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Abstract

Background: Chromosome conformation capture experiments result in pairwise proximity measurements between
chromosome locations in a genome, and they have been used to construct three-dimensional models of genomic
regions, chromosomes, and entire genomes. These models can be used to understand long-range gene regulation,
chromosome rearrangements, and the relationships between sequence and spatial location. However, it is unclear
whether these pairwise distance constraints provide sufficient information to embed chromatin in three dimensions.
A priori, it is possible that an infinite number of embeddings are consistent with the measurements due to a lack of
constraints between some regions. It is therefore necessary to separate regions of the chromatin structure that are
sufficiently constrained from regions with measurements that do not provide enough information to reconstruct the
embedding.

Results: We present a new method based on graph rigidity to assess the suitability of experiments for constructing
plausible three-dimensional models of chromatin structure. Underlying this analysis is a new, efficient, and accurate
algorithm for finding sufficiently constrained (rigid) collections of constraints in three dimensions, a problem for
which there is no known efficient algorithm. Applying the method to four recent chromosome conformation
experiments, we find that, for even stringently filtered constraints, a large rigid component spans most of the
measured region. Filtering highlights higher-confidence regions, and we find that the organization of these regions
depends crucially on short-range interactions.

Conclusions: Without performing an embedding or creating a frequency-to-distance mapping, our proposed
approach establishes which substructures are supported by a sufficient framework of interactions. It also establishes
that interactions from recent highly filtered genome-wide chromosome conformation experiments provide an
adequate set of constraints for embedding. Pre-processing experimentally observed interactions with this method
before relating chromatin structure to biological phenomena will ensure that hypothesized correlations are not driven
by the arbitrary choice of a particular unconstrained embedding. The software for identifying rigid components is
GPL-Licensed and available for download at http://cbcb.umd.edu/kingsford-group/starfish.

Background
Recent experiments for chromosome conformation cap-
ture [1-7] can result in graphs of hundreds of thousands
interactions between chromosome locations. Each edge
in such a chromosome conformation graph is associated
with a weight corresponding to the frequency at which
the interaction occurs, and the edges in the graph can
be interpreted as spatial distance constraints between
chromosome locations with an appropriate mapping from
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interaction frequency to distance [2-4]. The information
contained in chromosome conformation graphs has been
used to embed entire genomes as well as portions of chro-
mosomes at a kilobase-pair resolution in three dimensions
[2-5,7,8], and these structures provide first glimpses into
how chromosomes take shape within the cell in more
detail than what is possible with light microscopy [9].
These experiments are also motivated by the potential
to associate genome structure with long-range regulation,
chromatin accessibility, and somatic copy number alter-
ations [10]. Embedding chromosome conformation data
has become a common practice, and a variety of algo-
rithms have been developed to embed these structures
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in three dimensions [2,4,11]. These embedded structures
have been used to gain biological insight into how chro-
matin structure relates to cancer [4], how sequence relates
to to structure [7], and to study chromatin territories [5].
Our primary objective is to determine whether chro-

mosome conformation data from recent experiments on
the budding yeast, fission yeast, and human genomes
provide an adequate set of constraints for embedding
confidently. Underconstrained, floppy substructures of an
embedded genome can continuously deform without vio-
lating any measured distance constraints, resulting in an
infinite number of embeddings consistent with the exper-
imental data. As a pre-processing step before embedding,
it is thus desirable to identify non-floppy or rigid sub-
structures within the genome. It is these structures for
which we have the most confidence in three-dimensional
embeddings provided by optimization methods such as
described in [2-4]. Rigid regions are not rigid in the
sense of being physically frozen. In fact, a rigid region
can be asssociated with a variety of unique embeddings
consistent with distance constraints in the conformation
graph. In addition, chromosome conformation measure-
ments at various time points may reveal other snapshots
of chromatin structure, and this ensemble of embed-
dings can reflect the highly flexible nature of chromatin.
In contrast, if a substructure of chromatin is not rigid,
the flexibility is simply due to the fact that the region
is underconstrained by the experimental measurements.
Filtering subsequent spatial analyses to consider only
those regions that are rigid will help to avoid artifacts
created merely by the lack of sufficient constraints to
select among consistent, continuously deformable alter-
natives.
We apply graph rigidity theory [12,13] to determine

the substructures within the genome that are sufficiently
constrained to produce a non-floppy embedding in three
dimensions. Two key features of our technique are that it
deals directly with the chromosome conformation graph
rather than relying on computing a spatial embedding and
that it does not depend on the precise values of the dis-
tance constraints. These are both highly desirable proper-
ties for assessing the quality of chromosome conformation
data for embedding because there is no consensus yet
on a mapping from frequency to distance and computing
even a single spatial embedding can be computationally
very expensive for an entire genome. In order to efficiently
assess rigidity on the scale required by the chromosome
conformation capture data, we propose a novel, fast algo-
rithm for identifying rigid substructures. This algorithm
uses a family of “pebble game” algorithms [14-17] estab-
lished for finding rigid substructures in tandem with a
novel algorithm using results from rigidity theory [18].
Under the assumption that the edges in these graphs rep-
resent fixed distance constraints, the proposed algorithm

