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Abstract

Background: Employing methods to assess the quality of modeled protein structures is now standard practice in
bioinformatics. In a broad sense, the techniques can be divided into methods relying on consensus prediction on the
one hand, and single-modelmethods on the other. Consensus methods frequently perform very well when there is a
clear consensus, but this is not always the case. In particular, they frequently fail in selecting the best possible model in
the hard cases (lacking consensus) or in the easy cases where models are very similar. In contrast, single-model
methods do not suffer from these drawbacks and could potentially be applied on any protein of interest to assess
quality or as a scoring function for sampling-based refinement.

Results: Here, we present a new single-model method, ProQ2, based on ideas from its predecessor, ProQ. ProQ2 is a
model quality assessment algorithm that uses support vector machines to predict local as well as global quality of
protein models. Improved performance is obtained by combining previously used features with updated structural
and predicted features. The most important contribution can be attributed to the use of profile weighting of the
residue specific features and the use features averaged over the whole model even though the prediction is still local.

Conclusions: ProQ2 is significantly better than its predecessors at detecting high quality models, improving the sum
of Z-scores for the selected first-ranked models by 20% and 32% compared to the second-best single-model method
in CASP8 and CASP9, respectively. The absolute quality assessment of the models at both local and global level is also
improved. The Pearson’s correlation between the correct and local predicted score is improved from 0.59 to 0.70 on
CASP8 and from 0.62 to 0.68 on CASP9; for global score to the correct GDT TS from 0.75 to 0.80 and from 0.77 to 0.80
again compared to the second-best single methods in CASP8 and CASP9, respectively. ProQ2 is available at
http://proq2.wallnerlab.org.

Background
Modeling of protein structure is a central challenge in
structural bioinformatics, and holds the promise not only
to identify classes of structure, but also to provide detailed
information about the specific structure and biological
function of molecules. This is critically important to guide
and understand experimental studies: It enables predic-
tion of binding, simulation, and design for a huge set of
proteins whose structures have not yet been determined
experimentally (or cannot be obtained), and it is a central
part of contemporary drug development.
The accuracy of protein structure prediction has

increased tremendously over the last decade, and today it
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is frequently possible to build models with 2-3Å resolu-
tion even when there are only distantly related templates
available. However, as protein structure prediction has
matured and become common in applications, the biggest
challenge is typically not the overall average accuracy
of a prediction method, but rather how accurate a spe-
cific model of a specific protein is. –Is it worth spending
months of additional human work, modeling and simula-
tion time on this model? Ranking or scoring of models has
long been used to select the best predictions in methods,
but this challenge means there is also a direct need for
absolute quality prediction, e.g. the probability of a cer-
tain region of the protein being within 3Å of a correct
structure.
One of the most common prediction approaches in use

today is to produce many alternative models, either from
different alignments and templates [1-4] or by sampling

© 2012 Ray et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://proq2.wallnerlab.org


Ray et al. BMC Bioinformatics 2012, 13:224 Page 2 of 12
http://www.biomedcentral.com/1471-2105/13/224

different regions of the conformational space [5]. Given
this set of models, some kind of scoring function is then
used to rank the different models based on their structural
properties. Ideally, this scoring function should correlate
perfectly with the distance from the native structure. In
practice, while they have improved, ranking methods are
still not able to consistently place the best models at the
top. In fact, it is often the case that models of higher or
evenmuch higher quality than the one selected are already
available in the set of predictions, but simply missed [6,7].
In other words, many prediction methods are able to gen-
erate quite goodmodels, but we are not yet able to identify
them as such! In principle, there are three classes of func-
tions to score protein models. The first of them is single-
model methods that only use information from the actual
model, such as evolutionary information [8-10], residue
environment compatibility [11], statistical potentials from
physics [12] or knowledge-based ones [13,14], or combi-
nations of different structural features [15-19]. The second
class is consensus methods that primarily use consensus
of multiple models [1] or template alignments [20] for a
given sequence to pick the most probable model. Finally,
there are also hybrid methods that combine the single-
model and consensus approaches to achieve improved
performance [21-24]. Of the above methods, it is only
the single-model methods that can be used for conforma-
tional sampling and as a guide for refinement since they
are strict functions of the atomic positions in the model.
On the other hand, in terms of accuracy the consensus and
hybrid methods outperform the single methods, in partic-
ular in benchmarks such as CASP [25] with access tomany
alternative models for all different targets. The success of
the consensus methods in CASP has resulted in an almost
complete lack of development of new true single-model
methods. As a consequence only 5 out of 22 methods sub-
mitting predictions to both the global and local categories
in the model quality assessment part of the latest CASP
were actual true single-model methods [25]. By true, we
mean methods that can be used for conformational sam-
pling and that do not use any template information in the
scoring of models.
Scoring of models can be performed at different levels,

