end sites. Several approaches have
been deployed in the segmentation of tiling signals:
pseudo-median or Hodges-Lehmann estimator [6,7], local
non parametric smoothing [8,9], hidden Markov models
[10-13], circular binary segmentation [14] and structural
change model [15,16].
Wavelet analysis using the Discrete Wavelet Transform

(DWT) [17] has demonstrated excellent performance in
the analysis of ChIP-chip experiments using tiling array
technology [18,19]. In this paper, we propose a wavelet
transform based method for the identification of TARs
in tiling signals (ZCL). We have chosen the SUREShrink
algorithm for denoising and a method based on the com-
putation of the Continuous Wavelet Transform (CWT)
for detection of transcription start and end sites. In partic-
ular, the sharp transitions of the tiling signal are identified
as the zero-crossing lines of a multiresolution decompo-
sition using as the mother wavelet the second derivative
of a Gaussian [20]. We applied the proposed analysis
to the public Saccharomyces Cerevisiae dataset to val-
idate our analytical approach. The novel identification
algorithm was compared with two well-known methods:
pseudo-median sliding window (PMSW) and structural
change model (SCM). The absence of a biologically val-
idated ground truth to evaluate the resulting segmen-
tations prevent the use of specificity and sensitivity as
performance metrics. Consequently, the evaluation has
been made in terms of positive predictive value (PPV),
sensitivity and computation time. We also evaluated the
segmentation quality resulting from the combination of
the TARs detected by several of the methods under
study.
We also used this algorithm for the identification of

the subset of transcripts whose expression decreases
in a S. aureus strain deficient in the sigma B tran-
scription factor. SigB has been shown to be involved
in the stress response to different stimuli, the regula-
tion of sarA, sarH1, and agr that control a wide array
of virulence factors, biofilm formation, the ability of
S. aureus to bind to various host-cell matrix proteins
such as fibrinogen and fibronectin, and in the devel-
opment of resistance to the antibiotics methicillin and
teicoplanin [21-26].
We applied the segmentation methods to this high

quality dataset and we have demonstrated its useful-
ness for the analysis of the tiling array derived tran-
scriptome map. The results demonstrate that ZCL
not only allows a rapid identification of the tran-
scripst based on the segmentation procedure but also
a more accurate estimation of the expression level of
each transcript.
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Figure 1Wavelet-based processing of tiling signals.Workflow for the analysis of the tiling signal based on the computation of the Continuous
Wavelet Transform (CWT).

Results and discussion
All the steps needed to obtain a trancriptional map from
the raw data (read the CEL files, normalize, denoise and
segment the tiling signal) have been implemented using
the statistical language R/Bioconductor [27]. The CRAN
packages Rwave, wavethresh and wmtsa have been used
for wavelet analysis. All the R functions described are
available as Supplementary Material (Additional file 1,
Additional file 2 and Additional file 3). The R code to
perform the example analyses and the generation of the
figures included in the paper can also be found as Supple-
mentaryMaterial. The results show that wavelets compare
well with the rest of methods in terms of segmentation
accuracy and time consumed in the analysis.

Experimental datasets
Saccharomyces cerevisiae dataset
The dataset is described in [16]. An oligonucleotide array
for S. cerevisiae was developed. It contains 6.5 million
probes and interrogates both strands of the full genomic
sequence with 25-mer probes tiled at an average of 8
nucleotide intervals on each strand and 4 nucleotide tile
offset between strands. The first-strand cDNA was syn-
thesized using random primers from poly(A) and total
RNA. A set of genomic DNA was also hybridized for
normalization purposes [15]. Their analysis of the tran-
scription map identified the transcript boundaries, its
structure and the intensity level of coding and non-coding
transcripts [16]. All data (CEL files, bmap files for both

strands and annotation file) was deposited in ArrayEx-
press database with accession number E-TABM-14.

Staphylococcus aureus dataset
The Staphylococcus aureus custom tiling microarray (NA-
Staph-b520729F) was designed in collaboration with
Affymetrix (Santa Clara, CA, USA). Specifically, the
microarray (format 49-7875 with 11 μm features) con-
tains a total of 522,406 probes, divided into two parts. The
first part corresponds to the tiling array containing a total
of 384,932 probes (25-mer), which are further divided
into eight sets. The set used in our analysis covers both
strands of the S. aureusNCTC 8325 genome (2,821,347 bp
covered by 363,127 probes). Each 25-mer probe was
tiled each 14-nt across the whole genome, resulting in
11-nt overlaps and a 7-nt tile offset between strands. The
microarray design has been deposited in the ArrayExpress
Archive at EMBL-EBI (http://www.ebi.ac.uk/microarray-
as/ae/), ArrayExpress accesion no. A-AFFY-165.
Before cDNA synthesis, RNA integrity from each

