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Abstract

model-based transcriptome analysis.

consultation of existing annotation.

Background: Existing statistical methods for tiling array transcriptome data either focus on transcript discovery in
one biological or experimental condition or on the detection of differential expression between two conditions.
Increasingly often, however, biologists are interested in time-course studies, studies with more than two conditions or
even multiple-factor studies. As these studies are currently analyzed with the traditional microarray analysis
techniques, they do not exploit the genome-wide nature of tiling array data to its full potential.

Results: We present an R Bioconductor package, waveTiling, which implements a wavelet-based model for analyzing
transcriptome data and extends it towards more complex experimental designs. With waveTiling the user is able to
discover (1) group-wise expressed regions, (2) differentially expressed regions between any two groups in
single-factor studies and in (3) multifactorial designs. Moreover, for time-course experiments it is also possible to
detect (4) linear time effects and (5) a circadian rhythm of transcripts. By considering the expression values of the
individual tiling probes as a function of genomic position, effect regions can be detected regardless of existing
annotation. Three case studies with different experimental set-ups illustrate the use and the flexibility of the

Conclusions: The waveTiling package provides the user with a convenient tool for the analysis of tiling array
trancriptome data for a multitude of experimental set-ups. Regardless of the study design, the probe-wise analysis
allows for the detection of transcriptional effects in both exonic, intronic and intergenic regions, without prior

Background

In the last few years tiling microarrays have become
a well-established tool for whole-genome transcriptome
analysis. They have shown to be very useful for exploring
and unraveling the complex genome-wide trancriptional
landscape of higher organisms, in which not only pro-
tein coding genes, but also non-coding RNAs play an
important role [1-4]. The methods that have been devel-
oped for transcriptome analysis with tiling arrays either
focus on segmentation and transcript discovery within
a single biological condition [5-8], or on the detection
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of differential expression between two distinct condi-
tions [9,10]. Recently, the focus in tiling array studies has
shifted towards more complex experimental designs, such
as studies with more than two conditions [11] and stud-
ies with several experimental factors [12]. Furthermore, it
is recognized that expression is a dynamic rather than a
static phenomenon. Hence, more and more time-course
experiments are designed to provide insights into the
whole-genome transcript regulation of species during dif-
ferent developmental stages or external periodic changes
in the environment [13,14].

Currently, most tiling array transcriptome analysis
pipelines start with summarization of the probe-level
data. This can be done by constructing probesets from
the groups of probes that map to known annotated genes,
(e.g. [11,15]). Hereby unannotated regions are disre-
garded. In [12,13,16] a sliding window-based approach is
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adopted, combined with a thresholding rule for select-
ing transcriptional units, whereas in [14] segments with
piece-wise constant intensity levels are constructed first
[17]. After the summarization a statistical test or a more
heuristic analysis technique is conducted on the sum-
marized expression values of the transcriptional units.
In current time-course and single-factor studies this is
merely done by directly applying traditional microarray
analysis methods, such as a pairwise moderated t-test
(Limma) [18] conducted in [11] or a permutated t-test
(SAM) [19] conducted in [16]. Other studies adopt ad-
hoc approaches to filter the genes or transcriptional units
of interest. Transcriptional units in a time-course experi-
ment, for example, can be filtered based on thresholding
the amplitude of the signal [20]. In an alternative approach
the correlations between temporal expression patterns
are explored and a clustering is performed of genomic
regions based on expression profiles in different gene
classes showing expression at different time-points [21].
The tests reported in [13] and [14] on the other hand are
less ad hoc, but very specific for the periodic time-course
design apparent in these studies [22-24]. The aforemen-
tioned methods either lack flexibility by only focusing on
one specific experimental design, or they first summarize
probes to probesets based on existing annotation, hence
not exploiting the genome-wide nature of the data to the
full extent.

Here, we present waveTiling, a R Bioconductor pack-
age for transcriptome analysis of tiling arrays with flex-
ible designs. The package is based on and provides an
extension to a recently introduced wavelet-based func-
tional model for transcriptome analysis [25]. While the
methodology in [25] was initially developed to conduct
the simultaneous tasks of transcript discovery and detec-
tion of differential expression, their framework can be eas-
ily extended by adapting the model design matrix. After
modeling the specific effect function of interest, probe-
wise inference can be conducted for detecting affected
regions. The probe-wise analysis allows for the detec-
tion of transcriptional units in both exonic, intronic and
intergenic regions, without prior consultation of exist-
ing annotation. Currently, waveTiling provides a standard
analysis flow for transcriptome analysis on single-factor
experiments with two or more biological conditions, the
detection of linear and quadratic effects and circadian
rhythms in time-course experiments, and the analysis of
two-factor experiments, while more experienced users
can also specify customized designs. Furthermore, it gen-
erates along-genome plots and contains functions to easily
extract the detected genes and unannotated regions. The
Implementation section gives an overview of the main
functionalities of the waveTiling package and describes
the model for the different designs, as well as the asso-
ciated inference procedures. In Results and Discussion
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we illustrate the use of the package and the model on
three different case studies with very distinct experimen-
tal designs.