guarantees that all subgraphs identified are rigid in three
dimensions, although they may not be maximal.
While it could be the case that significant portions of the

constraints are floppy and potentially uninformative for
embedding, we find that, for even strictly filtered graphs,
a large rigid subgraph that spans most — but not all —
of the genome. Thus, since the region is not undercon-
strained, the embedded structures of most regions can
be more confidently interpreted. This procedure can be
applied to any statistical filtering of chromosome confor-
mation data, and we explore the effect of filtering both
low-frequency and short-range interactions on the cre-
ation of rigidly embeddable structures. Most interactions
in genome-wide chromosome conformation graphs occur
either infrequently or at short genomic distances, and
some of these interactions could be a result of experimen-
tal noise or arise from incidental, transient interactions.
By systematically filtering interactions, we quantify the
frequency cutoff at which large rigid components begin
to disappear. Additionally, we find that the creation of
rigid components depends crucially on short-range intra-
chromosomal interactions and that the pairing or separa-
tion between rigid, subtelomeric regions of chromosomes
is consistent with light microscopy data for budding and
fission yeast.

Results and discussion
Algorithms for identifying rigid components
Rigid components correspond intuitively to substructures
in the embedding that cannot be continuously deformed
without violating one or more measured proximities
between chromosome locations. Formally, a graph of dis-
tance constraints is a rigid graph or rigid body in three
dimensions if, when the vertices are embedded in generic
position in R

3, there is no continuous movement of the
vertices — aside from a rotation or translation of all ver-
tices — that maintains all the distances between vertices
connected by edges. If a graph is not rigid (i.e. floppy),
infinitely many embeddings are possible since there exists
at least one continuous movement of vertices that main-
tains all the distance constraints. A rigid component, or
maximally rigid subgraph, is a subset of vertices C for
which the subgraph induced by C is rigid and no superset
D ⊃ C exists for which the subgraph induced byD is rigid.
We only consider rigid components with 3 or more nodes,
although vertices with no edges and single edges can be
trivial rigid components of size 1 and 2 respectively.
There are several related notions of rigidity, depend-

ing on the types of motions allowed. In a general bar-
joint framework, vertices represent universal joints and
edges represent fixed-length bars between joints. The
double-banana graph (Figure 1) is composed of two
rigid components in this framework that rotate around
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Figure 1 The double-banana graph. The dotted line represents an
implied axis of rotation.

a hinge implied by two joints in the graph. The double-
banana can also be represented as a type of bar-joint
framework called a body-bar-and-hinge framework where
rigid bodies can be connected to one another by fixed-
length bars as well as hinges that allow just one rota-
tional degree of freedom between two rigid bodies. The
double-banana is also an example of a graph that con-
tains rigid components that share nodes, illustrating the
fact that rigid components of a graph do not corre-
spond necessarily to a partition of the vertices in the
graph.
No efficient algorithm is known for identifying all rigid

components in three dimensions in general bar-joint
frameworks. Efficient algorithms based on the so-called
“pebble games” do exist in two dimensions [14,15] and for
more restricted notions of rigidity in 3-dimensions [13].
Recently, it has been suggested that a variant of a peb-
ble game algorithm designed for two-dimensional rigid-
ity can be applied to arbitrary bar-joint frameworks in
three dimensions [13] with good results for most graphs.
While this approach often identifies many rigid compo-
nents, it also erroneously produces components that are
floppy. One such example is the double-banana graph of
Figure 1. In contrast, efficient, provably correct algorithms
exist to find rigid components in body-bar-and-hinge
frameworks [16].
We propose an iterative procedure we call BODY-BAR-

AND-HINGE REDUCTION (Algorithm 1) for more accu-
rately finding rigid components in three dimensions. It
begins by gluing together smaller rigid subgraphs and
then merges them by reducing the problem to identify-
ing rigid components in the body-bar-and-hinge frame-
work, for which efficient algorithms exist. For graphs
close to the minimally rigid threshold (3n − 6 edges

where n is the number of vertices in the graph), we
suggest the use of a hybrid algorithm (Algorithm 2)
that combines the pebble game with the body-bar-and-
hinge reduction. In this variant, whenever the pebble
game returns a floppy component, Algorithm 1 is run
on the component. The pebble game fails when implied
hinges exist such as the one in the double-banana graph
[13]. In these cases, we observe the pebble game over-
estimates the size of the actual rigid components and
Algorithm 1 decomposes this floppy component into rigid
subgraphs.