sample was confirmed on Agilent RNA Nano LabChips
(Agilent Technologies). 10 μg of RNAs extracted
from bacterial strains grown until exponential phase
(OD600nm = 0.8) were reverse transcribed using
SuperScript II reverse transcriptase (Invitrogen Life
Technologies). They were processed following the pro-
tocol of the Affymetrix GeneChip Expression Analysis
Technical Manual (P/N 702232 Rev. 2) in the presence
of 6 ng/ml Actinomycin D to avoid spurious second-
strand cDNA synthesis during the reverse transcription
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reaction [28]. Sense RNA corresponding to B. subtilis
poly-A lys, phe, thr, trp, dap genes were spiked into
sample RNA as a control for the labeling and hybridiza-
tion steps. cDNA was digested by DNase I (PIERCE) in
10X DNAse I buffer (USB-Affymetrix) and the size of
digestion products was analyzed in the Agilent Bioanal-
yser 2100 using RNA Nano LabChips to ensure that the
fragmentation resulted in a majority of products in the
range of 50 to 200 base-pairs. The fragmented cDNA
were then biotinylated using terminal deoxynucleotidyl
transferase (Promega) and the GeneChip DNA label-
ing reagent (Affymetrix) following the manufacturer’s
recommendations. Biotinylated cDNA (5 μg per array)
were hybridized for 16 hours according to the Affymetrix
protocol in a total volume of 200 μl per hybridization
chamber. Following incubation, the arrays were washed
and stained in the Fluidics station 450 (Affymetrix) using
the protocol FS450 0005. The arrays were then scanned
using the GeneChip scanner 3000 (Affymetrix). The
intensity signals of each probe cell were computed by the
GeneChip operating software (GCOS) and stored in cell
intensity files (.CEL extension) before preprocessing and
analysis. All microarray data described in this study have
been deposited in the ArrayExpress Archive at EMBL-EBI
(http://www.ebi.ac.uk/microarray-as/ae/), ArrayExpress
accesion no. E-MEXP-2778.

Probe annotation and normalization
The annotation of the PM probe sequences was obtained
with the alignment to the genome sequence of S. cere-
visiae strain S288c (SGD of August 7, 2005) as provided
in the package davidTiling of Bioconductor. Available data
correspond to 3 replicates of poly(A), 2 replicates of total
RNA and 3 replicates of genomic DNA. The CEL files
were read and the normalized signals (poly(A) and total
RNA) were obtained using Equation 4. The analysis steps
(denoising, segmentation and detection of TARs) were
performed on the poly(A) signal as it showed an improved
hybridization quality [16]. Once the signal is constructed
from CEL and annotation files we used tilingArray pack-
age functions to obtain equally-spaced samples. Other
resampling methods can be applied without loss of
generality.
The annotation files for S. aureus microarray are pro-

vided in the ArrayExpress database (A-AFFY-165). The
microarrays of the experiment correspond to three repli-
cates of genomic DNA, three replicates of RNA of the
15981 wild-type strain, and three replicates of the sigB
deletion. All the preprocessing steps were performed as
previosly described for S. cerevisiae dataset.

Denoising
The denoising was evaluated using the signal to noise ratio
(SNR), a quantitative measure of its performance. In order

to compare the results obtained with those from Huber
et al. [15] based on a variance stabilization and normaliza-
tion transformation, the same definition of SNR was used.
We looked at a set of control regions, two positive con-
trol regions (pos) within the ORFs of RPN2 and SER33 at
coordinates 217860 − 220697 and 221078 − 222487 and
two negative control regions (neg) in the background at
coordinates 216800 − 217700 and 222800 − 227000 of S.
cerevisiae (see Figure 2). We assumed (as in [15]) that the
differences between positive and negative controls give an
estimation of the signal level, whereas variations from the
mean intensity within each region are due to noise.
The SNR was computed as

SNR = �μ

σ
= 1

σ

⎛
⎝ ∑

r∈pos

μr
|pos| −

∑
r∈neg

μr
|neg|

⎞
⎠ , (1)

with the noise standard deviation σ calculated as the aver-
age of the differences between 0.975 and 0.025 quantiles
of the data within each of the control regions. Namely,

σ =
∑

r∈pos,neg(Q0.975
r − Q0.025

r )

(Q0.975
N − Q0.025

N )(|pos| + |neg|) (2)

where the symbol r counts over the different regions and
QN refers to the standard normal distribution N (0, 1).
Table 1 shows the SNR of the normalized signal and the
wavelet-based denoised signal using Donoho’s method
[29] and the SUREShrink approach [30] in relation to
the best SNR obtained in [15]. We observe that the use
of wavelets for denoising results in a large increase in
the SNR (18.94% with Donoho’s method and 30.63% with
SUREShrink approach), especially when the SUREShrink
denoising is applied. This could be due to the elimination
of most part of the non-Gaussian noise component and
the consequent reduction in the estimated variance. In the
rest of the paper, the SUREShrink is the method applied
for denoising.