either locally (i.e., per residue) or globally to reflect the
overall properties of a model. Traditionally, the focus of
most scoring functions has been to discriminate between
globally incorrect and approximately correct models,
which works reasonably well e.g. for picking the model
that provides the best average structure for a complete
protein (which is highly relevant e.g. for CASP). In con-
trast, only a handful of methods focus on predicting the
individual correctness of different parts of a proteinmodel
[9,11,23,26], but this is gradually changing with the intro-
duction of a separate category for local quality assessment
in CASP. In fact, we believe that local quality prediction

might even be more useful than global prediction. First,
it is relatively easy to produce a global score from the
local, making global scoring a special case of the local one.
Second, a local score can be used as a guide for further
local improvement and refinement of a model. Third, even
without refinement local quality estimates are useful for
biologist as it provides confidence measures for different
parts of protein models.
In this study, we present the development of the next

generation of the ProQ quality prediction algorithm, and
how we have been able to improve local quality predic-
tion quite significantly through better use of evolution-
ary information and combination of locally and globally
predicted structural features. ProQ was one of the first
methods that utilized protein models, in contrast to native
structures, to derive and combine different types of fea-
tures that better recognize correct models [15]. This
was later extended to local prediction in ProQres [9]
and to membrane proteins [27]. We have reworked the
method from scratch by using a support vector machine
(SVM) for prediction, and it has been trained on a
large set of structural models from CASP7. In addi-
tion to evolutionary data, there are several new model
features used to improve performance significantly, e.g.
predicted surface area and a much-improved descrip-
tion of predicted secondary structure. We also show
that including features averaged over the entire model,
e.g. overall agreement with secondary structure and pre-
dicted surfaces, improves local prediction performance
too.

Results and discussion
The aim of this study was to develop an improved ver-
sion of ProQ that predict local as well as global structural
model correctness. The main idea is to calculate scalar
features from each protein model based on properties that
can be derived from its sequence (e.g. conservation, pre-
dicted secondary structure, and exposure) or 3D coordi-
nates (e.g. atom-atom contacts, residue–residue contacts,
and secondary structure) and use these features to pre-
dict model correctness (see Methods for a description
of the features new to this study). To achieve a local-
ized prediction, the environment around each residue is
described by calculating the features for a sliding win-
dow centered around the residue of interest. For features
involving spatial contacts, residues or atoms outside the
window that are in spatial proximity of those in the win-
dow are included as well. After the local prediction is
performed, global prediction is achieved by summing the
local predictions and normalize by the target sequence
length to enable comparisons between proteins. Thus,
the global score is a number in the range [0,1]. The
local prediction is the local S-score, as defined in the
Methods section.
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Development of ProQ2
From the earlier studies, we expect optimal performance
by combining different types of input features [15,17,18].
To get an idea of which features contribute most to
the performance, support vector machines (SVMs) were
trained using five-fold cross–validation on individual
input features as well as in combination of different feature
types. After trying different SVM kernels (including lin-
ear, radial basis function and polynomial ones), we chose
the linear kernel function for its performance, speed and
simplicity.
The Pearson’s correlation coefficient for SVMs trained

with different input features is shown in Table 1. First,
we retrained ProQ on CASP7. The original version of
ProQ used neural networks and as expected the perfor-
mance did not change much merely with the change of
machine learning algorithm. The difference is well within
what would be expected by chance. This retrained version
of ProQ was used as the baseline predictor against which
new single features were tested. In this way, any improve-
ment over ProQ will easily be identified as significant
improvements over the baseline.
The largest performance increase in local prediction

accuracy is actually obtained by including global features
describing the agreement with predicted and actual sec-
ondary structure, and predicted and actual residue surface
area calculated as an average over the whole model. Even
though these features are not providing any localized
information, they increase the correlation between local
predicted and true quality significantly over the baseline

Table 1 Pearson’s correlation coefficient for different
input features

Training data Pearson’s correlation

ProQ 0.54 (±0.006)

Retrained ProQ (Base) 0.55 (±0.006)

Atom 0.43 (±0.006)

Residue 0.27 (±0.008)

