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Abstract

Background: Meta-analysis (MA) is widely used to pool genome-wide association studies (GWASes) in order to a)
increase the power to detect strong or weak genotype effects or b) as a result verification method. As a consequence
of differing SNP panels among genotyping chips, imputation is the method of choice within GWAS consortia to avoid
losing too many SNPs in a MA. YAMAS (Yet AnotherMeta Analysis Software), however, enables cross-GWAS
conclusions prior to finished and polished imputation runs, which eventually are time-consuming.

Results: Here we present a fast method to avoid forfeiting SNPs present in only a subset of studies, without relying
on imputation. This is accomplished by using reference linkage disequilibrium data from 1,000 Genomes/HapMap
projects to find proxy-SNPs together with in-phase alleles for SNPs missing in at least one study. MA is conducted by
combining association effect estimates of a SNP and those of its proxy-SNPs. Our algorithm is implemented in the MA
software YAMAS. Association results from GWAS analysis applications can be used as input files for MA, tremendously
speeding up MA compared to the conventional imputation approach. We show that our proxy algorithm is
well-powered and yields valuable ad hoc results, possibly providing an incentive for follow-up studies. We propose
our method as a quick screening step prior to imputation-based MA, as well as an additional main approach for
studies without available reference data matching the ethnicities of study participants. As a proof of principle, we
analyzed six dbGaP Type II Diabetes GWAS and found that the proxy algorithm clearly outperforms naı̈ve MA on the
p-value level: for 17 out of 23 we observe an improvement on the p-value level by a factor of more than two, and a
maximum improvement by a factor of 2127.

Conclusions: YAMAS is an efficient and fast meta-analysis program which offers various methods, including
conventional MA as well as inserting proxy-SNPs for missing markers to avoid unnecessary power loss. MA with
YAMAS can be readily conducted as YAMAS provides a generic parser for heterogeneous tabulated file formats within
the GWAS field and avoids cumbersome setups. In this way, it supplements the meta-analysis process.

Background
The ongoing GWAS era has led to 1,449 association find-
ings for 237 complex traits by 6/2011 [1]. Typically small
effect sizes, however, leave a large fraction of disease sus-
ceptibility unexplained, a phenomenon that has become
famous as “the case of the missing heritability” [2-4].
Several potential explanations for the phenomenon were
given, including over-estimation of the heritability, rare
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variants with larger effects, common variants with even
smaller effects than observed so far, incomplete cover-
age of current GWAS marker panels, but also epigenetic
effects [5] or interactions between genetic variants [6]. In
order to address incomplete coverage and common vari-
ants with small effects, a most required method is an
efficient combination of genome-wide association stud-
ies (GWAS) of the same objective. Meta-analysis (MA) is
capable of improving the power of GWAS and to examine
the heterogeneity between studies [7,8]. Available tools
[9,10] for meta-analysis combine study data marker by
marker. Markers which are not part of all included studies
are underestimated in their contribution to the pheno-
type under investigation. Hence, such markers may be
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lost in further consideration, regardless of their actual
disease association, simply due to misrepresented study
power. Therefore, imputation is used to unify the avail-
able marker panels of GWAS and to avoid loss of SNPs
that are present in one study but not in another. Con-
junction of imputation and subsequent meta-analysis has
become a standard technique for combination of GWAS
data. Several imputation methods have been developed
during the last years, including MaCH [11], IMPUTE
[12,13], BIMBAM [14], BEAGLE [15], or EMINIM [16]
which are widely used. However, imputation is a time-
consuming step with high computational performance
requirements, which can be conducted in acceptable time
only on high performance computer clusters. Further-
more, the imputation accuracy varies greatly from SNP
to SNP, which is difficult to take into account for meta-
analysis, and, may result in a loss of power [17]. Hence,
great care has to be taken by each research group con-
tributing to a meta-analysis effort. Here, we present a
MA-approach that directly operates on GWAS associa-
tion results and that can be run within about 1 hour
with our YAMAS (Yet Another Meta Analysis Software)
software. In particular, it is possible to carry out a first
analysis without the need to impute. The idea of our
algorithm is that for SNPs that are present in one study
but not in another, substitute proxy SNPs are defined
using reference data from the HAPMAP [18] or 1,000
Genomes projects [19]. In this way, all SNPs that are
present in at least one of the experimental marker pan-
els can be analyzed. We evaluate the performance of the
proxy algorithm with data sets that were simulated using
realistic linkage disequilibrium patterns obtained from the
1,000 Genomes project. Moreover, we successfully applied
our approach to Type II diabetes (T2D) GWAS data
derived from the database of Genotypes and Phenotypes
(dbGaP). [20].