Segmentation
A descriptive example of the denoising and segmentation
for S. cerevisiae is shown in Figure 3. The analysis cor-
responds to a 140 Kb segment of chromosome 1 from
position 20000 to position 160000. The results are given
for the three algorithms compared (SCM, PMSW, ZCL).
The CWT computation of ZCL used as mother wavelet
the second derivative of a Gaussian with 100 scales. Zero-
crossing lines were calculated and only those with a length
greater than a pre-defined threshold were considered to
correspond to signal transitions.
The TAR start and end positions were defined as the

transition locations for which the difference between the
mean intensity of neighboring segments is greater than
10% of the dynamic range of the tiling signal. Moreover,
the inspection of the intensity histogram of chromosome
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(a) Normalized signal

(b) Wavelet denoised signal (Donoho)

(c) Wavelet denoised signal (SURE)

216000 218000 220000 222000 224000 226000 228000

RPN2 SER33 SPO22

N NS S

Figure 2 Signal to noise ratio of different filtering methods. Portion of the tiling signal used to evaluate the Signal to Noise Ratio (SNR). We
consider two signal regions (S) and two noise regions (N). (a) Normalized signal. (b) Denoised signal using Donoho’s threshold. (c) Denoised signal
using the SUREShrink threshold.

1 forward strand was used to set the minimum normal-
ized transcription level value to −2. The same parameters
were adopted to process the other strands of the organism.
The R function segmentZCL (provided as Supplementary
Material) implements the whole segmentation procedure.
Another representative example of segmentation results

is given in Figure 4. In this case, the S. aureus signal of
15981 and sigB mutant were segmented using ZCL and
fixing only the number of scales to 100. No denoising was
applied prior to the segmentation. The figure represent a
fragment of the signals from position 2.1 Mb to 2.3 Mb.
In Additional file 4: Figure S1 and Additional file 5: Figure
S2, the results for the PMSW algorithm are shown. In
Additional file 6: Figure S3 and Additional file 7: Figure S4,
the results for the SCM algorithm are presented.

Segmentations comparison using S. cerevisiae dataset
The results from the ZCL segmentation were compared to
those obtained with PSMW [6] and SCM [15]. The robust
PMSW method is based on the calculation of a pseudo-
median within a sliding window. The local expression level
is computed with the Hodges-Lehmann estimator [31] on
the RNA normalized signal. To be able to do this, the
Tilescope pipeline [7] was implemented. Once the candi-
date transcript regions were determined, the TARs were
assembled by the combination of a normalization inten-
sity threshold and a max-gap and min-run criteria. The
former is defined as the maximum distance below which
two adjacent transcribed probes are included in the same
TAR. The later as the minimum length of a feature to be
classified as a transcribed region.
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Table 1 Estimated SNR values of the tiling signal shown in
Figure 3

SNR results

Signal SNR

Best SNR in [15] 4.58

Normalized signal 4.28

Wavelet denoising (Donoho’s) 5.28

Wavelet denoising (SUREShrink) 6.17

Estimated SNR values of the tiling signal. The normalized and the wavelet
denoised signal using Donoho´s and SUREShrink on which the calculation was
performed are shown in Figure 3.

Huber’s method is based on the structural changemodel
(SCM). The SCM model [15,16] is used in econometrics
for the modeling of sharp transitions in financial time
series. It has been applied to the segmentation of compar-
ative genomics hybridization (CGH) data [32]. The signal

is modeled as a piecewise constant function of chromo-
somal coordinates described using the segment bound-
aries, the maximum number of segments and the mean
signal value for each segment. The method is applied
independently to each chromosome and, if the signal is
strand-specific, to each of its two strands. A dynamic pro-
gramming algorithm part of the tilingArray package of
Bioconductor computes a globally optimal set of parame-
ters for segmentations of increasing number of segments.
Due to the lack of a biologically validated ground truth

to evaluate the outputs, we compared the methods in
terms of two metrics, sensitivity and positive predictive
value (PPV) at probe-level. We define sensitivity as the
number of probes in the detected TARs that overlap with
annotated regions (true positives, TP) divided by the total
number of probes in the annotated regions (sum of true
positives and false negatives, TP + FN): Sensitivity =
TP/(TP + FN). The PPV is defined as the number of