Implementation

The waveTiling package is an add-on package to the
Bioconductor project [26] written in the programming
language and statistical environment R [27]. It provides
all the tools necessary to conduct a full analysis of tiling
microarray experiments for flexible designs based on the
recently introduced wavelet-based functional model for
trancriptome analysis [25]. The package uses the stan-
dard Bioconductor S4-class data structures making it fully
compatible with existing packages. The data is imported
with the aid of the oligo-package [28] and the resulting
object inherits from TilingFeatureSet, which is specifically
designed for representing tiling array data and in turn
extends ExpressionSet. Existing instance methods from
oligo and other Bioconductor packages supporting this
structure are therefore applicable as well. Before starting
the analysis the probes can be remapped to the exist-
ing annotation. Moreover, probes that contain duplicated
sequences for perfect match and mismatch probes or for
probes on different strands can be filtered because they
are deemed unreliable due to cross-hybridization effects.
The main transcriptome analysis consists of two consecu-
tive steps: (1) fitting the wavelet-based functional model to
the data, and (2) model-based inference to identify tran-
scriptionally affected regions. The fitted model is stored
in a WfmFit-class object. Depending on the design of
the study a WfmFitFactor (factorial design), WfmFitTime
(time-course design), WfmFitCircadian (circadian rhythm
design) or WfmFitCustom (custom design) subclass is
used. Part of the code for fitting the model is implemented
in C to speed up computation. In the second step, different
inference procedures can be conducted depending on the
research question. The inference procedure that can be
conducted depends on the WfmFit-subclass. The results
are stored as a Wfmlinf-class object. There are 3 main sub-
classes: WfmiInfCompare which contains the results of a
pairwise comparison between two groups or time points;
WfmiInfMeans with the results of transcript discovery for
each individual group or time point; and WfmlinfEffects
which contains results with linear or quadratic time effects
for time-course designs and circadian rhythm effects for
circadian designs. All transcriptionally affected regions
can be extracted from the WfmlInf-class objects and are
stored as [Ranges-class objects [29]. The model fitting
and inference steps are described in more detail in the
Statistical Methods part.

The results can be visually explored by means of a
general plot function. The implementation is based on
the GenomeGraphs package [30]. For any genomic region
the fitted expression values and transcriptionally affected
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regions can be plotted along the genomic coordinate.
Furthermore, two functions are available for further post-
processing of the results. Provided a suitable annotation
file is given, the transcriptionally affected regions are
mapped against the existing annotation. The first function
outputs the genes that are transcriptionally affected, while
the second function provides a list of the detected unan-
notated regions. The output of both functions is a list of
GRanges-class objects [31].

Statistical Methods

We start by presenting an overview of the basic model
introduced by [25]. Subsequently, we show how we acco-
modate for several sampling schemes in time-course
experiments or other experiments with more flexible
designs.

Basic wavelet-based model for transcriptome analysis

We consider the functional model designed for the detec-
tion of (differentially) expressed regions in experiments
with two biological conditions. It is given by [25]

Yi(t) = p1() + X1,.82(8) + E; (0), (1)

with i = 1,..,N, Y;(¢) the measured logy-transformed
expression values for the probe with position ¢ (t =
1,..,T)onarrayi (i = 1,...,N). T is the number of probes
that are more or less equally spaced along the genomic
position of the chromosome, and N = Nj+Nj is the num-
ber of tiling arrays in the experiment, with N; the number
for biological condition 1, say C;, and N the number for
biological condition 2, say Cy. Further, X;; is a dummy
variable which is 1 for C; and —1 for Cy, and E;(¢) is a
zero mean error term. It is assumed that E;(1), ..., E;(T) are
jointly MVN (0, X.). Here, MVN (u, X) denotes the den-
sity function of a multivariate normal distribution with
mean g and variance-covariance matrix X.
The model can also be written as

Y =XB+E. (2)

In this model, Y is an N x T matrix of measured log;-
transformed expression values, containing the elements
Y;(¢t) for the probe with genomic position ¢ (¢ = 1,.., T) on
array i (i = 1,..,N). Further, E is an N x T error matrix
containing the errors terms E;(¢) for probe position ¢ on
array i. The N x 2 design matrix X is constructed as

11
X= ,

where the upper row represents the dummy coding for the
Nj arrays in C; and the lower row the dummy coding for
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the Ny arrays in Cy. The 2 x T effect function matrix B
contains the probe-wise effect functions 8;(¢) and B (¢)
on the respective rows. Column 1 of X will be used to find
regions with a mean expression level above some thresh-
old, whereas the coding in column 2 allows for assessing
differential expression between the two conditions. Note
that the coding in X implies that two effect functions are
estimated orthogonally for a balanced study design. This
can be seen from