Results and discussion
Simulation Study
We conducted a power study based on 1,000 Genomes
[19] data (August 2010 release), in order to obtain real-
istic linkage disequilibrium (LD) patterns. We used the
chromosome 22 data of the 288 individuals of European
descent (CEU sample) as a “master” data set M. In gen-
eral, we simulated series of new data sets Mi by random
re-assignment of cases-control status, so that each Mi
consisted of 144 cases and 144 controls. For each data set,
we conducted a single-marker analysis on Mi and identi-
fied the smallest p-value minPMi obtained for any of the
SNPs in Mi. In case minPMi was smaller than 1 × 10−6,
we kept the simulated data set for further analysis. We
stopped the simulation process when 500 data sets with
minPMi < 1 × 10−6 had been obtained. In order to com-
pare the relative performance of the proxy algorithm and

imputing we investigated to what degree minPMi could
be retrieved in a meta-analysis. For this purpose, Mi was
split into two “studies” Ai and Bi, each involving only 144
individuals. In addition, for Ai SNP information was kept
only for SNPs from the Illumina� Human660WQuad v1
panel, and for Bi, SNP information was kept only for
Affymetrix� 6.0 chip content. Meta-analysis of Ai and
Bi was then performed either using only the SNPs avail-
able in both panels (MA-intersection), or using the proxy
algorithm (MA-proxy), or based on Ai and Bi imputed
with the IMPUTE [13] software using the 1,000 Genomes
data (MA-impute). The comparison of the three MA
strategies was then based on their potential to recap-
ture the association signal in the complete master sample.
To meet this purpose, the p-values minPi,100kbMA−intersection,
minPi,100kbMA−proxy and minPi,100kbMA−impute were defined by the
smallest p-values obtained within the 100 kb window
around the top signal minPMi of the master file. The win-
dow size was chosen since LD typically extends about
50 kb [18]. Therefore, we investigated the regions 50 kb
upstream and downstream of the top signal. Nominal
“power” was then evaluated based on the minP values:
we counted the fraction of data sets for which minP was
smaller than α ∈ {0.01, 0.001, ...., 1 × 10−6}. For com-
parison, we will show also the power values that would
be obtained when both studies A and B had been geno-
typed for all SNPs of the 1,000 Genomes panel (LIMIT).
That reflects the upper limit of what the meta-analysis
approaches could have reached. Adjustment for the num-
ber of SNPs within the 100 kb window was not per-
formed. In particular, minPMA−proxy and minPMA−impute
were treated equally, even though more SNPs were con-
sidered with imputation-based MA. Thus, MA-imputed
was favored in a way by our power definition. However,
in practice a significance level of 5 × 10−8 is the con-
sensus to establish genome-wide significance, irrespec-
tive of the number of SNPs actually tested. Therefore,
it seems to be appropriate not to adjust for the vary-
ing amount of SNPs tested when comparing different
MA strategies.
We tried to mimic different scenarios of potential ref-

erence panels, an “ideal”, an “incomplete” and a “mis-
matched” one. First, the “ideal” reference panel represents
a perfect and complete match of the haplotype distri-
bution between the study and the reference data. The
“ideal” reference panel consisted of exactly the same hap-
lotypes as the master file. In practice, the reference data
will contain only a fraction of the haplotypes that are actu-
ally present in the study population, simple because of
the limited size of the reference samples. Therefore, our
“incomplete” reference consisted only of a third of the
haplotypes present in the master file, in order to mimic
a real data analysis situation. Third, the “mismatched”
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reference consisted only of the haplotypes of African
descent (YRI sample) and was included to investigate the
robustness against poorly fitting reference panels.

Running Time
Running time was evaluated on a cluster with 400 CPUs
(2.4 Ghz, 2GB RAM). In Table 1, running time esti-
mates (unix time command, real time) from analysis with
YAMAS are listed. Analysis of the Type II Diabetes data
(first line of Table 1, 6 studies) took 2 minutes and 5 sec-
onds with the point-wise approach, and 92 minutes and
5 seconds with the proxy-algorithm, using a single CPU.
In order to investigate running time in correlation with
the number of studies, we increased the meta-analysis to
12 (24) studies by using each of the original dbGaP stud-
ies twice (four times). Running time of the point-wise
algorithm is about proportional in the number of investi-
gated studies: increasing the number of studies by a factor
of 4 leads to an increase in running time from 2m5s to
6m56s, which corresponds to factor of 3.35. The run-
ning time of the proxy-algorithm grows only moderately
with an increasing number of studies. For 24 studies, the
running time is only about 8 minutes longer than with
6 studies. This is because most of the running time is
needed for reading, indexing and storing the proxy refer-
ence file, which has to be done only once. We conclude
that the proxy-algorithm can be run even with a large
number of studies within less than two hours. In addi-
tion, several algorithms and data processing routines are
parallelized, based upon the OpenMP project [21], such
that the YAMAS running time can be further improved if
required by the user.
We wish to contrast the running time of the proxy-