Surface 0.47 (±0.006)

Residue + Profile Weighting 0.32 (±0.007)

Surface + Profile Weighting 0.51 (±0.006)

Base + Global Surface Area Prediction 0.65 (±0.005)

Base + Global Secondary Structure Pred. 0.65 (±0.005)

Base + Profile Weighting 0.62 (±0.005)

Base + Local Surface Area Prediction 0.58 (±0.005)

Base + Local Secondary Structure Pred. 0.58 (±0.005)

Base + Information per position (Conservation) 0.56 (±0.006)

All Combined (ProQ2) 0.71 (±0.004)

Overall Pearson’s correlation coefficient, for different input features,
benchmarked using cross-validation on the CASP7 data set. (Errors correspond
to 99.9% confidence intervals).

(+0.10 to 0.65). The performance increase is about the
same for predicted secondary structure and predicted sur-
face area. The use of global features, i.e. features calculated
over the whole model to predict local quality, is not as
strange as it first might seem. The global features reveal
whether the model is overall accurate, an obvious prereq-
uisite for the local quality to be accurate. For instance,
from the local perspective a model might appear correct,
i.e. favorable interactions and good local agreement with
secondary structure prediction, but a worse global agree-
ment could affect the the accuracy in the first region too.
Both predicted secondary structure and predicted surface
area are also among the local features that result in a slight
performance increase (+0.03 to 0.58).
The second-largest performance increase is obtained by

profile weighting (+0.07 to 0.62). This is actually not a new
feature, but rather a re-weighting of the residue-residue
contact and surface area features used in the original ver-
sion of ProQ, which is here based on multiple sequence
alignment of homologous sequences. This re-weighting
improves the performance of residue-residue contacts and
surface area based predictors to equal degree (Table 1).
Finally, a small increase is also observed by adding the

information per position from the PSSM, a measure of
local sequence conservation. This is despite the fact that
this type of information in principle should have been cap-
tured by the feature describing correspondence between
calculated surface exposure and the one predicted from
sequence conservation.

Combining ProQ2 with Pcons
It has been shown many times, both in CASP [25,28,29]
and elsewhere [1,2,21], that consensus methods are supe-
rior MQAPs compared to stand-alone or single methods
not using consensus or template information, at least in
terms of correlation. However, a major drawback with
consensus methods is that they perform optimally in the
fold recognition regime, but tend to do worse in free mod-
eling where consensus is lacking or for easy comparative
modeling targets, where consensus is all there is. Even
though the correlation can be quite high, they often fail in
selecting the best possible model.
Here, we combine the structural evaluation made by

ProQ2 with consensus information from Pcons to over-
come some of the problems with model selection for
consensus based methods. The ProQ2 and Pcons scores
are combined using a linear sum with one free parameter:

SProQ2+Pcons = (1 − k)SProQ2 + k · SPcons k ∈[ 0, 1] ,
where k was optimized to k = 0.8 to maximize GDT1
(Figure 1). Other ways to combine the two scores were
tried but this linear combination showed the best perfor-
mance. Since both the ProQ2 and the Pcons score reflect
model correctness, a linear combination makes sense. In
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Figure 1 Optimization of linear combination of ProQ2 and Pcons to improve model selection.

the case of free-modeling targets the consensus score will
be low and most of the selection will be made on the
ProQ2 score. Analogously, in the case of easy comparative
modeling targets the consensus score will be high but it
will be high for most of the models, and the selection will
again essentially be done by the ProQ2 score.
Overall for CASP7 targets, the combination selects

models that are of 1.4% and 1.8% higher quality com-
pared to ProQ2 and Pcons respectively, while maintaining
a good correlation. The bootstrap support values calcu-
lated according to [30], with repeated random selection
with return, are higher than 0.95, which demonstrates that

GDT1 for the combination is higher in more than 95% of
the cases.

Benchmark of local model correctness
For the benchmarking of model correctness, both at the
local and global level, a set of models from CASP8 and
CASP9 was used. Since ProQ2 was trained on CASP7,
this set is completely independent. To be able to com-
pare the performance, predictions from top-performing
MQAPs were also included in the benchmark (Table 2).
Unfortunately, not all of these methods had predictions
for all models and all residues, so we filtered the number of

Table 2 Description of themethods included in the benchmark

Method Description

ProQ2 (S) Support Vector Machine trained to predict S-score

ProQ∗ (S) Neural network trained on structural features to predict LGscore [15] and S-score [9].