XTx — [N/Z 0 }
0 N/2
withN; = Ny = %

Before estimating the effect functions, the expression
data are projected onto the wavelet space by using the
discrete wavelet transform (DWT). This linear projection
can be written as the matrix multiplication D = YW7,

where W is an orthogonal DW'T matrix. This allows us to
rewrite model (2) in the wavelet space as

D = XB* + E¥, (3)

where the rows of the N x T matrix D contain the wavelet
coefficients for each array, double-indexed by location k =
1,..,Kjand scalej = 0,..,J. The 2 x T and N x T matrices
B* and E* contain the wavelet coefficients for the effect
functions and the error terms, respectively. By putting a
normal prior on the effect functions in the wavelet space,
this model can also be written as

DG, k1B G k)~
B ) tm Gy k) ~

MVN {XB*(j, k), I62(j, k) }
NA{0, 1 (j, K)o 2, k) }
4)

where 8 (j, k) is the element of B* corresponding to scale
j and location k and m = 1,2. In (4) N(u,0?) denotes
the density function of a normal distribution with mean
u and variance o2, The smoothing parameters T, (j, k)
and the error variances o2 (j, k) are estimated by marginal
maximum likelihood using a Gauss-Seidel algorithm. The
estimated 7,,(j, k) induce a regularization of the wavelet
coefficients of the effect functions. When backtransform-
ing the modified coefficients to the original data space, this
leads to a denoised expression signal whereby the main
features are retained. The method has proven to be very
fast which is essential when analyzing large datasets. For
more details, see [25].

Wavelet-based models for transcriptome analysis in more
flexible designs

To extend the modeling framework reviewed in the previ-
ous section and to make it suitable for the analysis of tiling
array data with more flexible designs, the design matrix
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X needs to be adapted in an appropriate way. Firstly, the
adaptation must enable the model to answer the specific
research questions provoked by the experimental design.
Secondly, it must allow us to use the same fast algo-
rithms introduced in [25]. This second argument comes
down to the preservation of the orthogonality of X. In
the first part of this section we focus on general time-
course designs and single-factor designs for more than
2 groups. The second part aims at specific time-course
designs for assessing circadian rhythms in the transcrip-
tome. The section concludes with looking specifically at
non-orthogonal designs, typically encountered in multi-
factor studies.

General time-course designs

In tiling array time-course experiments one is often inter-
ested in the detection of differentially expressed regions
between any two different time points. An additional
concern might be to detect significant effects of transcrip-
tional activity in time, e.g. linearly increasing or decreas-
ing transcriptional expression of certain regions. These
two possible research aims can be dealt with by consider-
ing a functional relationship of the designed time points
described by orthogonal polynomials. This approach has
also been used in quantitative trait associated expres-
sion studies based on traditional microarrays [32]. In
that paper the functional relationship with phenotype is
considered instead of with time.

Consider a time-course experiment with whole-genome
expression levels measured at g time points. Let N be the
total number of arrays used in the experiment. The num-
ber of arrays used for each time point is represented by
Ni,...,Ng with Ny + ... + N; = N. In this exposi-
tion we only consider balanced designs, ie. N = ... =
Ny, with equidistant time points. However, it is rather
straightforward to obtain orthogonal polynomials when
dealing with non-balanced and non-equidistance designs.
A simple procedure is discussed in [33]. The design matrix
X in model (2) now has dimensions N x g and can be
written as

1 Yn(Xy)  Ya(Xy) Yg-1(X1)7
1 ¥1(X2) ¥a(X?) Yg-1(X2)
X = » (5)
| 1 WI (Xq) 1ﬂZ(Xq) 1ﬂq—l()(q)_
where Xi,...,X, are the Nj, ..., N;-valued vectors that

correspond with the g respective designed time points in
the experiment. In (5) each function ¥;(x) is a polynomial
of degree j, with j = 0,...,4 — 1, and is orthogonal to
Yr(x) (k =0,...,9 — 1) ifj # k. Note that each 1 in the
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first column of X can also be seen as ¥o(X;) (i = 1,...,9).
The orthogonality of X is clear from

N 0 0 0 0

0 XX, vi X 0 0 0

0 0 YLviXno 0
XTx= . . .