Algorithm 1. BODY-BAR-AND-HINGE REDUCTION
Let MAX-TRIANGLE(G,U) and MAX-VERTEX(G,U) be a
triangle or vertex in G, respectively, with the largest total
degree excluding edges incident to vertices in U.

1: Input: A graph G of distance constraints
2: Remove all vertices of degree ≤ 2
3: Initialize the list of rigid subgraphsR to the empty list
4: while a T = MAX-TRIANGLE(G,

⋃
C∈R C) can be

found such that T is not fully contained in any
component inR do

5: while a v = MAX-VERTEX(G,
⋃

C∈R C) with
v �∈ T and at least three edges to T can be found
do

6: Add v to T
7: Add T toR
8: while two components Ci,Cj ∈ R share three or

more vertices do
9: Remove both Ci and Cj fromR
10: Add Ci ∪ Cj toR
11: LetR2 be a subset ofR such that for each pair Ci,Cj

inR, |Ci ∩ Cj| = 0 or 2.
Comment: The body-bar-and-hinge framework will
be represented by a set of hinges H which contains
pairs of rigid bodies that share two vertices and a set
of bars B which contains edges that connect rigid
bodies.

12: Initialize B, H , a set of used hinges UH , and a set of
used nodes UN to the empty set.

13: for every pair Ci,Cj inR2 do
14: if |Ci ∩ Cj| = 2 and Ci ∩ Cj = {v,w} /∈ UH then
15: Add {Ci,Cj} to H
16: Add {v,w} to UH
17: Add both v and w to UN
18: for all pairs of nodes v,w in Ci�Cj do
19: if G contains an edge between v and w, v /∈ UN ,

and w /∈ UN then
20: Add {v,w} to B
21: Add both v and w to UN
22: Return: the subsets of vertices in G corresponding

to the rigid components of the body-bar-and-hinge
framework as well as components inR \ R2
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Algorithm 2. IDENTIFY RIGID COMPONENTS

1: Input: A graph G of distance constraints
2: Initialize the list of rigid components C to the empty

list
3: for every connected component Gi in G do
4: Let P be the set of components for Gi returned by

the pebble game algorithm
5: for H ∈ P do
6: if the subgraph induced by H is floppy then
7: append all components returned by

BODY-BAR-AND-HINGE REDUCTION on the
subgraph induced by H to C

8: else
9: append H to C
10: Return: C

To determine whether a component produced by the
pebble game is floppy or rigid (line 6 of Algorithm 2), we
use the standard rank test of a matrix that encodes a graph
of distance constraints given an embedding in R

3 [12]. If
a random embedding of a graph of distance constraints
is rigid, then all generic embeddings are also rigid [19].
This fact allows the rigidity of an identified subgraph of
distance constraints to be tested via random embeddings,
ignoring the precise distances on the constraints.
We construct rigid subgraphs using Algorithm 1, which

starts greedily from a triangle with the most connections
to other vertices not yet in a rigid component. This rigid
subgraph is then grown one vertex at a time such that
each added vertex connects to at least three vertices in
the existing subgraph and has the most connections to
other vertices not in the subgraph (lines 3-6). By Proposi-
tion 1, the grown subgraph is rigid. Once no vertex can be
added, another triangle not contained in an existing com-
ponent is selected and grown by the same vertex addition
allowing reuse of any vertex added in a prior step. Once
no more triangles can be found, constructed rigid sub-
graphs that overlap by three or more vertices are merged
to form larger rigid subgraphs (lines 8-10). Propostion 2
below guarantees that componentsmerged in this way will
be rigid.

Proposition 1. If a vertex connects to at least three
nodes in a rigid subgraph, then extending the subgraph to
include that vertex results in a rigid subgraph. (VERTEX
3-ADDITION LEMMA [18])

Proposition 2. If two rigid subgraphs overlap by 3 or
more nodes, then the union of the subgraphs is rigid
(GENERIC 3-GLUING LEMMA [18]).

The resulting subgraphs are merged further by
converting them into a body-bar-and-hinge framework as
described in lines 11-21 of Algorithm 1.

Proposition 3. Algorithm 1 returns rigid components.