QMEAN (S) Potential of mean force, top-ranked single MQAP in CASP8 and CASP9 [18]

MetaMQAP (S) Neural network trained on the output from primary MQAPs [16]

Distill NNPIF (S) Neural network trained on CA-CA interactions [25]

ConQuass (S) Correlates conservation and solvent accessibility, only global [10]

MULTICOM-CMFR (S) Top-ranked single MQAP in CASP8, only global [17].

QMEANclust (C) QMEAN-weighted GDT TS averaging, top-ranked consensus method MQAP in CASP8 and CASP9 [23].

ProQ2+Pcons (C) Linear combination of ProQ2 and Pcons scores, 0.2ProQ2+0.8Pcons

Description of the single-model methods and the reference consensus method included in the benchmark. The single methods (S) do not use any template or
consensus information. Consensus and hybrid methods (C) are free to use any type of information. ∗ This method was originally called ProQres, but for clarity it will be
referred to as ProQ both for global and local quality prediction. (S) single-model method (C) consensus method.
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Table 3 Local model quality benchmark on the
CASP8/CASP9 data sets

Method R 〈Rtarget〉 〈Rmodel〉
ProQ2 0.70/0.68 0.58/0.54 0.54/0.47

MetaMQAP –/0.62 –/0.48 –/0.42

QMEAN 0.59/0.59 0.51/0.49 0.49/0.44

ProQ 0.52/0.49 0.46/0.42 0.45/0.40

QMEANclust 0.83/0.77 0.73/0.70 0.68/0.61

Benchmark of local model quality on the CASP8/CASP9 data sets measured by
correlations. R is overall Pearson’s correlation, 〈Rtarget〉 is the average correlation
per target, 〈Rmodel〉 is the average correlation per model. First value correspond
to CASP8, second to CASP9. The standard error is <0.002.

models to a set for which there were predictions from all
methods. Even though this excluded many models, there
were still more than 8.2 million residues from over 42,000
models remaining.
We focused the benchmark on different properties that

cover various aspects of local model correctness. The
most obvious is the correspondence between predicted
and true local quality score, which was measured by cor-
relation at different levels (Table 3). The performance of
the single-model methods is similar on both CASP8 and
CASP9 data sets. Among all the methods, ProQ2 corre-
lates best with the correct local S-score, achieving correla-
tions of 0.70 and 0.68 for CASP8 and CASP9, respectively.
The improvement over the second-best MQAP in CASP9
(MetaMQAP, R=0.62) is significant with P-value < 10−127

using the Fisher R to z transform (Table 4).
To get an idea of how good the top-ranking residues

from the different methods are, we also calculated the
average distance deviations from the true value for dif-
ferent fraction of top-ranking residues (Figure 2). This
measure should ideally be as low as possible, but will grad-
ually increase to the average deviation over the whole set.
On CASP8 (Figure 2A), ProQ2 has a much lower average
distance than ProQ and lower compared to QMEAN for

Table 4 Statistical significance test for local quality
prediction

Method 1 2 3 4 5

ProQ2 1 -127.47 -142.98 -170.37 -152.64

MetaMQAP 2 n/a -95.06 -152.15 -170.69

QMEAN 3 -146.99 n/a -140.19 -176.87

ProQ 4 -164.75 n/a -121.07 -191.26

QMEANclust 5 -168.81 n/a -188.12 -195.66

Pairwise statistical significance test on the correlation coefficients for local
quality prediction from CASP8 (below diagonal) and CASP9 (above diagonal).
The values correspond to the logarithm of the P-value for methods being
statistically indistinguishable, obtained by comparing the distribution of Fisher’s
Z (Eq: 1) for the correlation coefficients, R, from Table 3.

the same level of top ranking residues. This is also main-
tained on the CASP9 data set, even though the distance
to QMEAN is smaller and the new single-model method
MetaMQAP performs between ProQ2 and QMEAN.
Finally, the ability to recognize correct and incorrect

residues was analyzed using receiver operating charac-
teristic (ROC) plots with cutoffs of <3Å and >5Å devi-
ations for correct and incorrect residues, respectively
(Figure 3). For clarity, we have excluded our local con-
sensus servers, Pcons and the ProQ2+Pcons combination,
in all figures and only include the top-ranked consen-
sus method from CASP8, QMEANclust, as comparison.
All consensus methods perform similarly at least in com-
parison to single-model methods (data not shown). The
relative ranking of the methods based on the ability to
recognize correct and incorrect residues (Figure 3) is the
same as using the average distance deviation (Figure 2).
However, ProQ2 seem to be relatively better at finding
incorrect residues.
In all of the above tests the performance of the reference

consensus method, QMEANclust, is of course better than
any of the single-model methods, but the performance gap
is now significantly smaller.