algorithm of 92m5s (6 studies) to that of imputation.
Imputation was carried out in chunks using IMPUTEv2
[13]. We used 300 CPUs such that we were able to analyze
each in one go. The average running time of a chunk was
20 hours. Since 6 studies had to be analyzed, 300 CPUs
run 120 hours, each. In addition, association analysis ran 5
hours on average per chromosome, using PLINK [10], i.e.,
22 CPUs were needed for 30 hours, in addition. In total,
but ignoring extra running time for merging of chunks,
imputation and association testing took 300 ·20 ·6+22 ·5 ·

Table 1 Running time estimates for different number of
studies

Numbers of studiesa MA-pointwiseb MA-proxyc

6 2m5s 92m5s

12 3m42s 94m53s

24 6m56s 100m4s

aNumber of studies examined by meta-analysis.
bNaive approach, real time in minutes (m) and seconds (s).
cProxy algorithm, real time in minutes (m) and seconds (s).

6 = 36, 600 CPU-hours which is 23, 921 more than what
is needed with the proxy-approach. When one assumes
that ample CPUs are available to impute all chunks of one
study in parallel, the running time the user actually has to
wait is 20 · 6 + 5 · 6 = 150 hours, ignoring overhead that
is need to check and format the data for association test-
ing. Thus, even when a cluster with hundreds of CPUs is
available, running time improves by a factor of almost one
hundred with the proxy-algorithm (150h/92m5s = 98).

Results from Simulation Study
In Table 2 results from simulations under the null hypoth-
esis are shown. None of the investigated methods exceeds
the nominal level, of either α = 0.0 or α = 0.01, irre-
spective of the reference file that is chosen. In particular,
there is no evidence for inflated type I error with the new
proxy algorithm. This was also true when the r2-limit for a
SNP and its proxy was relaxed from 0.80 to 0.50 (data not
shown). We conclude that the proxy approach is a valid
method. Of notice, all methods are too conservative when
a random effects model is used. This is in concordance
with a recent publication [22] in which is was shown that
the random effects model tests an inappropriately strict
null hypothesis.
The results from our power study are depicted in

Figures 1, 2 and 3. The x-axis displays various α-levels on

Table 2 Empirical levels for different nominal alpha levels
(0.01 and 0.05) using different reference data sets

Strategya Referenceb Modelc α = 0.05d α = 0.01e

MA-pointwise - fixed 0.047 0.009

- random 0.037 0.006

MA-proxy ideal fixed 0.046 0.009

random 0.036 0.007

incomplete fixed 0.046 0.009

random 0.036 0.006

mismatched fixed 0.047 0.009

random 0.036 0.007

MA-impute ideal fixed 0.042 0.007

random 0.035 0.006

incomplete fixed 0.041 0.007

random 0.034 0.006

mismatched fixed 0.039 0.008

random 0.032 0.006

aEnumeration using either the naive approach, proxy algorithm or imputation
strategy.
bReference data set used for proxy algorithm and imputation.
cCalculation of the allelic effects by the fixed effect or random effect model.
dEmpirical levels for nominal α of 0.05 (average over all SNPs from chr 22 for 100
permutation replicates).
eEmpirical levels for nominal α of 0.01.
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a logarithmic scale, moving from higher to lower levels.
The y-axis displays power levels.
When an ideal reference panel is used (Figure 1), MA

with imputing strongly outperforms naı̈ve MA restricted
to the joint marker panel (MA-intersection). Thus, imput-
ing is highly recommendable. Nevertheless, the power
level with MA-impute is considerably lower than power
that can be achieved with a hypothetical sample that geno-
typed for all 1,000 Genomes SNPs (LIMIT). Thus, our
simulation study also confirms the claim that imputing
cannot replace complete genotyping or sequencing [23].
MA-proxy clearly outperformsMA-intersection, but is, as
expected, less powerful than MA-impute. This is partly
due to, first, the smaller marker panel that MA-proxy can
analyze, and, second, that in case of incomplete LD the
proxy marker will not necessarily reflect the true effect
size.
In the presumably most realistic scenario (incomplete

reference, Figure 2), we still see an impressive power gain
with MA-impute when compared to MA-intersection.
The performance of MA-proxy now comes much closer
to that of MA-impute than with unrealistic “ideal” ref-
erence panel. We conclude that the proxy algorithm can
yield valuable ad hoc results at an early analysis stage.
Thirdly, considering the mismatched reference panel