By Propositions 1 and 2, the subgraphs produced by
the initial greedy phase of Algorithm 1 are rigid and can
be used as bodies. Line 11 eliminates the possibility that
pairs of rigid bodies overlap by exactly one node: this
overlap can neither be represented as a hinge between
two rigid bodies nor a bar between two distinct vertices.
The framework is then constructed by assuring that each
hinge connects exactly two rigid bodies that overlap by
two vertices. Lines 14-17 guarantee that whenever a hinge
is created between a pair of rigid bodies that overlap by
two vertices, that pair of vertices is never used as a hinge
again. Lines 18-21 similarly assure that vertices across
two rigid bodies are connected together by bars such
that no vertex contains multiple bars. These basic rules
construct a body-bar-and-hinge framework where hinges
only allow one degree of rotational freedom between two
rigid bodies and that bars do not share end points [20].
Rigid components in this framework directly correspond
to rigid components in the original graph. By a theorem of
Tay [21], a variant of the pebble game can be used to iden-
tify rigid components in body-bar-and-hinge frameworks,
and this can be done in time quadratic in the number of
vertices [16].
Although, by Proposition 3, the subgraphs produced

by Algorithm 1 are rigid, they may not be maximally
rigid subgraphs (i.e. rigid supergraphs may exist). This
is because certain bar-joint frameworks cannot be repre-
sented as body-bar-and-hinge frameworks (e.g. two tri-
angles with a shared node), and therefore some rigid
components may be missed. However, the algorithm pro-
posed here correctly identifies the two rigid components
in the double-banana, which are incorrectly merged by the
pebble game in three dimensions. Figure 2 illustrates the
technique.
For graphs close to the minimally rigid threshold (3n−6

edges in three dimensions where n is the number of ver-
tices in the graph), Algorithm 1 may fail to identify the
maximal rigid component. In these cases, we propose
using a hybrid algorithm (Algorithm 2) that combines the
body-bar-and-hinge reduction with the pebble game algo-
rithm. Since the pebble game does not guarantee that the
components it returns are rigid, Algorithm 2 performs
matrix rank tests on these components to verify that they
are indeed rigid. The bottleneck of Algorithm 2 is the
matrix rank testing of components returned by the pebble
game, which takes O(mn2) time, where m is the number
of edges in the graph and n is the number of vertices.

Performance of rigid component algorithms
Although there is no known algorithm that efficiently
identifies all maximally rigid subgraphs of bar-joint frame-
works in three dimensions at this scale, for a few small
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Figure 2 Schematic of the body-bar-and-hinge reduction. The
rigid body in the dotted line is not included since it does not form a
hinge with another body and no bar connects it to another body.

individual chromosomes in budding yeast (1,2 and 6) at
interaction frequency cutoffs of 98.8, 99.0, 99.2, and 99.4%
(see Methods), we observe that Algorithm 1 finds maxi-
mally rigid subgraphs. To verify that we find a maximally
rigid subgraph, we performed matrix rank tests on all
possible induced subgraphs with more vertices than the
largest rigid component identified by Algorithm 1. We
also compared Algorithm 1 with a recently proposed slow
spring relaxation algorithm [13] and found identical rigid
components.
For even a single chromosome, the exhaustive subset

testing technique takes hours to days on 20 Opteron 8431
(2400MHz) processors and the spring relaxation algo-
rithm takes a similar amount of time on a single processor.
A rigidity analysis using these techniques would be infea-
sible, but Algorithm 1 can identify rigid components on
the entire yeast genome (Duan et al. with their FDR 0.01%
filtering) in minutes on a single processor. This is despite
the fact that finding the maximum triangle, which takes
O(n3) time, is the bottleneck in Algorithm 1. On the other
hand, finding any triangle in a graph is at most the time
complexity of a matrix multiplication [22]. If we replace
the greedy requirement of finding a maximum triangle
and maximum vertex with finding any triangle or vertex
that meets the edge connection criteria, we obtain iden-
tical results at much lower running times (< 20 seconds
for the Duan et al. genome at FDR 0.01%). In addition,
when comparing Algorithm 1 to the pebble game for bar-
joint networks, we find identical rigid components for all
individual chromosomes in the Duan et al. data set. The
pebble game algorithm alone runs in similar time to Algo-
rithm 1, but doesn’t guarantee rigidity. When rank tests
are used to confirm rigidity for the pebble game algorithm,
the running times are at least 20 times the running times
without the rank tests.

The pebble game obtains larger rigid components than
Algorithm 1 when maximally rigid subgraphs are close
to the minimum number of edges required for rigidity
(3n − 6 edges in three dimensions where n is the num-
ber of vertices in the graph), and Algorithm 2 will always
find rigid components at least as large as the pebble game
since floppy components returned by the pebble game
are decomposed into smaller rigid components, and by
Proposition 3, it will never report a floppy component as
rigid. Algorithm 2 uses the pebble game in two ways: first,
a version of it [13] is applied directly to other input net-
work and, after rigidity matrix tests, if any of these compo-
nents are floppy, Algorithm 1 is applied using a version of
the pebble game to find components on the body-bar-and-
hinge network. This version of the pebble game explicitly
models the bars and hinges in the body-bar-and-hinge
framework. Further discussion and demonstrations of the
pebble game and its application can be found online [17].