Benchmark of global model correctness
In the benchmark of global model correctness, the ability
to predict global quality as well as the ability to selectmod-
els was assessed. The first ability is important for assessing
how reliable the predicted quality estimates are. This is
not necessarily the same as the model selection ability,
which only is about selecting the best possible model. The
result from the global benchmark is shown in Table 5.
The quality predicted by ProQ2 has a correlation coeffi-
cient of 0.80 on both CASP8 and CASP9 data sets. This is
significantly better (P< 10−27, and P< 10−14, respectively)
than the correlation for single-model method with sec-
ond highest correlation, QMEAN (R=0.75/0.77) (Table 6).
In fact all correlation differences except QMEAN and
MetaMQAP on CASP9 are statistical significant at the
0.001 significance level.
Themodel selection asmeasured by the sum of GDT TS

for the first ranked model is also significantly improved,
from 74.0/44.7 for the best single-model methods in
CASP8 (MULTICOM-CMFR) and CASP9 (QMEAN) to
75.2/47.0 for ProQ2 on the two data sets. To put the num-
bers in perspective, the performance is now closer to the
selection of the reference consensus method QMEAN-
clust (75.8/48.6) than to the selection of the previous
best performing single-model methods. In addition, when
ProQ2 is combined with our consensus method Pcons,
the model selection is improved further to 76.9/48.7. This
performance is similar to the best performing consensus
methods and clearly better than Pcons alone (75.9/48.3),
which demonstrates the added value of ProQ2.
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Table 5 Benchmark of global model quality

Single-model methods R Rtarget
∑

GDT1
∑

ZGDT1

ProQ2 0.80/0.80 0.72/0.69 75.2/47.0 100.4/68.6

QMEAN 0.75/0.77 0.71/0.66 73.6/44.7 81.1/52.1

MetaMQAP –/0.76 –/0.59 –/43.1 –/40.3

ConQuass –/0.73 –/0.66 –/40.4 –/20.4

Distill NNPIF –/0.71 –/0.64 –/43.9 –/43.5

MULTICOM-CMFR 0.71/– 0.68/– 74.0/– 83.7/–

ProQ 0.67/0.68 0.65/0.54 71.5/42.3 59.3/40.0

Consensusmethods

QMEANclust 0.89/0.96 0.94/0.91 75.8/48.6 104.1/81.41

MULTICOM-CLUSTER 0.96 0.91 48.7 82.3

Mufold 0.96 0.91 48.7 82.5

ProQ2+Pcons 0.89/0.95 0.94/0.89 76.9/48.7 118.5/81.6

Pcons 0.89/0.95 0.95/0.91 75.9/48.3 101.6/76.8

PconsM 0.95 0.90 47.9 70.2

United3D 0.95 0.92 48.8 81.2

MUFOLD-QA 0.95 0.92 48.3 79.5

ModFOLDclust2 0.95 0.90 48.4 80.6

MetaMQAPclust 0.95 0.91 48.4 78.2

IntFOLD-QA 0.95 0.90 48.4 79.9

MULTICOM-REFINE 0.94 0.88 46.2 66.6

MULTICOM 0.94 0.88 48.7 84.7

MQAPmulti 0.94 0.91 48.2 75.4

ModFOLDclustQ 0.94 0.87 48.6 82.3

MQAPsingle 0.92 0.81 45.3 45.2

MULTICOM-CONSTRUCT 0.90 0.82 46.6 63.3

gws 0.90 0.81 45.3 44.2

Splicer 0.89 0.85 47.6 75.4

LEE 0.89 0.80 45.1 42.9

Splicer QA 0.88 0.84 47.8 77.4

Modcheck-J2 0.87 0.77 41.7 26.2

MUFOLD-WQA 0.86 0.91 49.0 83.9

SMEG-CCP 0.83 0.76 47.9 74.9

QMEANdist 0.80 0.84 47.8 77.1

QMEANfamily 0.75 0.68 44.8 50.3

GRIER-CONSENSUS 0.68 0.86 48.3 82.0

Baltymus 0.58 0.53 41.8 32.8

Best Possible 1.00/1.00 1.00/1.00 82.3/52.2 182.2/127.9

Benchmark of global model quality on CASP8 and CASP9 data sets. R is overall correlation, Rtarget the average correlation per target,
∑

GDT1 is the the sum of the
first-ranked models for each target and

∑
ZGDT1 is the summed Z-score for the first-ranked models for each target. The first value corresponds to results on CASP8, the

second to CASP9, and cells with only one value are CASP9 only.