Figure 3Wavelet-based segmentation of S. cerevisiae tiling signal. Visualization of S. cerevisiae tiling microarray signal along 140 kb of
chromosome 1. Each dot corresponds to a probe of the forward strand (top) and reverse strand (bottom). The superimposed pulse signal represents
the segmentation obtained using the different methods (PMSW, SCM, ZCL). The parameters of the different analysis are described in the
Results and discussion section of the manuscript.
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Figure 4Wavelet-based segmentation of S. aureus tiling signal. Visualization of S. aureus tiling microarray signal along 200 kb of NCTC8325
genome. Each dot corresponds to a probe of the forward strand (top) and reverse strand (bottom) for sigBmutant and 15981 wild-type normalized
signals. The superimposed pulse signal represents the segmentation obtained using ZCL. The parameters of the analysis are described in the
Results and discussion section of the manuscript.

probes in the detected TARs that overlap with anno-
tated regions (TP) divided by the total number of probes
in the detected TARs (sum of true and false positives,
TP + FP): PPV = TP/(TP + FP). A sensitivity of 100%
is not expected since in any given tissue or cell line at
any given experimental condition, not all known genes
will be expressed. Also, a PPV of 100% is not expected
since an accurate and complete gene annotation is not
available [5,33].
The PMSW and SCM methods were applied to the S.

cerevisiae using the parameters previously reported in the
literature [6,15]. In particular, the PMSW method used a
bandwidth size (BW) of 3, a normalized intensity thresh-
old equal to −2, a separation between the probes in a
TAR (maxgap) of 10 and a minimum acceptable TAR
size (minrun) of 90. The maximum number of segments
for the SCM method was fixed to 1500. In the case of
ZCL we selected the following parameters: 100 wavelet
scales, minimum TAR size of 10 and minimum value of
normalized intensity transcription equal to −2. The zero-
crossing line length threshold was computed based on the
histogram of line lengths.
The graphical representation of the results obtained

after processing the S. cerevisiae tiling signal are shown in
Figure 5. For each chromosome we calculated the num-
ber of detected TARs, PPV, sensitivity and computation
time for the forward and reverse strands. Table 2 presents

the performance metrics mean value. The segmenta-
tion with PMSW includes a larger number of detected
TARs. The highest PPV values are obtained with the ZCL
method (with or without denoising) at the cost of a slightly
reduced sensitivity. PMSW and ZCL outperform SCM
in term of computation time. The best sensitivity value
corresponds to PMSW.
In-depth analysis of chromosome 1 gives interesting

insights into concerning the relationship between meth-
ods. In the forward strand, the number of probes anno-
tated as genes is 12796 representing 19.35% of the total
number of probes. 65.16% of probes are correctly classi-
fied by the three algorithms (12.21% of gene probes and
52.95% of non-gene probes). From the annotated probes,
63.12% are detected by all methods, while only 11.85%
of the probes are not detected by either of them. This
means that 88.15% of the annotated probes are detected
by at least one of the methods. The reverse strand con-
tains 11866 annotated probes (17.90% of probes located
in this strand), from which 19.74% are considered part
of a TAR by all the methods and 28.35% are true nega-
tive probes. In this strand, 51.41% of the annotated probes
are included in a TAR by any method while only 14.35%
are never detected. In other words, 85.65% of the probes
in the strand are detected by at least one algorithm. In
light of this outcome, we considered it worthwhile to
evaluate if the combination of results computed with the
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Figure 5 Results for the identification of TARs. Number of detected TARs, probe-level PPV and sensitivity, and computation time for the
proposed (solid line), PMSW (dashed line) and SCM (dotted line) methods. The analysis was performed for the forward (left) and the reverse (right)
strands of all chromosomes of S. cerevisiae tiling microarray data.
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Table 2 Evaluationmetrics for S. cerevisiae dataset

Evaluation metrics (S. cerevisiae)

Method TARs PPV Sensitivity Time (min)

PMSW 22114 0.7416 0.4700 2.88

SCM 11246 0.7847 0.3904 79.09

ZCL 18209 0.8486 0.3760 13.02

ZCLSure 22513 0.8547 0.3686 10.70

Mean number of detected TARs, probe-level PPV, probe-level sensitivity and computational time for PMSW, SCM and ZCL methods (all chomosome and strands of S.
cerevisiae).

different methods would improve the performance of the
segmentation.