(Figure 3), it is noteworthy, that MA-impute and MA-
proxy still markedly outperform naı̈ve MA. Obviously,
even distant ethnical groups still share common LD pat-
terns that can be useful in extending SNP information. Of
note, there is no longer a measurable difference between
the performance of MA-proxy and MA-impute. In sum-
mary, the difference between MA-impute and MA-proxy
becomes smaller with reduced fit of the reference panel
with the data. This is plausible: the imputing approach is
the more sophisticated one, taking into account higher-
order LD, whereas the proxy algorithm uses only pairwise
LD information. Thus, the relative performance of the
imputing approach will be the better the more closer its
assumption “concordance of the study and reference hap-
lotype set” is fulfilled. In contrast, the proxy algorithm
uses a rougher metric, and, therefore, is more robust to
peculiar mismatches in haplotype structure. As a conse-
quence, the proxy algorithm can be recommended as an
alternative main approach when a close-fitting reference
panel is not available.

Analysis of Type II Diabetes dbGaP Data
We examined the performance of the proxy approach on
the basis of six Type II Diabetes GWAS studies that were
available from dbGaP [20], cf. Table 3. The six GWAS
studies belong to three different projects.
There are two projects of the Northwestern NUgene

Project Type 2 Diabetes from the National Human
Genome Research Institute (NHGRI), each of which

contributed 2 studies to our analysis. The “Project Health
Research - Vanderbilt University” project provided two
studies from different platforms. Data generated with the
Illumina� Human660W-Quad v1 chip comprised 607
individuals and 499,350 markers. Another fraction of
patients were examined with the Illumina� Human1M-
Duo v3 array, for which 1384 individuals and 919,602
SNPs remained after quality control (QC). The same
arrays were used for the second project, the “North-
western NUgene Project”. Here, 1,239 individuals with
495,588 from the Human660W-Quad v1 array were avail-
able after QC, and, 267 individuals with 908,692 markers
were available for Human1M-Duo v3. Finally the third
project “GENEVA Diabetes Study”, comprised two fur-
ther studies, the Nurses Health Study (NHS) and the
Health Professionals Follow-up Study (HPFS). After pro-
vided quality control (QC), 3,435 individuals and 764,679
SNPs were available for NHS, and 2,606 individuals and
787,213 SNPs were available for HPFS. Both studies were
performed on the Affymetrix� Human SNP Array 6.0. In
total, data from three different platforms with different
marker content were used in six GWAS studies.
The dbGaP data was analyzed with naı̈ve MA (MA-

intersection), i.e., conventional MA restricted to the joint
marker panel, with the proxy algorithm (MA-proxy), and
based on data imputed with IMPUTEv2 [16], using 1,000
Genomes reference data. We relied on the QC data avail-
able from dbGaP, since our focus was on the relative
performance of the variousMA approaches rather than on
the detection of novel associations.
Only 141,105 SNPs were available in all six studies and

561,282 SNPs were available in at least four studies. The
proxy approach enabled the analysis of 1,427,514 SNPs
and SNP/SNP–proxy combinations, whereof 1,0464,482
were available in all six studies and 1,279,702 were avail-
able in at least four studies. More than 85% of the proxies
had an r2 greater than 0.8 with the substituted SNP.
Our philosophy was to compare the performance of the

methods on Type II Diabetes genes that the community
considers to be “undoubtedly” confirmed. To this purpose,
we used the catalog of published GWAS results provided
by the American National Human Genome Research
Institute [1]. The catalog lists 33 Type II Diabetes GWAS
genes/LD regions (“gene regions”) with at least one SNP
that meets the genome-wide significance criterion of 5 ×
10−8. For each of these gene regions, we investigated the
100 kb up- and downstream region of the SNP reported
to be most significant and computed minPMA−impute and
minPMA−proxy for the six studies available for us. Of note,
a considerable part of the 33 genes was identified by
meta-analysis efforts and shows onlymoderate odds ratios
[24,25]. As a consequence, it cannot be expected that all
the genes show measurable association effects within the
smaller data sets we analyzed. In other words, not all the
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Figure 1MAwith “ideal” reference panel. Power levels are plotted over different nominal α levels (on the x-axis, with a negative logarithmic scale).