Rigid components in augmented vs. non-augmented
chromosome conformation graphs
Augmented chromosome conformation graphs explicitly
incopropate constraints to model the linear nature of
chromatin (see Methods). Adding constraints between
betweeen adjacent fragments can increase the sizes of the
rigid components in the graph. For example, in Figure 3
the addition of these edges causes vertices B, C, and D to
form a triangle, which is rigid. Vertices not observed in
the experiment have degree ≤ 2 since the edges between
adjacent components form a path in the graph. Since
any vertex of degree ≤ 2 cannot contribute to a rigid
component, vertices not observed in experiment do not
change the rigid components in the graph (e.g. vertex E in
Figure 3).
We find that augmented constraints may be useful when

embedding the data, but they are not required for obtain-
ing large rigid substructures. Even though the augmented
chromosome conformation graph can add many new
edges (e.g. around 4,000 for Duan et al.), for all genomes,
the size of the largest rigid component increases by no
more 5% (Table 1). This suggests that there are enough
short-range interactions in the experimental data so that

A B C D E

3
20

F

DNA Sequence

8

Vertex: midpoint of 
DNA fragment 

Chromosome conformation edge

Adjacent fragment edge

Figure 3 Example chromosome conformation graph. Example
augmented chromosome conformation graph. Each node represents
a chromosome location and edges represent distance constraints.
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Table 1 Largest rigid component sizes for genome-wide experiments

Unaugmented Augmented

Experiment Graph size Rigid component Graph size Rigid component

GM06690 2,880 2,879 2,882 2,880

K562 2,874 2,874 2,882 2,874

Budding yeast 3,172 2,880 4,193 2,959

Fission yeast 611 590 619 606

The number of vertices (graph size) in the largest connected component and the number of vertices in the largest rigid component for genome-wide chromosome
conformation graphs (unaugmented and augmented) at the 98.8% interaction frequency cutoff.

constraints between adjacent fragments are redundant
when determining whether the graph is rigid.

Effect of low-frequency and short-range interactions on
rigid components
Running Algorithm 2 on filtered chromosome confor-
mation data for the fission yeast, budding yeast, and
human genomes results in one large rigid component for
each genome (Table 1). We apply stringent filters since
most interactions occur very infrequently and we wish
to determine the rigidity of the experiments from the
most probable highest-confidence interactions. Although
rigid graphs can be very sparse (i.e. rigid components are
not necessarily dense graphs), denser graphs are more
likely to be rigid. However, even after removing more than
98% of the low-frequency interactions, a single large rigid
subgraph comprising most of the genome is found. For
Duan et al. (Figure 4, left), even after removing 98.8% of
the low-frequency edges, a rigid component with nearly

three-fourths of all possible nodes is obtained (the hor-
izontal red line in Figure 4 represents the total number
of nodes in the conformation graph). The density of this
subgraph is nearly one-third the density of the most strin-
gently filtered set of interactions provided by Duan et al.
and each edge in the subgraph has an observed interac-
tion frequency ≥ 30. Rigidity analysis directly on their
filtered data also produces a single, large rigid component.
Notably, the fission yeast conformation graph of Tanizawa
et al. is rigid despite being close to the minimum number
of edges required for rigidity: at a cutoff of 98.8%, there are
611 nodes and 2,167 edges, just 340 more edges than are
necesssary for the graph to be rigid. This shows that, even
after stringent filtering of interactions, there is sufficient
data to restrict most of the genome to only a finite set of
possible embeddings.
As more low-frequency interactions are removed, the

original component breaks apart into multiple rigid com-
ponents that still span most of the genome (Figure 4,

Figure 4 Effect of low-frequency interactions on rigid components. (Left) Sizes of rigid subgraphs after removing various percentages of
low-frequency interactions for the Duan et al. chromosome conformation graph. The rigid subgraphs at a particular cutoff are sorted and colored by
size. The horizontal red line represents the total number of nodes in the chromosome conformation graph before filtering. (Right) The
chromosomal locations of rigid components after removing 99.4% of low-frequency interactions. Bars indicate centers of the fragments involved in
a rigid component, and colors indicate the various components.
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right). The rigid components are usually subgraphs of
connected components of the filtered graph, not entire
connected components themselves. Figure 5(A) shows the
Duan et al. embedding colored by the interaction fre-
quency cutoff at which a segment of the genome becomes
floppy. Even after removing 99.6% of the low-frequency
interactions, nearly one-third of the embedding remains
rigid. Figure 5(B) highlights rigid components at the 99.0%
interaction-frequency cutoff for the fission yeast genome.
By systematically removing short-range, intra-chromo-

somal interactions on frequency-filtered graphs (i.e. all
those below some chromosomal distance), we find that