Combination of TAR probes candidates
We evaluated the improvement in performance obtained
by the combination of the different segmentations. We
chose different strategies to define the sets (intersection of
two or three methods and majority voting system). After a
decision is taken on the candidates, TARs are constructed
to create the transcriptional map. In Table 3, we give eval-
uation metrics (PPV and sensitivity) for both strands of
S. cerevisiae chromosome 1. As individual methods, ZCL
gives the best PPV and the best sensitivity for the reverse
strand. The best performing combination considering a
compromise between PPV and sensitivity is given by the
majority voting system.

Computational performance
S. cerevisiae analyses were executed in an Intel(R) Xeon(R)
processor server (64 bits, 4 cores, 2 GHz) with 32 Gb
installed memory running Red Hat Enterprise Linux AS
release 4 and R 2.13.0. Computing times needed to pro-
cess each chromosome strand with the describedmethods
are shown in Figure 5. For the same signal length, longer
computation time is required for SCM, while comparable
times are needed for PMSW and ZCL. The mean time to

segment the whole transcriptome is 2.88 mins for PMSW,
13.02 mins for ZCL and 79.09 mins for SCM.

Differential expression analysis of S. aureus sigmaBmutant
Comparative segmentation analysis using ZCL and
PMSW and SCM algorithms was applied for the
hybridization data obtained with a custom designed
Affymetrix tiling array of S. aureus. Segmentation results
for S. aureus are summarized in Table 4. In this case, the
performance measures are almost identical for all meth-
ods. These results suggest that the performance of the
methods depends on the quality of the signals, decreas-
ing for PMSW and SCM algorithms as the SNR of the
signal get worse. In spite of this, other advantages such
as computation time, automatic selection of parameters
and the possibility of parallel computationmakes ZCL our
preferred option to segment tiling signals.
The most frequent transcriptional analysis is the detec-

tion of genes that have changed their expression in the
conditions under study (differential expression analysis).
As sigma B affects the expression of more than one hun-
dred genes, we decided to test whether it is possible to use
the intensity of all the probes included in each detected
TAR with the ZCL segmentation procedure to calculate
the expression level of the transcript in a particular envi-
ronmental condition. In order to carry out this analysis

Table 3 Evaluation of segmentation combinations for both strand of chromosome 1

Integrative transcriptional analysis

Method PPV Forward Sensitivity Forward PPV Reverse Sensitivity Reverse

PMSW 0.6511 0.5873 0.5811 0.2073

SCM 0.7188 0.4390 0.6968 0.2146

ZCL 0.8675 0.3821 0.8220 0.2208

PMSW
⋂

SCM
⋂

ZCL 0.6312 0.5984 0.5441 0.2030

PMSW
⋂

ZCL 0.6448 0.5921 0.5744 0.2076

PMSW
⋂

SCM 0.6370 0.5957 0.5504 0.2043

SCM
⋂

ZCL 0.7053 0.4409 0.6626 0.2116

Majority voting 0.7247 0.4396 0.6993 0.2164

PPV and sensitivity for both strand of chromosome 1 using individual TAR detection algorithms and the combination of their results.
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Table 4 Evaluationmetrics for S. aureus dataset

Evaluation metrics (S. aureus)

Tiling Signal Metric PMSW SCM ZCL ZCLSure

WT Forward PPV 0.6298 0.6498 0.6248 0.6407

WT Forward Sens 0.8657 0.8766 0.8715 0.8719

WT Reverse PPV 0.6867 0.6993 0.7050 0.6989

WT Reverse Sens 0.8506 0.8560 0.8388 0.8535

�sigB Forward PPV 0.6238 0.6388 0.6227 0.6308

�sigB Forward Sens 0.9054 0.9035 0.9027 0.9036

�sigB Reverse PPV 0.6664 0.6815 0.6765 0.6748

�sigB Reverse Sens 0.8697 0.8684 0.8667 0.8515

Mean number of detected TARs, probe-level PPV, probe-level sensitivity and computational time for PMSW, SCM and ZCL methods.

using tiling microarrays we need to compress the inten-
sity of all the probes included in each detected TAR into
one value. Standard methods for microarray normaliza-
tion can be applied, for example RMA (Robust Multichip
Average) algorithm in the case of Affymetrix microarrays
[34]. This processing can be performed using the packages
affxparser, affy and limma of Bioconductor for CDF (chip
definition file) generation, normalization and differential
expression analysis.
We introduced a simple analytical tool to be used inde-

pendently of the microarray platform to measure the gene
expression level based on the median value of the TAR
probe intensities. We calculated this value for each wild-
type and sigmaB mutant sample. We applied a statistical
analysis (t-test) to obtained the p-value associated with
the expression change taking into account the biological
variability of the samples. Considering well-defined TARs
in the S. aureus annotation, we found previously described
alterations in several genes [21]. In Figure 6, we show the
boxplots that represents these expression level changes.
We confirmed the down-regulation of sigB and other σB-
regulated genes, as the alkaline shock protein 23 (asp23)
[22,23] and lysine-specific permease (lysP) [21], although
the latter is not statistically significant (p > 0.05). We
also found genes up-regulated in the sigmaB mutant, as
the staphylococcal nuclease (nuc) [23,24], the zinc metal-
loprotease aureolysin (aur) [24,25] and the α-hemolysin
(hla) [24,26], the latter without a statistically significant
p-value.