genes will be informative for the evaluation of the perfor-
mance of the twometa-analysis approaches. Therefore, we
restricted our comparison to gene regions that reached a
significance level of 0.05 with at least one method.
In Table 4, 22 such gene regions are shown, together

with the minimum p-values for all approaches. For 16
of the gene regions, MA-proxy yields a more significant
result than MA-intersection. For TCF7L2 for instance,
minP improves from 3.2 × 10−19 to 1.5 × 10−22, a change

by a factor of 2127. In total, there are 6 gene regions with
a p-value improvement of at least a factor of 10, including
FTO, IRS1, JAZF1, KCNJ11, and KCNQ1. For KCNQ1, we
observe p = 0.021 with MA-intersection and p = 0.00027
with MA-proxy,
an increase in significance by a factor of 78.6. For

another 11 genes we observe an improvement with
the proxy algorithm by a factor ranging from 2.18
(TSPAN8/LGR5) to 8.46 (JAZF1). There are also 5 gene

Figure 2MAwith “incomplete” reference panel. Power levels are plotted over different nominal α levels (on the x-axis, with a negative
logarithmic scale).
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Figure 3MAwith “mismatched” reference panel. Power levels are plotted over different nominal α levels (on the x-axis, with a negative
logarithmic scale).

regions for which no difference between MA-intersection
and MA-proxy can be observed. In these cases, the most
significant SNP is available in all 6 studies and, there-
fore, MA-intersection and MA-proxy coincide. Finally,
for TSPAN8/LGR5, significance slightly decreases from
0.012 to 0.008. In summary, MA-proxy outperforms MA-
intersection in the majority of cases and we observe an
average (median) improvement of the level of significance
of 107.1 (3.33), demonstrating the usefulness of proxy-
SNPs.
Imputation-basedMAoutperformsMA-proxy in 19 out

of 22 cases and we observe an average (median) improve-
ment of the level of significance of 19.1 (2.79). In two
cases, imputing outperforms the proxy-algorithm by a
factor of more than 100, SLC30A8 (193) and HMGA2
(149.8), and in another case by a factor of 21.7 (SPRY2)
which demonstrates the usefulness of long-range LD for

association analysis. For 16 genes, the loss of signifi-
cance with the proxy-algorithm is moderate with a fac-
tor of less than 10, of which for 11 genes we observe
a factor of less than 4. For three genes, FTO, KCNQ1
and RBSM1/ITGB6, the proxy-algorithm even performs
slightly better than MA-impute. In summary, one can say
that the proxy algorithm yields good approximations of
the actual level of significance in the majority of cases and
that it is a potentially useful screening algorithm.
Table 5 contains a detailed example that explains

the idea of proxy-SNPs for rs7903146 which is located
within the gene of transcription factor TCF7L2, which
has an essential function in the Wnt signaling pathway.
This SNP is described in several GWAS to be signifi-
cantly associated with the risk of Type II Diabetes. P-
values up to 2 × 10−51 are reported [25]. In our dbGaP
analysis, rs7903146(A/G) is present in studies 1-4, but

Table 3 Type II Diabetes dbGaP studies

ID Project Study Platform SNPs Individuals

1 Health Research Vanderbilt Ua Illumina� Human660W-Quad v1 499,350 607

2 Health Research Vanderbilt Ua Illumina� Human1M-Duo v3 919,602 1,384

3 Health Research Northwestern Ub Illumina� Human660W-Quad v1 495,588 1,239

4 Health Research Northwestern Ub Illumina� Human1M-Duo v3 908,692 267

5 GENEVA Diabetes Study NHSc Affymetrix� Human SNP Array 6.0 764,678 3,435

6 GENEVA Diabetes Study HPFSd Affymetrix� Human SNP Array 6.0 787,213 2,606

aProject Health Research - Vanderbilt University, Northwestern NUgene Project: Type 2 Diabetes, National Human Genome Research Institute (NHGRI).
bProject Health Research - Northwestern University, Northwestern NUgene Project: Type 2 Diabetes, National Human Genome Research Institute (NHGRI).
cNurses health study.
dHealth Professionals Follow-up Study.
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Table 4 Comparison of point-wise and proxyMA of dBGaP GWAS for known type II diabetes genes

PubMed ID Genea rs-Catalogueb p-Cataloguec rs-Naived p-Naivee rs-Proxyf p-Proxyg p-Imputeh Q(Na/Pro)i Q(Pro/Imp)j