0 0 0 D DS FEN0.0) 0

0 0 0 0 N2 (X))

(6)

With this design matrix a g x N matrix B with the g effect
functions is associated. The first row of B corresponds
with an overall mean expression level over all time points,
while row 2 until g are associated with a linear, quadratic,
cubic, ..., (¢ — 1)-th order polynomial effect respectively
between the different time points. The fitted expression
levels for each time point are obtained by a linear com-
bination of all effect functions in accordance with model
(2). This allows for a straightforward comparison between
any two time points. When combining several effect func-
tions, it may be desirable to induce the same amount of
smoothing for each of them. This implies the estimation
of one general smoothing parameter 7(j, k), instead of a
separate 7,,(j, k) for each effect function (m = 1, ...,q). To
retain the fast algorithms of [25], however, the diagonal
elements of X7 X need to be identical in this case. This
can be obtained by normalizing each column vector of X
to give the normalized design matrix X’. This leads to the

property

0 0 0
0 0 0
0 0 0 0

xTx = =1, 7)
000 ... 1 0
(000 ... 0 1]

where I is an g x g identity matrix. For this orthonor-
mal design matrix X’ it can be shown that the common
smoothing parameter can be estimated by

(8)

- DT, X'X'TD(, k)
R I
Although design matrix (5) can also be used for non-
ordered single factor studies, one may choose to use
a design matrix specifically constructed for unordered
factors, e.g. a Helmert contrast design matrix. Helmert
contrasts are basically designed to compare the mean
expression at a specific time point with the overall mean
over all preceding time points. The main reason why we
use them here, however, is that they also lead to estimation

orthogonalities for the effect functions. This is seen from
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02N 0 0 0
0 0 232 N O 0
XX = : S )
: : : . : it :
0 0 0 o @-2Y N 0
. 0 0 0o ... 0 @-DY 1N |

Just like for the polynomials, the design matrix X based
on Helmert contrasts still needs to be normalized if the
same smoothing for all factor effects is desired.

Designs for circadian rhythms

Suppose now that we are interested in the detection of
a certain circadian rhythm in the transcriptome of an
organism, based on an equally spaced time-course exper-
iment. A natural way to model the circular effect is to
construct X by means of Fourier basis functions, instead
of polynomial basis functions. The design matrix is then
given by

1 sin(0) cos(0)
. 2 27
1 sin(—) cos(—)
q
1 sin(4—n) COS(4—n)
X = 4 4 (10)

. T T
1 sin(2r — —) cos(2m — —)
q

Again the separate effect functions can be estimated
orthogonally, which is seen from

N 0 O
XT'x = g 0 (11)
0 ¢
To estimate a common smoothing parameter for induc-
ing the same amount of smoothing for all effect functions,
X can again be normalized as described previously.

Non-orthogonal designs

Design matrices for two- or multiple-factor designs are
typically non-orthogonal. Using these in the wavelet-
based model would imply that the fast algorithms pre-
sented in [25] would have to be adapted. This would
lead to undesirably increased computation time dur-
ing parameter estimation. A solution to this problem
is to apply the Gram-Schmidt process to orthogonal-
ize X and subsequently estimate the model parame-
ters based on the orthogonalized design matrix. The
Gram-Schmidt orthogonalization comes down to a
QR-decomposition [34] of X into an upper-triangular

matrix X; and an orthogonal matrix X,,s;, which is now
used to fit the model. Afterwards, the estimated parame-
ters have to be transformed back to obtain the parameter
values for the original X. This is possible by premul-
tiplying them with (XoTrthX)_l. Similar to single-factor
and time-course designs, the coding of the initial design
matrix X still determines how the parameters can be inter-
preted, and may thus be constructed according to the
specific research interest.

Statistical inference: detection of transcriptional effect
regions

Depending on the study design and the aim of the anal-
ysis, either the parameters themselves or a function of
the parameters are used to detect transcriptional effect
regions. In both instances, the effect of interest can be
represented by F {B(¢)}. For general time-course designs
one can be interested in detecting genomic regions that
show a linear or a quadratic trend in time. In this sit-
uation F{B(t)} is just the effect function B(¢) that cor-
responds with either the linear polynomial term v (X)
or the quadratic polynomial term v7(X) in (5). On the
other hand, if interest lies in the detection of differentially
expressed regions between different time points, inference
is performed on each row of a @ x T matrix ZXB,

where Z is a @ x N contrast matrix indicating the

specific time points to be contrasted. Hence, each row of
ZXB corresponds with one of the @ possible pairwise
comparisons between two time points and gives rise to
an effect function F {8(¢)} for each desired comparison.
In circadian rhythm designs the sine and the cosine effect
functions are combined to give the amplitude A(t) of the

circadian rhythm per probe position, i.e.

F{B®)} =A@) =/ B51) + B5(®).

Based on the size of A(t) circadian effect regions can
be detected. In the case of non-orthogonal designs in
multiple-factor studies, there are several possibilities for
the choice of F {B(#)}, depending on the aim of the analy-
sis. The idea remains the same, however.