Although it is commonly used as a measure of model
selection, the sum of GDT TS for the first ranked model
gives higher emphasis to easier targets, since these will
have higher GDT TS. To analyze the target selection in
more detail, we calculated Z-scores by subtracting the

mean quality from the quality of the selected model
and dividing by the standard deviation for each target.
These Z-scores are not biased by target difficulty, since
the scores are normalized by the quality distribution for
each target. Thereby it also directly measures the added
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Table 6 Statistical significance test for global quality prediction

Method 1 2 3 4 5 6 7 8

ProQ2 1 -14.48 -21.73 -56.80 -39.07 -47.35 n/a -103.07

QMEAN 2 -29.86 −1.91 -43.51 -18.50 -30.30 n/a -106.70

MetaMQAP 3 n/a n/a -38.46 -11.29 -23.67 n/a -107.76

ProQ 4 -61.20 -39.03 n/a -20.91 -8.69 n/a -114.42

ConQuass 5 n/a n/a n/a n/a -4.79 n/a -110.58

Distill NNPIF 6 n/a n/a n/a n/a n/a n/a -112.22

MULTICOM-CMFR 7 -49.09 -17.94 n/a -14.99 n/a n/a n/a

QMEANclust 8 -65.82 -79.03 n/a -91.56 n/a n/a -86.12

Pairwise statistical significance test on the correlation coefficients for global quality prediction from CASP8 (below diagonal) and CASP9 (above diagonal). The values
correspond to the logarithm of the P-value for methods being statistically indistinguishable, obtained by comparing the distribution of Fisher’s Z (Eq: 1) for the
correlation coefficients, R, from Table 5. Values in italics are not distinguishable at the 10−3 significance level.

value of the model quality assessment program over a
random pick, which would have a Z-score of zero. The
distributions of Z-scores for the different methods are
shown in Figure 4.
ProQ2 has lower number of predictions below average

(Z<0) and larger number of predictions with Z-score
greater than 2 compared to the other single-model
methods. Only for a few targets (3/203 on CASP8 and
CASP9) does the model selected by ProQ2 have a Z<-0.5,
while both QMEAN and ProQ have more than 15 models
with Z-scores in that range. This is in sharp contrast to
the consensus methods that never select models with
Z<-0.5 and on CASP9 none of the consensus methods
select models with Z<0, demonstrating that consensus
methods seldom select models worse than average. This is
one of the clear advantages over non-consensus methods.
However, at the other end of the spectrum, the ability
of the consensus method to select models with high Z-
score is quite far from optimal, as demonstrated by the

Z-score distribution for Pcons and QMEANclust on the
CASP8 data set in Figure 4A. In fact, all single-models
methods select more models with Z>2 than either Pcons
or QMEANclust, indicating that combining the results
from single methods with consensus could potentially
improve the results at the high end. This is also exactly
what is observed for ProQ2+Pcons, were the number of
models with Z>2 increases significantly from 8 for Pcons
to 15 for ProQ2+Pcons on the combined CASP8/CASP9
set (bootstrap value:>0.92).

Conclusions
The aim of this study was to improve both local and global
single-model quality assessment. This was done by train-
ing support vector machines to predict the local quality
measure, S-score, with a combination of evolutionary and
multiple sequence alignment information combined with
other structural features on data from CASP7. The final
version, ProQ2, was compared to the top-performing
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single-model quality assessment groups in CASP9 as well
as to its predecessor, ProQ, on the complete CASP9 data
set.
We show that ProQ2 is superior to ProQ in all aspects.

The correlation between predicted and true quality is
improved from 0.52/0.49 (CASP8/CASP9) to 0.70/0.68
on the local level and from 0.67/0.68 to 0.80/0.80 on
the global level. In addition, the selection of high-
quality models is also dramatically improved. ProQ2
is significantly better than the top-performing single-
model quality assessment groups in both CASP8 and
CASP9. The improvement in correlation is larger on the
local level, but still significant on the global level. The
largest improvement is however in the selection of high-
quality models with a sum of Z-score improvement from
83.7/52.1 on CASP8/CASP9 for the second-ranked single
model to 100.4/68.6 for ProQ2. Finally, we also show that
ProQ2 combined with the consensus predictor Pcons can
improve the selection even further.