20581827 BCL11A rs243021 3.0E-15 rs243021 3.3E-03 rs11697597 3.3E-03 3.2E-03 1 1.03

20818381 C2CD4A,C2CD4B rs7172432 9.0E-14 rs335302 1.2E-03 rs7172432 1.2E-03 1.98E-04 1 6.04

20581827 CDKAL1 rs10440833 2.0E-22 rs12336110 2.1E-03 rs6950237 2.1E-03 1.0E-03 1 2.10

19401414 CDKN2A, CDKN2B rs2383208 2.0E-29 rs2383208 2.2E-03 rs2383208 8.4E-04 5.2E-04 2.6 1.60

20581827 CENTD2 rs1552224 1.0E-22 rs1552224 1.1E-01 rs1552224 3.4E-02 4.8E-03 3.33 7.08

17463249 FTO rs8050136 7.0E-14 rs8050136 8.0E-03 rs8050136 6.7E-04 9.4E-04 11.9 0.71

20581827 HHEX,IDE rs5015480 1.0E-15 rs5015480 9.6E-03 rs5015480 2.0E-03 4.9E-04 4.8 4.10

20581827 HMGA2 rs1531343 4.0E-09 rs12741948 3.3E-02 rs1122590 1.4E-02 9.1E-05 2.43 149.8

17463249 IGF2BP2 rs4402960 9.0E-16 rs4402960 2.3E-03 rs4402960 7.2E-04 1.2E-04 3.21 6.12

20581827 IRS1 rs7578326 5.0E-20 rs7578326 4.2E-02 rs7578326 1.7E-03 8.8E-04 24.65 1.95

18372903 JAZF1 rs864745 5.0E-14 rs864745 1.6E-03 rs864745 1.9E-04 1.1E-04 8.47 1.78

17463249 KCNJ11 rs5215 5.0E-11 rs5215 8.1E-02 rs4646410 3.1E-03 9.6E-04 26.16 3.24

18711367 KCNQ1 rs2237892 2.0E-42 rs2237892 2.1E-02 rs2237892 2.7E-04 3.5E-04 78.57 0.77

19734900 LOC64673, IRS1 rs2943641 9.0E-12 rs2943641 7.8E-02 rs2943641 1.7E-03 8.8E-04 45.94 1.95

20418489 RBMS1, ITGB6 rs7593730 4.0E-08 rs7593730 1.8E-05 rs7593730 3.4E-06 3.6E-06 5.15 0.94

20581827 SLC30A8 rs3802177 1.0E-08 rs2466295 2.4E-02 rs2466295 1.0E-02 5.3E-05 2.35 193.6

20862305 SPRY2 rs1359790 6.0E-09 rs17249026 4.5E-02 rs17249026 4.5E-02 2.1E-03 1 21.6

19734900 TCF7L2 rs7903146 1.0E-30 rs7903146 3.2E-19 rs7903146 1.5E-22 4.4E-23 2126.7 3.40

18372903 THADA rs7578597 1.0E-09 rs2236705 1.5E-02 rs7578597 6.7E-03 2.4E-03 2.18 2.79

18372903 TSPAN8,LGR5 rs7961581 1.0E-09 rs4581087 1.1E-02 rs4581087 1.2E-02 2.4E-03 0.70 4.83

19734900 WFS1, PPP2R2C rs4689388 1.0E-08 rs4689388 5.5E-03 rs4689388 1.6E-03 7.7E-04 3.44 2.08

20581827 ZFAND6 rs11634397 2.0E-09 rs11634397 2.6E-02 rs11634397 2.6E-02 1.0E-02 1 2.46

aEach gene region is listed only once, even if listed several times in the GWAS catalogue.
bMost significant SNP according to GWAS catalog [1].
cp-value according to GWAS catalog.
dMost significant SNP with naı̈ve MA on intersection of marker panels of 6 dbGaP GWAS described before.
ep-value refering to SNP from previous column.
fMost significant SNP with proxy MA on 6 dbGaP GWAS.
gp-value refering to SNP from previous column.
hp-value of the correslonding SNP calculated by imputation/snptest.
i Improvement with proxy algorithm: quotient of columns “p-Pointwise” and “p-Proxy”.
jImprovement with imputation: quotient of columns “p-Proxy” and “p-Impute”.
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Table 5 Proxy-Analysis of rs7903146 (TCF7L2)