Conclusions
Transcriptomics is a powerful technology for the
study of gene structures and RNA-based regulation in
any organism. Genome-wide transcriptome analysis of
prokaryotes can be carried out with any of these two tech-
niques: RNA-seq and genomic tiling arrays [35]. High-
resolution tiling arrays have been used, among others, to

study the transcriptomes of Caulobacter crescentus [36],
Escherichia coli and [37], Listeria monocytogenes [38].
In this paper, we propose a combined WT-based

method for the denoising and segmentation of tiling sig-
nals. For illustrative and evaluative purposes, we applied
the proposed analysis to the public S. cerevisiae. Our
denoising results show an increase in the SNR of the fil-
tered signal with respect to Huber’s method [15]. We
believe it is advisable to properly denoise the tiling sig-
nal before segmentation as the number of false positives
induced by signal variability is thus reduced. Even when
constructing a manual segmentation, it seems an advis-
able choice to mark the transitions on the denoised signal,
as its improved quality could help the expert to bet-
ter discriminate between low expression transcripts and
noise.
Our segmentation algorithm (ZCL) calculates all the

possible break points based on the zero-crossing lines
of the second derivative of the Gaussian wavelet. The
results show that our method achieves the best compro-
mise between accuracy (evaluated in terms of PPV and
sensitivity) and computation time. The R code provided
can be used to apply our algorithm as well as to combine
the resulting segmentation with other methods as PMSW
and SCM.
We also designed a new tiling microarray for the anal-

ysis of S. aureus genome, publicly available in the Array-
Express database (accession number A-AFFY-165). This
platform has been used for the comparison of the gene
expression pattern of the S. aureus 15981 wild type and its
isogenic sigB mutant. We selected this mutant because it
is one of the most study staphylococcal regulatory factors
and consequenctly it was a useful gold standard to com-
pare the accuracy of our algorithms. The relevance of the
segmentation results comes from the fact that a correct
analysis of the tiling signals could improve the matching
between the probes and the corresponding transcriptional
units. In particular, it could help to more precisely localize



Segura et al. BMC Bioinformatics 2012, 13:222 Page 11 of 16
http://www.biomedcentral.com/1471-2105/13/222

Figure 6 Differential expression analysis of S. aureus sigBmutant. Boxplots of median gene expression intensities. The expression of the
selected genes has been previously reported to change in response to sigB repression.
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the start and end transcription sites or even, include units
that are not annotated in the current genome definition.
Once the TARs are properly detected, differentially

expressed transcripts can be identified by well-known
methods (such as Linear Models for Microarray Data
(LIMMA) [39]) with a previous probe summarization
algorithm to generate the transcript annotation (using,
for example, Robust Microarray Analysis (RMA) [34]).
In practice, this means that differential gene expression
analysis could benefit from an enhanced analysis of tiling
signals such as the one proposed here. To confirm the
accuracy of the proposed method, we introduced a sim-
ple measure based on the median of TAR probe intensity.
Using this approach, known up-regulated (nuc, aur, hla)
and down-regulated (asp23, lysP) genes in sigB mutant
were verified.
In conclusion, we present a novel method for denois-

ing and segmentation of tiling microarray signals based
on wavelet multiresolution analysis that outperforms pre-
vious methods in terms of SNR, positive predictive value
and computation time. The R code that implements the
method is given as supplementary material and can be
easily adapted to a parallel computing schema. Also, we
have introduced the possibility of combining the results
of ZCL with those obtained with other two well-known
approaches (PMSW and SCM) for the segmentation of
tiling signals.