Methods
Test and training data
The performance from any machine learning approach is
ultimately limited by the quality of the underlying data
used for training and testing. For the development of
ProQ2 we used data from CASP7 [31] for training and
data from CASP8 [6] and CASP9 [7] for testing and
benchmarking. Each residue in each protein model gener-
ates one input item, so using the complete CASP7 data set
would have resulted in far toomuch training data. Instead,
we selected ten representative models from each target
randomly, resulting a final set of 163,934 residues from
874 models of 102 target structures.
The testing and benchmarking data from CASP8 and

CASP9 included all models and the top-ranked model
quality assessment programs from the MQAP category
in CASP. ProQ2 participated officially in CASP9 so those
predictions were truly on unseen data. To make the
present comparison fair, we had to filter out all mod-
els that did not have a prediction for all targets included
in the benchmark. This resulted in a final benchmarking
set consisting of 3,620,156 residues from 18,693 models
from 122 targets for CASP8 and 4,676,538 residues from
23,635 models from 81 targets and 21,589 models from
81 targets for the local and global quality benchmark for
CASP9, respectively. The reason for the different num-
ber of models is that we wanted to include as many global
single-model methods as possible (there were fewermeth-
ods making local predictions), thereby making the union
of a common set smaller than for the local.

SVM training
SVM training was performed using five-fold cross-
validation on the CASP7 data set. The SVMlight [32] V6.01

implementation of support vector machine regression was
used with a linear kernel function (other kernels were
tried but showed no increased performance). The trade-
off between training error and margin was optimized
(the -c parameter) and the epsilon for the width-of-loss
function in regression tube was optimized for all cross-
validation sets at the same time.

Training parameters
Support vector machines were trained using structural
features describing the local environment around each
residue in the protein models combined with other fea-
tures predicted from sequence such as secondary struc-
ture, surface exposure and conservation.
Combinations of the following features were used:

atom–atom and residue–residue contacts, surface acces-
sibility, predicted secondary structure, predicted surface
exposure, and evolutionary information calculated over
a sequence window. Many of the features, in particu-
lar the structural ones, are similar to those used in our
earlier studies [9,15]. For consistency we include a short
description of them here.

Atom–atom contacts
This features describes the distribution of atom–atom
contacts in the protein model. Atoms were grouped into
13 different atom types based on chemical properties,
see Wallner et al. (2003). Two atoms were defined to
be in contact if the distance between them was within
4Å. The 4Å cutoff was chosen by trying different cut-
offs in the range 3Å–7Å. Contacts between atoms from
positions adjacent in sequence were ignored. Finally, the
number of contacts from each group was normalized by
dividing with the total number of contacts within the
window.

Residue–residue contacts
This feature describes the distribution of residue–residue
contacts. Residues were grouped in six different groups:
(1) Arg, Lys; (2) Asp, Glu; (3) His, Phe, Trp, Tyr; (4)
Asn, Gln, Ser, Thr; (5) Ala, Ile, Leu, Met, Val, Cys;
(6) Gly, Pro [15,33]. Two residues were defined to
be in contact if the distance between the Cα–atoms
or any of the atoms belonging to the side chain of
the two residues were within 6Å and if the residues
were more than five residues apart in sequence. Many
different cutoffs in the range 3Å–12Å were tested
and 6Å showed the best performance. Finally, the
number of contacts for each residue group was nor-
malized with the total number of contacts within the
window.

Solvent accessibility surfaces
This features describes the exposure distribution for the
same residue grouping as used for the residue–residue
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contacts. The surface accessibility was calculated using
NACCESS [34]. The relative exposure of the side chains
for each residue group was used. The exposure data was
grouped into one of the four groups <25%, 25%–50%,
50%–75% and >75% exposed and finally normalized by
the number of residues within the window.

Secondary structure
This set of features describes the secondary structure in
the model and how it corresponds to the secondary struc-
ture predicted from the sequence. STRIDE [35] was used
to assign one of three secondary structure classes (helix,
sheet, or coil) to each residue in the protein models based
on coordinates. PSIPRED [36] was used to predict the
probability for the same secondary structure classes. From
these, three sets of features were calculated:

1. The predicted probability from PSIPRED for the
secondary structure of the central residue in the
sequence window.

2. Correspondence between predicted and actual
secondary structure over a 21-residue window.

3. Secondary structure assigned by STRIDE, binary
encoded into three classes over a 5-residue window.

We also tried secondary structure content for the three
classes over a sequence window but that did not show any
improved prediction performance.