Studya SNP/proxy-SNP Chr Position EAb OAc βd see Pf LDg

1 rs7903146 10 114758349 A G 0.39 0.09 1.5 × 10−05 -

2 rs7903146 10 114758349 A G 0.68 0.20 7.0 × 10−04 -

3 rs7903146 10 114758349 A G 0.40 0.13 3.0 × 10−03 -

4 rs7903146 10 114758349 A G 0.44 0.08 1.6 × 10−07 -

5 rs4506565 10 114756041 T A 0.20 0.05 2.0 × 10−04 0.945

6 rs4506565 10 114756041 T A 0.30 0.06 3.8 × 10−04 0.945

Meta-Analysis rs7903146 10 114758349 A G 0.31 0.03 1.5 × 10−22 -

aEnumeration according to Table 1.
bEffect allele: the allele beta is given for.
cOther allele.
dEffect estimate according to logistic regression.
eStandard error.
fp-value.
gbetween SNP and proxy-SNP according to reference data (1,000 Genomes).

not in studies 5 and 6. However, those studies contain
rs4506565(T/A) which, according to 1,000 Genomes [19]
data, has an r2 of 0.945 with rs7903146 and which is
located only 2.3 kb downstream.Moreover, the A-T haplo-
type has a frequency of 0.668, while under linkage equilib-
rium a frequency of only 0.454 would be expected, based
on the allele frequencies of 0.68 for rs7903146-A and 0.668
for rs4506565-T. Thus, rs7903146-A and rs4506565-T are
“in-phase” alleles and proxy meta-analysis can combine
the respective effect estimates and standard errors. Since
in all 6 studies the effect estimates for rs7903146-A or
rs4506565-T, respectively, are positive, joint meta-analysis
becomes highly significant with a p-value of 1.5 × 10−22.
Of course, rs7903146 also is indicated by conventional
meta-analysis with a p-value of 3.3 × 10−19, but in this
case only 4 GWAS studies can be used and the additional
evidence coming from studies 5 and 6 is lost. We note
that the proxy-SNPs that YAMAS uses may differ from
study to study. In the example, the same proxy SNP was
used for both study 5 and 6. In general, however, the proxy
algorithm identifies for each study independently the SNP
with the highest r2 with the SNP that shall be substituted.

Conclusion
Via real data analysis we were able to show that the
proxy algorithm is not only fast and quickly employed,
but also powerful. It clearly outperformed naı̈ve SNP-by-
SNP meta-analysis on real genotype data, when applied
to a set of established Type 2 Diabetes regions. Moreover,
our simulation study indicates that the proxy algorithm
is very robust in terms of power with respect to a eth-
nically poorly matched reference panel. Thus, it is worth
considering it as an alternative MA approach for stud-
ies on ethnical groups that are not directly represented
in the 1,000 Genomes, for instance studies carried out in
population isolates.

It is a known phenomenon that the catalogue of con-
firmed GWAS findings [1] is strikingly sparse for the X
chromosome. At the moment, it is unclear if this phe-
nomenon reflects the “true genetics” of human diseases or
whether it is a detection bias. One might indeed specu-
late that the X chromosome is often ignored inMA efforts
since it requires additional efforts to be imputed [26]. In
this context, YAMAS may be particular helpful since no
special analysis steps are necessary for the X chromosome.
Another notable feature of YAMAS is that it can be

combined with imputed data. In practice, it may happen
that studies are imputed with different reference pan-
els. Moreover, particular SNPs might pass imputing-QC
in some studies but not in others. In these situations,
the analysis panel can be completed with the proxy-
algorithm. In this context we wish to emphasize that our
goal is not to compete with imputing as the standard
approach for meta-analysis. Indeed, our own simulation
study demonstrates a power advantage of imputation-
basedMA in a standard setting. Our aim is rather to speed
up and give impetus to meta-analysis efforts. Even though
the required analysis time for genome-wide imputing is
meanwhile limited to a few weeks for experienced and
well-equipped groups, joint projects are frequently long-
lasting. Everyone who has worked in a meta-analysis
project has either experienced or can imagine that it can
easily take one year until all participating groups have
provided their imputing results, either because some of
the participating groups are less experienced in imputing
analysis than others or either because they are involved in
projects which they assign higher priority to. In particu-
lar, the priorities the participants have will sometimes be
heterogeneous, causing delay for those who have the pri-
mary interest in the joint effort. Therefore, we believe that
a method that facilitates MA and yields ad hoc, but still
interpretable and meaningful results, is highly warranted.
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The proxy algorithm we have introduced fulfills these cri-
teria: it directly operates on GWAS analysis results and
can be run in a few hours even when the meta-analysis
comprises many groups, and has descent power since it
can analyze all SNPs that were genotyped in at least one of
the participating studies.