Methods
WT-based analysis
The CWT of a continuous signal s(x) is defined as [40]

CWT(a, b) = 1√
a

∫ +∞

−∞
s(x)ψ∗

(
b − x
a

)
dx (3)

where a ∈ R
+ − {0} is the scale, b ∈ R is the translation,

ψ(x) is the mother wavelet, ψ∗((b − x)/a) is the com-
plex conjugated, scaled and translated wavelet and CWT
is the 2D matrix of wavelet coefficients. The continuous
input signal s(x) interpolates the discrete input samples
s[ k] , k = 1, . . . , n where n is the length of the signal.
The CWT can be interpreted as the correlation of the

input signal with a position reversed version of ψ rescaled
by a factor a. For an 1D input signal, the result is a 2D
description of the signal with respect to the position b
and scale a and shifted by b. The scale a is inversely pro-
portional to the central frequency of the dilated wavelet
ψa = ψ(x/a), which is typically a bandpass function; b
represents the position location at which we analyze the
signal. The larger the scale a, the wider the analyzing func-
tion ψa, and hence the smaller the corresponding ana-
lyzed frequency. The output value is maximized when the
frequency of the signal matches that of the correspond-
ing dilated wavelet. The CWT computation for arbitrary

scales can be easily adapted to a parallel implementation
with a linear computational complexity [41].
Mallat’s fast wavelet algorithm [42] uses the multireso-

lution properties of the wavelet to compute the CWT at
dyadic scales a = 2i and time shifts b = 2ik, k ∈,Z, result-
ing in what is known as DWT. For additional information
about the wavelet transform and its properties the reader
is referred to [17].

Normalization of tiling microarray data
The analysis starts with background correction and quan-
tile normalization as describe by the RMA algorithm [34].
Next, we calculate the geometric mean of the RNA inten-
sities and the geometric mean of the DNA replicates to
get a signal score s[ k] at position k proportional to the
transcription level in the reference genome [16]

s[ k]=
∑n

j=1 log RNAj[ k]∑m
j=1 logDNAj[ k]

, (4)

where n is the number of RNA samples and m is the
number of DNA samples.

WT-based denoising
One of the most established methods of wavelet-based
denoising was proposed by Donoho and Johnstone [29]
and it is based on the thresholding of the DWT coeffi-
cients at scale a = 2. This method is composed of three
steps: (i) calculate the DWT of the tiling signal s[ k] at
scale a = 2; (ii) threshold the wavelet coefficients; (iii)
compute the inverse wavelet transform of the thresholded
coefficients. A universal threshold, T , is proposed [29] to
remove white noise which it is given by

T = σ
√
2 log(n) with σ = MAD/0.6745, (5)

where n is the length of s, σ is the noise level and MAD is
the estimated median absolute deviation in the first scale.
An important issue is the selection of a suitable wavelet
function. As the signal can be roughly approximated to a
zero-order polynomial, a boxcar-like function such as the
Haar wavelet gives a reasonable level of correlation (i.e., a
good pattern matching) with the target signal.
Another well established method of wavelet shrinkage

is SUREShrink [30]. This is based on Stein’s Unbiased
Estimator for Risk (SURE). A subband adaptive threshold
is applied. If the wavelet coefficients in the jth subband
are {xi : i = 1, . . . , n}, we consider a soft thresholding
procedure and apply Stein’s result. The quantity

SURE(T ; x) = n− 2 · �{i : |xi| ≤ T} +
n∑

i=1
(xi ∧T)2 (6)
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is an unbiased estimate of risk, where T is the threshold
and xi ∧ t = min(xi,T). This estimator can be used to
select a threshold:

TSURE = argmin0≤T≤√
2lognSURE(T ; x) (7)

For a large dimension n the law of large numbers will
ensure that TSURE will be almost the optimal threshold
[30].

WT-based segmentation
An important issue in signal processing is to define an
appropriate representation able to compress most of the

signal information into few representative features. Sharp
variations in amplitude (i.e., transitions and peaks) are
among the most meaningful features of a signal. For that
reason, many segmentation algorithms rely on their detec-
tion. Previous studies have detected the peaks in mass
spectrometry data using either the ridge lines [43] or the
zero-crossing lines [44] in a multi-scale decomposition of
the signal. Zero-crossing lines seems a more consistent
description as they belong to connected curves, are more
robust to noise and easier to detect that ridge lines [44].
It has been previously shown that the position of

multiscale sharp transitions can be obtained from the
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Figure 7 Zero-crossing lines of the second derivative Gaussian wavelet. An illustration of zero crossing lines detection. (a) Box signal
contaminated with additive Gaussian noise (standard deviation = 0.5). (b) Absolute values of the CWT coefficients. The second derivative of the
Gaussian was used as the mother wavelet. (c) All zero-crossing lines are shown. Note how the two longest lines correspond to the two sharp
transitions of the box signal.
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zero-crossings of the signal convolved with the Laplacian
of a Gaussian [45]. We define a wavelet at scale a as

ψ(x) = d2θa(x)
dx2

(8)

where θa is a Gaussian function dilated by a factor a. Since
the wavelet transform can be represented as