Figure 5 Highlighting structures with rigidity analysis.
(A) Confidence in the embedding of the Duan et al. structure.
Segments of the genome are colored according to the interaction
frequency cutoff at which the segment becomes floppy. Red regions
correspond to the 98.8 cutoff% and blue regions are still rigid at the
99.6% cutoff. (B) The Tanizawa et al. structure colored by rigid
component for interaction frequency cutoff 99.0%. Dark gray
indicates floppy regions. Rigid components in the subtelomeric
regions of chromosome 1 are red (see Discussion).

such interactions (i.e. typically those below 40 kbp) are
crucial for maintaining a large rigid component compris-
ing most of the genome. Figure 6, for example, shows
that removing interactions that span ≤ 75 kbp results
in the elimination of nearly all large rigid components.
It shows that the rigid embeddability of the chromo-
some conformation data depends centrally on these short-
range contacts to provide a backbone of constraints for
genome-wide chromosome conformation data sets. This
dependency on short-range interactions holds for all data
sets except Bau et al. which is targeted to a small region
of human chromosome 16 and still maintains a large
rigid component (with at least half of all possible ver-
tices) even after removing all interactions ≤ 140 kbp.
The fact that both the non-cancer and cancer data sets
of Bau et al. preserve large rigid components after strin-
gent filtering of short-range interactions may be due to
the fact that the Bau et al. data set is of higher qual-
ity and has larger interaction frequencies for both cell
types.

Rigid components of a graph filtered for metric distances
An alternative way to filter the experimental data is to
keep only those constraints that satisfy the metric prop-
erties under some frequency to distance mapping. Since
chromosome conformation graphs are an aggregation
of interactions from millions of cells, each with some
conformation of chromatin, it is possible that dense sub-
graphs resulting from this aggregation are associated with
proximities that contradict one another when attempting
an embedding. For example, any clique with > 4 nodes
where the distance between any two nodes is required to
be the same is impossible to embed in three dimensions.
In general, the problem of determining whether a graph
of distance constraints can be embedded in three dimen-
sions is NP-hard [23]. However, one necessary condition
for a graph to be embedded in three dimensions is that all
interactions satisfy the metric properties.
We therefore also tested a filtering scheme that keeps

only sets of edges that satisfy the triangle inequality. This
is yet another stringent filtering applied to the data set
to test for rigidity. Consider a chromosome conforma-
tion graph where weights on the edges are defined to be
the distance as determined by a frequency to distance
mapping [2-4]. We obtain the set of interactions {u, v} in
the subgraph with lengths equal to the weighted short-
est path between u and v; this set satisfies the shortest
path metric. The Duan et al. subgraph (FDR 0.01%) after
this metric filtering still contains 3,525 vertices and 27,301
edges and one large rigid component with 2,987 vertices.
Therefore, even after including only high-frequency, met-
ric interactions, there is sufficient data to obtain a non-
deformable embedding.
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Figure 6 Rigid components after removing short-range interactions. (A) Sum of rigid component sizes after removing all interactions below
increasing intra-chromosomal distances (98.8% frequency cutoff). (B) Chromosomal locations of rigid components after removing
intra-chromsomal interactions that occur within 75kbp for the Duan et al. chromosome conformation graph (98.8% frequency cutoff). Bars indicate
centers of the fragments involved in a rigid component, and colors indicate the various components.
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Discussion
Although our primary objective is to determine the extent
to which currently available chromosome conformation
data is rigid, we additionally choose specific cutoffs (since
there is no established cutoff) and anecdotally discuss
the properties of rigid components in these contexts. For
example, the set of rigid components for the two human

cell types differ significantly: at a 99.4% cutoff, the largest
rigid component of the cancer cell covers all of chromo-
somes 1, 6, and 7, while the largest rigid component of
the healthy cell covers only chromsome 16 despite the
fact that they each have a similar number of vertices and
edges (Figures 7(A) and 7(B)). Cancer and non-cancer
cell types are commonly compared in 3C experiments
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Figure 7 Rigidity of cancer vs. non-cancer graphs. Chromosome locations of rigid components for Lieberman-Aiden et al. (A) lymphoblastoid
cell and (B) cancer cell colored by rigid component for interaction frequency cuttoffs 99.4%.
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Table 2 Chromosome conformation data sets

Experiment Genome Resolution Data provided

Lieberman-Aiden et al. Human 100,1000 R,C,SN

Duan et al. Budding yeast F,10 R,C,SN,EN

Tanizawa et al. Fission yeast 20 R,SN,EN

Bau et al. Human chr. 16 F C

Reported information for various chromosome conformation data sets. Some
data is analyzed at the restriction fragment length resolution (F) or at coarser
resolutions (in kbp). Some experiments result in paired-end reads (R) that are
deposited in an online database. Interaction frequency or counts (C), a statistical
normalization of counts (SN), and experimental normalization of counts (EN) are
also sometimes reported.