Methods
Standard Meta-Analysis
YAMAS either combines allelic odds ratios (ORs) or esti-
mates of the allelic effects (“betas”) as obtained in regres-
sion models. In case of ORs, the effect becomes E =
ln(OR), else it stays un-transformed. Effects are merged
across studies with the weighted average,

Ē =
∑k

i=1 wi · Ei∑k
i=1 wi

, where k is the number of studies and wi is a weight given
by the standard error (SEi) for the ith study: wi = (SE2i )−1.
The standard error of Ē is computed as

SEĒ =
√

1∑k
i=1 wi

and the combined two-tailed p-value becomes p = 2 ·
(1−�(|Ē/SEĒ|)), with�(|Ē/SEĒ|) being the standard nor-
mal cumulative density distribution function. The meta-
analysis follows the standards exemplified [8] and is also
equipped to consider the between-study variance of mark-
ers by calculating so called random effect sizes [27,28].
Taking Cochran’s Q-value [29],

Q =
k∑

i=1
wi(Ei − Ē)2 ,

, as an indicator for the total between-study variance, we
are able to replace w with w∗ = (SE2 + τ 2)−1 and use
this weight to reflect heterogeneity, τ 2 being the between-
study variance:

τ 2 = Q − df
(
∑k

i=1 wi/
∑k

i=1 wiE2i
)

if Q − (k − 1) > 0, else τ 2 = 0. Q itself follows a
χ2-distribution with k − 1 degrees of freedom [30]. We
note that it has recently been shown [22] that the classical
random-effects model tests a too strict null hypothe-
sis and although intended for effects that vary between
studies, ironically enough leads to a conservative proce-
dure in the presence of heterogeneity. However, since the

random-effectsmodel is still often requested by reviewers,
we still feature it in our software.

The Proxy Algorithm
We assume that association results (effect estimates and
standard errors) are available for the real genotype data
of each participating study. In order to enable MA on the
complete marker panel missing markers can be filled with
“proxy markers”. For this purpose, a sample reference file
based on 1,000 Genomes [19] SNP content is provided
for download on the YAMAS web site. As an alternative,
own reference files can be produced using genotype data
in PLINK-format [10] with the current version of INTER-
SNP [31]. The reference file tabulates pairs of SNPs with
marker IDs, each marker’s alleles, the chromosome the
markers are on, their absolute physical distance in base
pairs, r2 as a linkage disequilibrium indicator [32] and a
boolean flag to define the proxy alleles (see below). We
provide proxy files for CEU, YRI and JPT+HCN samples.
In general, pairs of SNPs no more than 200kb apart and
with an r2 ≥ 0.5 are listed. For the X chromosome and the
MHC region, we choose a distance limit of 5 Mb. If the
algorithm would encounter a situation where one marker
is present in one of the studies, but missing in one or more
of the other studies, it will try to find a proxy marker in
those studies, compare Figure 4. Proxymarkers are ranked
by their mutual r2 (higher r2 ranks higher). This sorted list
of markers is tried for the presence in the data set. The first
present SNP, i.e., the SNP with the highest LD with the
missing SNP, is chosen to be the proxy-SNP and will sub-
sequently be used for MA, see also Figure 4. To account
for the effect direction the proxy marker also carries the
information for a proxy allele: the reference file desig-
nates the allele as the proxy allele for which the observed

Figure 4 Proxy meta-analysis schematic example. Schematic
example of a meta-analysis with proxy markers. For simplicity we
consider only two studies with four markers each (1-4). Common MA
is applied on markers 1 and 4 (as they are present in both marker
sets), yet when YAMAS hits marker 3, which is missing in the second
study (3 – gray box), it selects marker 2 in study 2 as its proxy marker,
based on the r2 indicator. Dashed arrows indicate non-chosen
potential proxy markers. The case of the missing marker 2 in study 1 is
omitted for better readability.
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haplotype frequency is greater than the expected haplo-
type frequency under linkage equilibrium. In other words,
the “in-phase” alleles of a SNP and its proxy define mutual
proxy alleles (cf. also the section “Analysis of dbGaP data”
for an example). A boolean indicator for the proxy alleles
is part of the reference file. In summary, meta-analysis is
always based on the established formula

Ē =
∑k

i=1 wi · Ei∑k
i=1 wi

,

from the previous section. In contrast to “standard” meta-
analysis the effect estimates that are combined do not
always refer to the same SNP (rsNumber) in each study,
but to a SNP from one study and its proxy-SNPs in other
studies. In order to select a SNP as a proxy, we require a
minimum r2 of 0.50.

URLs
YAMAS, Yet Another Meta-Analysis Software; http://
yamas.meb.uni-bonn.de/ The OpenMP API specification
for parallel programming, http://openmp.org/wp.
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