CWT(a, b) = (s ∗ ψa)(x)|x=b (9)

we derive that

CWT(a, b) =
[
s ∗

(
a2

d2θa
dx2

)]
(x)

∣∣
x=b

= a2
d2

dx2
(s ∗ θa)(x)|x=b

(10)

Hence, the wavelet transform of s(x) is proportional
to the second derivative of s(x) smoothed by θa(x). The
zero-crossings of CWT(a, b) correspond to the inflec-
tion points of s ∗ θa. The identification of transcript
start and end sites is achieved by computation of the
redundant CWT over a wide scale range followed by zero-
crossing line detection and length thresholding. The cho-
sen mother wavelet is the second derivative of a Gaussian.
The redundancy of the CWT yields enhanced information
on the position-scale localization of the features of interest
(in this case, the transitions) [46].
An illustrative example is given in Figure 7. We gener-

ated a simulated transcriptional unit with a rectangular
pulse signal of 721 samples with additive Gaussian noise
(mean 0 and standard deviation 0.5) (see Figure 7(a)). The
absolute values of the wavelet transform coefficients and
the zero crossing lines are shown in Figure 7(b) and (c),
respectively. Observe how the position of these lines cor-
responds to abrupt intensity transitions in the noisy signal
and the longest connected curves identify the start and
end points of the rectangular pulse. The R functions pro-
vided as supplementary material detect the zero-crossing
lines and identify them as transcription start sites (TSS)
and transcription end sites (TES) depending on the slope
sign.

Identification of transcriptional active regions
The candidates start and end sites detected as described
in the previous section, are filtered to remove incorrect
assignments. The purpose of this procedure is to filter
those transitions that do not correspond to variations in
signal intensity. For the generation of TARs we consid-
ered the signal transitions in which variation in intensity
is at least 10% of the dynamic range of the analyzed sig-
nal. We also eliminate from the list of detected TAR all
the start and end points that are not correctly paired off.
We use the sign of the zero-crossing lines to separate
start and end points and we match each start site with its
corresponding end site. Finally, we define the minimum

normalized intensity threshold required for the segments
to be considered as transcriptional active regions. This
value is calculated as the median of the signal intensity
distribution, but this threshold can also be user-defined.
In order to improve the definition of TARs, we clus-
ter together consecutive segments for which the mean
normalized intensity value is over the threshold.

Additional files

Additional file 1: R code: Segmentation and visualization functions.
Implemented functions in R language to perform PMSW and SCM
segmentation and the proposed wavelet-based method for denoising and
segmentation. In addition, functions are provided for proper visualization
of data, integration of analysis results and evaluation of the obtained
transcriptional maps.

Additional file 2: R code: Segmentation analysis of S. cerevisiae. R
script for segmentation of the S. cerevisiae dataset and the generation of
the figures included in the manuscript.

Additional file 3: R code: Segmentation analysis of S. aureus). R script
for the segmentation of the S. aureus dataset and the generation of the
figures included in the manuscript.

Additional file 4: Figure S1. Visualization of S. aureus tiling microarray
signal along 200 kb of NCTC8325 genome. Each dot corresponds to a
probe of the forward strand (top) and reverse strand (bottom) for
NCTC8325 wild-type normalized signal. Superimposed pulse signal
represents the segmentation obtained using PMSWmethod. The
parameters of the analysis are described in the Results and discussion
section of the manuscript.

Additional file 5: Figure S2. Visualization of S. aureus tiling microarray
signal along 200 kb of NCTC8325 genome. Each dot corresponds to a probe
of the forward strand (top) and reverse strand (bottom) for sigmaB mutant
normalized signal. Superimposed pulse signal represents the segmentation
obtained using PMSWmethod. The parameters of the analysis are
described in the Results and discussion section of the manuscript.

Additional file 6: Figure S3. Visualization of S. aureus tiling microarray
signal along 200 kb of NCTC8325 genome. Each dot corresponds to a probe
of the forward strand (top) and reverse strand (bottom) for NCTC8325
wild-type normalized signal. Superimposed pulse signal represents the
segmentation obtained using SCMmethod. The parameters of the analysis
are described in the Results and discussion section of the manuscript.

Additional file 7: Figure S4. Visualization of S. aureus tiling microarray
signal along 200 kb of NCTC8325 genome. Each dot corresponds to a
probe of the forward strand (top) and reverse strand (bottom) for sigmaB
mutant normalized signal. Superimposed pulse signal represents the
segmentation obtained using SCMmethod. The parameters of the analysis
are described in the Results and discussion section of the manuscript.
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