Surface area
This set of features describes the surface area in the
model and how it corresponds to predicted surface area.
The accessible residue surface area was calculated with
NACCESS [34] and residues exposing <25% of the side-
chain were classified as buried while the others were
classified as exposed. The residue burial and exposure was
also predicted by ACCpro [37]. From these classifications
and predictions we calculated:

1. Correspondence between predicted and actual
burial/exposure class over a 21-residue window.

2. Actual surface area over a 13-residue window. This
feature complements the surface features that
describe the exposure pattern for different residues
used earlier.

Evolutionary information
This describes the evolutionary history of a given
sequence window. Sequence profiles were derived using
three iterations of PSI-BLAST [38] against UniRef90,
release 2010 3 [39] with a 10−3 E–value cutoff for inclu-
sion (-h) and all other parameters at default settings.
The sequence profile output from PSI-BLAST contains
both the position-specific scoring matrix (PSSM) and
the ’information per position’ (IPP), a position-specific

measure of conservation calculated from the PSSM. The
PSSM was used for weighting of the structural features
(see “Profile weighting” section below). The IPP was used
directly as an input feature with an optimized window size
of 3.

Profile weighting
This is actually not an individual feature but rather a
re-weighting of all residue-based features, i.e the residue-
residue contacts and residue-specific exposure patterns,
according to the occurrence in the sequence profile. For
instance, if a position in the sequence profile contains
40% alanine and 60% serine, contacts to this position
are weighted by 40% as contacts alanine and by 60% as
contacts to serine. This effectively increases the amount
of training examples and should also make the final pre-
dictor less sensitive to small sequence changes, since data
is extracted from multiple sequence alignments among
homologous sequences.

Global features
All the features described above are localized to a
short window in sequence, to enable a localized qual-
ity prediction. However, it turned out that including
the following global features, i.e features calculated
over the whole model instead of a window, improved
performance significantly even for the local quality
prediction:

1. Global correspondence between predicted and actual
secondary structure.

2. Global correspondence between predicted and actual
residue burial/exposure.

Target function
In this study, we have used S-score as the correctnessmea-
sure for each residue in a protein model. This score was
originally developed by Levitt et al. (1998) and is defined
as:

Si = 1
1 + (di/d0)2

where di is the distance for residue i between the native
structure and the model and d0 is a distance threshold.
This score ranges from 1 for a perfect prediction (di = 0)
to 0 when di goes to infinity. The distance threshold
defines the distance at which the score should be 0.5 and
it controls how fast the function should go to zero. Here,
the distance threshold was set to 3Å and Si was calcu-
lated from the superposition that gave the highest sum of
Si over the whole model, in the same way as in MaxSub
[40]. In addition, for benchmarking purposes we have
also used GDT TS [41], which is the CASP-standard. It is
sometimes more intuitive for non-experts to express the
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S-score as a distance deviation, solving the above equation
for di:

di = d0
√
1/Si − 1 = {d0 = 3Å, Si ∈ (0, 1] }

= 3
√
1/Si − 1 Å

Performance measures
It is important to employ performance measures that
reflect predictive capabilities. Ideally, a performance mea-
sure should be a single score that can be used to rank
different predictions. Throughout this study, Pearson’s
correlation, R, is used to rank both local and global
predictions. To compare two correlations, Fisher’s R to z
transformation is used:

z = 0.5 [ln(1 + R) − ln(1 − R)] , (1)

where R is Pearson’s correlation and z a normally dis-
tributed variable with variance s2 = 1/(n − 3), with n
being the number of observations. Two correlation coeffi-
cients R1 and R2 can be converted into the corresponding
z1 and z2. The P-value associated with |z1 − z2| calculated
from the normal distribution is an estimate of the likeli-
hood that the difference between R1 and R2 is significant.
Fisher’s transformation is used both for P-value estimates,
as well as for constructing confidence intervals.
For benchmarking global quality, an additional measure

called GDT1 was also used. This measure is simply the
sum of the GDT TS score for the highest-rankedmodel by
the different methods for each target, and it is commonly
used in CASP. In contrast to the correlation coefficient
this measure only considers the model selection and not
whether the actual predictions are in good agreement.
The GDT1 was also converted into a Z-score for each tar-
get by subtracting the average GDT1 and dividing by the
standard deviation.
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