For each genomic location ¢, F {8(¢)} is compared to a
certain threshold value § which can be chosen freely by
the biological researcher. A Bayesian FDR procedure [35]

(12)
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is adopted to evaluate statistical significance. This may be
written as

FDRp(t) = P[F{B(D)} < 8|Y]. (13)

It basically involves the calculation of a probability mass
from a univariate normally distributed random variable
if F{B(¢)} contains only one B(t), or from a multivariate
normally distributed random variable if F{B(¢)} con-
tains a linear combination of B(¢)’s [25]. The variance-
covariance matrix is readily available if X is orthogonal.
For non-orthogonal designs it can be calculated by

[x,07) variF BN {0,071

For the circadian rhythms design however, this
approach is not possible because of the non-linear depen-
dence of A(t) on the B(¢)’s. In this case FDRp(t) can be
approximated by simulation. In each simulation step we
sample from the normal sine and cosine effect functions
and calculate Agim(¢). FDRp(¢) is now given by the pro-
portion of simulations for which Aim(t) < 8. Specifically
for differential expression, (13) is used to detect overex-
pression at probe ¢, while for detecting underexpression
at probe ¢ we use

FDRp(t) = P[F{B()} > —3|Y]. (14)
Results and discussion

The use and flexibility of the waveTiling package is illus-
trated in three case studies for transcriptome analysis with
different experimental set-ups.

Case study 1: Time-course experiment

The first data set consists of a tiling array expression study
for identifying the molecular events associated with early
leaf development of the plant species Arabisopsis thaliana
[11]. Unraveling the underlying mechanisms of on one
hand the transition from cell division to cell expansion and
on the other hand the transition from non-photosynthetic
to photosynthetic leaves, was the focus of this study. Tran-
criptome analysis for six developmental time points (day
8 to day 13) was conducted with AGRONOMICSI tiling
arrays [36], with three biological replicates per time point.
Primarily, the researchers were focusing on the detec-
tion of differentially expressed regions between any two
pairs of developmental time points. This specific study
design, however, also allows for the detection of expres-
sion regions that change linearly over time. The functions
and code used for this case study are described in more
detail in the package vignette (see Additional file 1).

Pairwise comparison

Figure 1 gives an example of a genomic region on chromo-
some 1 of Arabidopsis thaliana found to be differentially
expressed between different time points. The threshold
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value used here was |log,(1.2)|. For the most significant
time point pairs the detected regions clearly resemble
the exons of gene AT1G04350, encoding a putative 2-
oxoglutarate-dependent dioxygenase (Figure 1).

We evaluate the regions detected by the wavelet-
based analysis against the genes produced by the well-
established and often used RMA method [37]. This is
done by comparing the results of a gene set enrichment
analysis based on both methods. By mapping the genomic
regions found by the wavelet-based method to the
Arabidopsis thaliana TAIR9 annotation [38], a list of
genes is created for this method. Only genes that showed
an overlap of at least 15% with the detected regions
were retained. The enrichment analysis as performed with
Plaza [39] revealed a strong overlap in the processes
detected by both methods. A total of 483 enrichments
were identified using both genesets of which 360 com-
mon enrichments were shared. The RMA gene list had
75 specific enrichments, while the wavelet-based gene list
had 48.

The enrichment analyses revealed a high similarity of
genes in common by the two methods for identifying dif-
ferentially expressed regions of the genome that have pre-
viously been annotated. However, we could also discover
non-annotated regions that were differentially expressed.
We identified a total of 109 unannotated and differentially
expressed regions in the genome with a length of at least
200 bp. Selected regions were validated with qRT-PCR to
confirm these findings. These regions were chosen based
on the following criteria:

1. Region was not in or near an exon or promoter from
an annotated gene.

2. Longer regions containing more differentially
expressed probes were preferentially selected.

3. Regions showing homogeneous probe directionality
(all probes going in the same direction) across the
entire region of differential expression were
preferentially selected.

Using these criteria 12 regions were selected and
qRT-PCR analysis was performed (see Additional file 2:
Table S1). Of the 12 regions, 11 could be confirmed
to contain differentially expressed transcripts during the
time-course analysis. Only 1 region had no detectable
transcriptional products. Log fold changes were cal-
culated for confirming the expression and differential
expression, as well as the directionality of the differen-
tial expression. From this analysis 9 of the 11 regions
showed the same log fold change directionality as pre-
viously identified from the tiling arrays, and 2 regions
showed opposite log fold change directionality. However,
these 2 regions had the lowest log fold changes in the
wavelet-based analysis. More details about the methods
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Figure 1 Pairwise day-to-day differentially expressed genomic region. Fitted differential expression effect for the genomic region of gene
AT1G04350 on the forward strand of chromosome 1 between selected pairs of developmental time points varying from day 8 (D8) to day 13 (D13).
The grey rectangles indicate the detected regions showing a significant differential expression effect. The different replicates are indicated by o,

+ and A, while the different days are represented by different colors: black (D8), red (D9), green (D10), blue (D11), cyan (D12) and magenta (D13).

of enrichment and qRT-PCR analysis can be found in
Additional file 2.