(e.g. [1,4,10]), and assuming this more stringent filter is
used for an embedding, this analysis suggests it is pos-
sible to confidently embed a much larger portion of the
cancer genome than the normal lymphoblastoid genome.
While it is desireable to compare the entire structures,
structural comparisons can more confidently be made
between mutually rigid subsets of the genome at this cut-
off, and focusing comparisons on mutually rigid subsets
guarantees that the difference between structures is not
due to the fact that one or both of them is undercon-
strained. The large difference in rigid component sets
may be due to the fact that the cancer and non-cancer
genomes are structurally very different from one another.
The Bau et al. study establishes this for a small portion
of chromosome 16 with both chromosome conforma-
tion data and microscopy experiments, but there has
been no genome-wide structural comparsion of these cell
types.
Microscopy data also confirms some observed prop-

erties for the rigid components in the Duan et al. and
Tanizawa et al. data sets. At the 99.4% and 99.6% inter-
action frequency cutoffs, the larger chromosomes in
budding yeast break apart into multiple large rigid com-
ponents (Figure 4, right) with subtelomeric regions in
different rigid components. This is consistent with the
fact that the subtelomeric regions of chromosomes 4,
12, and 13 are known to be separated from one another

and near the nucleolus and nuclear periphery [24,25]. For
chromosome 12 of budding yeast, a subtelomeric region
containing ribosomal DNA close to the nucleolous is a
part of its own rigid component even at a 98.8% inter-
action frequency cutoff [2]. For chromosome 1 of the
fission yeast genome (interaction frequency cutoff 99.0%),
the subtelomeric regions at each end are part of a sin-
gle rigid component (the red region in Figure 5(B)) and
these regions are also observed in close proximity to one
another in microscopy experiments [3,26].
To capture the space of possible structures, our rigid

components algorithm can also be used as input to a
recent technique that creates an ensemble of embeddings
from chromosome conformation data [11]. Generating
an ensemble of embeddings can be slow on large collec-
tions such as [1], and a potential speedup can be achieved
by randomly permuting the edges of the input graph
passed to the pebble game. This procedure samples the
minimimally rigid subgraphs built with the pebble game.
Although it is unlikely that any embedding represents
a structure that existed for any particular cell, multi-
ple minimally rigid structures can be used to determine
whether there exist rigid substructures that are consistent
across random samplings of the data. If these re-appearing
substructures exist, then there is stronger evidence that
there exist relatively fixed regions or ‘structural invariants’
which can be more confidently in analyzed spatially.
Finally, we find that random graphs produced by apply-

ing the configuration model [27] to a chromosome con-
formation graph generally contain large rigid subgraphs
as well. This suggests that the degree distribution of the
graphs in these cases are linked to their rigidity.

Conclusions
Recent chromosome conformation experiments provide
an abundance of data which, even after applying sev-
eral filtering strategies, still result in rigid embeddings
for most of the budding yeast, fission yeast, and human
genomes. This conclusion is independent of any particular
algorithm for embedding a structure. The genome-wide

Table 3 Summary of chromosome conformation graphs

Experiment # Vertices Max intra-chromosomal Max inter-chromosomal

frequency frequency

Lieberman-Aiden et al. GM06690 2,882 29,931 6,068

Lieberman-Aiden et al. K562 2,882 41,124 3,331

Duan et al. 4,193 4,683 107

Tanizawa et al. 619 35.25 13.75

Bau et al. GM12878 55 5,823 -

Bau et al. K562 55 13,686 -

Summary of chromosome conformation graphs used for testing embeddability in three dimensions. The frequencies in Tanizawa et al. are experimentally normalized,
and Bau et al. focus on a 500kbp segment of human chromosome 16 as opposed to the entire genome.
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graphs we studied are composed of one large rigid com-
ponent using fewer than 2% of the edges. Additionally, we
find that short-range interactions are crucial for maintain-
ing the large rigid component.
As data for studying the three-dimensional struc-

ture of genomes under a variety of conditions becomes
increasingly available, restricting spatial analysis to the
high-confidence regions of these structures ensures that
conclusions drawn from the structures are not artifacts of
a lack of sufficient constraints. The algorithm proposed
here efficiently identifies non-deformable, rigid substruc-
tures within chromosome conformation graphs by using
a variety of results from rigidity theory that guarantee
the construction of rigid graphs from rigid subgraphs.
Graph rigidity is well-suited to assess the quality of chro-
mosome conformation data since the experiments do
not currently provide precise distances between chromo-
some locations, and graph rigidity does not depend on
the precise values of the distances in a graph of distance
constraints. Before performing computationally expensive
embeddings of chromsosome conformation data, pre-
processing data with the technique described in Algo-
rithm 2 using any choice of filter quickly isolates regions
of the genome for which a sufficient number of constraints
exist for an embedding and these subgraphs serve as a
basis for embedding chromosome conformation graphs in
three dimensions.