Linear and quadratic time effects

In addition to a pairwise comparison analysis, the wavelet-
based functional model using the orthogonal polynomial
design matrix is also useful for detecting genes with lin-
ear and quadratic expression patterns over time. In fact,
the estimated parameters now give direct interpretations
in terms of the different order time effects. Figure 2 gives
some example plots of genes from the forward strand
of chromosome 1 with a clear linear or quadratic time
effect. From the plots, it is clear that the fitted probe-
wise logy intensities at the different time points (orange
lines) are squeezed to some extent towards the mean fit-
ted log intensities over all probes in the whole detected
region at these time points (purple line). The main reason

for this is that in the wavelet domain strength is bor-
rowed from the neighboring probes in the genomic region
to provide a more reliable estimate for each probe-wise
effect.

For two of the genes shown in Figure 2 a more detailed
visualization is given of the fitted linear or quadratic time
effect along the genomic coordinate of chromosome 1.
Figure 3 shows the regions with significant decreasing
linear time effects overlapping with gene AT1G62500,
encoding a putative lipid transfer protein, while Figure 4
shows those regions with a significant quadratic time
effect overlapping with gene AT1G16410, encoding a
cytochrome P450. It is also possible to look at the fitted
log, intensities at the different time points. This means
that we are still able to perform transcript discovery at
each time point separately. Figure 5 gives the correspond-
ing plots for the linearly decreasing gene AT1G62500. The



De Beuf et al. BMC Bioinformatics 2012, 13:234
http://www.biomedcentral.com/1471-2105/13/234

Page 8 of 14

A Gene AT1G22690
o |
P
‘G 0 -
C
(0]
E
a © 7
D
o
<
N = T T T T T
day8 day9 day1l0 dayl1 dayi2 day13
time point
C Gene AT1G16410
»
w —
> N~
% o
[0]
E w
)
3 ¥
Cl) —
o 4

day8 day9 dayl0 dayi1 dayi2 day13

time point

Figure 2 Gene-wise linear and quadratic effects of transcription levels. Example plot for two genes showing a linearly increasing (A) and
decreasing (B) mean log; intensity level as a function of the 6 days in the time-course. These genes map to two of the top detected regions with a
linear time effect for the forward strand of chromosome 1. The mean of the linear time effect parameter estimates corresponding with the probes in
these regions are 1.08 and -1.16 respectively. Plots € and D give two examples of genes with a strong quadratic effect on the forward strand of
chromosome 1. The dotted black lines represent the mean observed log, expression for the probes over the three biological replicates at the
different time points. The dotted grey line is the mean observed log, expression over all the probes in the region. The orange lines are the
probe-wise fitted log, expression values when only considering the intercept and the linear time effect in the model for the two upper-part genes,
and considering the intercept, the linear and the quadratic time effect in the model for the two lower-part genes. The purple line gives the
corresponding mean fitted log; expression values at the different time points over all the probes in the region.
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trend apparent in the example plots of Figure 2 is also clear
from this figure. The grey rectangles in Figure 5 indicate
the discovered regions with mean logy intensities signifi-
cantly above a certain threshold chosen according to the
procedure described in [25]. This illustrates that for the
discussed models, it is possible to simultaneously detect
differentially affected regions between groups as well as
transcriptionally active regions for each group - in this
case for each day - separately.

Case study 2: Circadian rhythms

The second case study concerns an expression analy-
sis to examine circadian rhythms in Arabisopsis thaliana
[13]. It is known that photosynthetic organisms antici-
pate changes in the daily environment with an internal
oscillator, called the circadian clock. The aim of the study

was to explore the genome-wide extent of the rhythmic
expression patterns governed by this oscillator. In this
experiment, 12 samples were collected from Arabidopsis
thaliana seedlings that were placed under a 12 h light /
12 h dark cycles regime. Every 4 hours 2 samples were
taken and hybridized to the Affymetrix AtTile 1.0F and
1.0R tiling arrays. More information about the experiment
can be found in [13].

Figure 6 shows an example of the model fit for gene
AT2G46830 with a clear strong circadian effect. This
gene has been previously described and is known under
the name CIRCADIAN CLOCK ASSOCIATEDI (CCAI).
Besides the circadian effects, no other time-dependent
effects are considered in the model. Therefore, the fitted
log, intensities for time points at identical moments in
the 24h day/night cycle always coincide. This strong cir-
cadian effect is confirmed by Figure 7, which shows the



De Beuf et al. BMC Bioinformatics 2012, 13:234
http://www.biomedcentral.com/1471-2105/13/234

Page9of 14

12
10

Data
ooy

B oaaseen
DHr SO
Bt 0 DI 4>

bl 2

F
N A O ©
ﬁ o o
>,
aee. % =
- 2
& %oﬁ!
O | o esospioy
PN o
o
-

S 2 Aﬁ/ o
%;A*}, -+ 5
A 7
LESE N

Linear

over time. More specifically, the effect at probe tis 8; (t) x time.

5 23129000, 23131000 23133000 23135000, 23137009
3 F-23130000 " 23132000 | 23134000 ' 23136000 ' °
x ‘. . AT1G625/10

Yy
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green (D10), blue (D11), cyan (D12) and magenta (D13). The grey rectangles indicate the detected regions showing a significant linear time effect,
while the black line corresponds with the coefficient function of the linear effect. The negative sign of the coefficients implies a decreasing effect

fitted effect for the genomic region of CCAI. This effect
corresponds with the amplitude of the circadian rhythm,
A(t) = /B3(t) + B3(t), as estimated by the model.

The performance of the wavelet-based method for circa-
dian rhythms is further tested by examining some specific
circadian clock associated genes on the forward strand
of the Arabidopsis thaliana genome [40]. The genes that
we consider here were also reported in [13]. The results

are shown in Table 1. All genes show a considerable
overlap with the genomic regions for which a circadian
effect was detected significantly above the threshold value
loga(1.1), except TIME FOR COFFEE (AT3G22380). They
also have a quite high maximum estimated effect or ampli-
tude size, except TIME FOR COFFEE and ZEITLUPE
(AT5G57360). These latter two genes are the only genes
from the list that do not fall within the top 20 genes

8
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Figure 4 Genomic region with a quadratic time effect. Fitted quadratic time effect for the genomic region of gene AT1G16410 on the forward
strand of chromosome 1. The different replicates are indicated by o, + and A, while the different days are represented by different colors: black (D8),
red (D9), green (D10), blue (D11), cyan (D12) and magenta (D13). The grey rectangles indicate the detected regions showing a significant quadratic
time effect.
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detected regions showing a significant mean expression. The decreasing trend of the fitted log; intensities over the different time points

3). The grey rectangles indicate the

with the strongest estimated circadian effect for their
corresponding chromosome. The gene TIME FOR COF-
FEE is known as a clock gene that does not cycle at the
transcriptional level [41]. Hence, it is as expected that both
the overlap between detected region and gene annotation,
and the effect size are very small. The gene ZEITLUPE
is reported as having weak rhythms at the transcriptional
level [40]. This is confirmed by the low maximum effect
size, while still showing a considerable overlap of the sig-
nificant region with the existing annotation. The results of
Table 1 are thus completely in line with what was expected
from literature.

Case study 3: Non-orthogonal two-factor design
The third data set is used to illustrate the analysis of
a two-factor design tiling array experiment. The data

are taken from a study of the genome-wide analysis
of endogenous abscisic acid (ABA)-mediated transcrip-
tion in dry and imbibed seeds of Arabidopsis thaliana
[12]. ABA is a phytohormone that is important for the
induction and maintenance of seed dormancy. To under-
stand how endogenous ABA regulates the transcrip-
tome in seeds, whole-genome expression analyses were
conducted in two ABA metabolism mutants, an ABA-
deficient mutant (aba2) and an ABA over-accumulation
mutant (cyp707ala2a3 triple mutant), and compared to
a wild type. This is the first factor in the design. Since
endogenous levels of ABA often change drastically during
seed imbibition [12], these experiments were done both
for dry and for 24-h imbibed seeds. This is the second
factor in the design. For each design point, three biologi-
cal replicates were hybridized using the Affymetrix AtTile
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Table 1 Circadian effect for 9 genes put forward in the Hazen study

Gene ID Name Overlap Max. Eff. Top 20
AT1G22770 GIGANTEA 0.529 228 yes
AT1G68050 FLAVIN-BINDING KELCH DFB PROTEIN1 0.867 2.90 yes
AT2G25930 EARLY FLOWERING3 0.562 1.46 yes
AT2G46790 PSEUDO RESPONSE REGULATOR9 0473 1.38 yes
AT2G46830 CIRCADIAN CLOCK ASSOCIATED1 0.867 3.89 yes
AT3G22380 TIME FOR COFFEE 0.040 0.06 no
AT3G46640 LUX ARRHYTHMO 0.717 1.69 yes
AT5G57360 ZEITLUPE 0.350 0.41 no
AT5G61380 TIMING OF CAB2 EXPRESSIONT1 0.797 1.74 yes

Analysis results for 8 circadian clock associated genes and for TIME FOR COFFEE, a clock gene that does not cycle at the transcriptional level. These are the genes on the
forward strand that were also tested in [13]. Overlap indicates the proportion of overlap between the regions detected by the wavelet-based method and the gene
annotation; Max. Eff. gives the maximum estimated effect or amplitude size for this gene; Top 20 indicates whether the gene is within the top 20 genes with the
strongest circadian effect for the associated chromosome, as produced by the wavelet-based method.

1.0F and 1.0R tiling arrays, resulting in 18 samples. For this
case, model (2) can be written as

Yi(£) = Bo(t) + B1(¢) imbibed + By(t) mutantl
+ B3(t) mutant2 + B4(t) imbibed * mutant1

+ Bs(t) imbibed x mutant2 + E;(¢),

where imbibed =1 if the seed was imbibed and
imbibed = 0 if the seed was dry, mutantl =1 for
the aba2-mutant and mutantl =0 otherwise, and
mutant2 = 1 for the cyp707ala2a3 triple mutant and

mutant2 = 0 otherwise. This model specification implies
that the design matrix X used for this model is
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Column 1 of X corresponds with an overall mean
expression level over all samples. The main imbibition
effect is coded in column 2. Note that this corresponds
with the imbibition effect for wild types, which is the
reference species. Columns 3 and 4 are associated with
the main ABA mutation effects, whereas columns 5 and
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Figure 8 Gene-wise main and interaction effects of transcription levels for a two-factor model. Interaction plots for genes AT1G69530 (A) and
AT1G61520 (B). The black lines represent the observed log, expression for the probes at the different combinations of the two factor levels. The
dotted grey line is corresponding the mean observed log; expression over all the probes in the region. The orange lines are the probe-wise fitted
log, expression values, while the purple line gives the corresponding mean fitted log; expression values for all the probes in the region.
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Table 2 Two-factor model gene-wise effects

.éo,gene 31 ,gene BZ,gene .é3,gene I§4,gene BS,gene
AT1G69530 4.76 8.70 3.98 —082 —434 —7.09
AT1G61520 4.27 0.13 0.72 013 511 —0.44

Gene-wise mean parameter estimates for genes AT1G69530 and AT1G61520. The
estimates indicate a clear interaction effect between condition and species for
these genes, which is further visualized in Figure 8.

6 allow to examine an interaction effect between imbi-
bition and ABA mutation statuses. Figure 8 shows two
examples plots for representing the model fit for the genes
AT1G69530, encoding an expansin, and AT1G61520,
encoding a chlorophyll a/b binding protein, on the for-
ward strand of chromosome 1. Table 2 gives the associated
gene-wise mean parameter estimates for these genes. The
left panel plot of Figure 8 suggests a larger mean expres-
sion level of gene AT1G69530 for imbibed seeds compared
to dry seeds. The increase in mean expression level, how-
ever, is larger for wild types than for ABA-related mutants.
The increase in mean expression level between imbibed
seeds compared to dry seeds is given by ,31 gene = 8.70 for
wild types, while for aba2 mutants this increase is given
by ﬁl,ge,,e + ,34 gene = 4.36 and for cyp707ala2a3 triple
mutants by ,31,gene + ,Bs,ge,,e = 1.61. On the right panel
of Figure 8 we see an increased mean expression level of
gene AT1G61520 for aba2 mutants as compared to wild
types and c¢yp707ala2a3 triple mutants. In addition, this
increase is much stronger for imbibed seeds.

Conclusions

In this paper, we have described the R package waveTiling
for model-based analysis of tiling array expression studies
with flexible designs. It implements the recently proposed
wavelet-based model for transcriptome analysis [25] and
extends its applicability towards more complex experi-
mental set-ups. Unlike most currently applied methods,
transcriptional activity is modeled at probe-level instead
of gene- or exon-level. This probe-wise analysis allows
for the detection of transcriptional units in both exonic,
intronic and intergenic regions, without prior consulta-
tion of existing annotation. By appropriate adaptations of
the basic model design matrix it becomes possible to easily
analyze the transcriptome for single-factor experiments
with more than two biological conditions, to detect lin-
ear and quadratic time effects or a circadian rhythm effect
in time-course experiments, and to even conduct two-
or multiple-factor studies. The package’s use and flexibil-
ity are illustrated with three case studies on the reference
plant Arabidopsis thaliana. These cases show the poten-
tial of the package and method to cope with a multitude of
study designs and associated specific research questions
and still provide reliable results. The waveTiling package
will be freely available as part of the Bioconductor project.
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Availability and requirements

Project name: waveTiling

Project home page:
http://r-forge.r-project.org/projects/wavetiling/
Operating system(s): Platform independent
Programming language: R

Other requirements: R >= 2.14

License: GNU GPL

Any restrictions to use by non-academics: None

Additional files

Additional file 1: waveTiling package vignette. Package vignette
containing detailed information on how to perform a transcriptome
analysis using a wavelet-based functional model with the waveTiling
package. The data set of case study 1 (leaf development data) is used in the
vignette.

Additional file 2: Methods for biological validation. Detailed
information about the gene set enrichment and gRT-PCR analysis for case
study 1 (leaf development data).
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