Methods
Chromosome conformation experiments
Recent experimental methods for chromosome confor-
mation [1-4] operate simultaneously on a million or more
eukaryotic cells at the same stage of the cell cycle. The cells
are chemically treated so that fragments of DNA bound to
pairs of proteins near one another can be sequenced. This
procedure results in a set of paired-end reads that can be
mapped to pairs of chromosome locations that are near
one another.
Depending on the experimental procedure, the pairwise

interaction data is interpreted at different resolutions.
Higher-resolution experiments consider the frequency
of interaction between two DNA fragments directly
while lower resolution experiments aggregate interactions
between larger segments of DNA. Each pair of chromo-
some locations can be associated with a frequency of
observed interaction, a statistical normalization of this
frequency (e.g. divide frequencies by an expected genome-
wide frequency), or an experimental normalization of this
frequency. Table 2 lists the data sets that we use and the
type of data they report.

Chromosome conformation graphs
A chromosome conformation graph encodes experimen-
tally determined constraints between positions along one

or more chromatin fibers. Formally, a conformation graph
is a graph G = (V ,E) where V is the set of centers of
experimentally observed DNA fragments or larger seg-
ments of DNA, and the set of edges E corresponds to
observed interactions and their frequency. Three of the
four data sets we consider provide frequency data directly
(Table 2). Tanizawa et al. instead provide experimentally
normalized data, effectively dividing the observed counts
by 20. Additional statistical normalization methods vary
across publications, and there is no consensus yet for
which normalization is appropriate to use.
An augmented chromosome conformation graph con-

tains the vertices and edges of a chromosome con-
formation graph, but in addition contains vertices for
chromosome fragments that were not observed to have
any interaction partners and also includes edges con-
necting fragments that are adjacent to each other in the
genome. Hence, the chromosome conformation graph
contains only constraints measured by the experiments,
while the augmented graph additionally contains a path
representing each chromatin strand (Figure 3). The aug-
mented graph explicitly incorporates the linear nature
of the genome as packed chromatin [28]. Various meth-
ods to embed chromosome conformation data in three
dimensions incorporate this type of constraint [2-4].
Table 3 summarizes the chromosome conformation

graphs we created. Lieberman-Aiden et al. and Bau et al.
perform experiments on lymphoblastoid cells (GM06690
and GM12878 respectively) as well as leukaemia cancer
cells (K562). We use the 1Mb resolution for Lieberman-
Aiden et al. since this is the resolution for which inter-
chromosomal frequencies are provided. The chromosome
conformation procedure described in Duan et al. involves
two restriction enzymes: either HindIII or EcoRI paired
with either MspI or MseI. To test the repeatability of their
procedure, data is provided for both MspI and MseI. We
use the frequency data from the experiment involving the
HindIII and MspI restriction enzymes.

Preprocessing conformation graphs
Unfiltered chromosome conformation graphs are believed
to contain noise due to (1) infrequent interactions and
(2) short-range interactions. Although it is conceivable
to consider all observed interactions simultaneously in
a weighted fashion, existing embedding methods all
directly filter input the data [2-4], and these methods pre-
serve unusually high-frequency interactions given some
genomic distance (e.g. [1-4]). Since there is no consensus
yet on any particular filtering method, we systematically
test whether a graph is rigid under a variety of filtering
schemes:

1. Frequency: remove x% of the lowest-frequency
interactions. Existing filtering schemes keep the
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frequently occuring interactions while removing
transient, potentially noisy ones.

2. Genomic distance: remove all interactions with
endpoints separated by fewer than x kilobases.
Existing filtering schemes also attempt to remove
short-range interactions that may be a result of
experimental noise.

3. Metric distance: remove all interactions that do not
satisfy metric properties. Since existing embedding
methods all employ a frequency-to-distance mapping
[2-4], it is reasonable to remove constraints that
violate metric properties of a graph. The set of
interactions {u, v} in the subgraph with lengths equal
to the weighted shortest path between u and v
satisfies the shortest path metric. To obtain this set,
we calculate the shortest paths between the source
and target nodes for all edges in the graph and keep
only those edges whose length equals the shortest
path length [29].

While we consider a variety of cases and data sets, to
obtain an idea for the edge set sizes, the frequency cut-
offs we consider for the genome-wide experiments are:
98.8, 99.0, 99.2, and 99.4%. For Duan et al. the edge set
sizes for each respective cutoff are: 35892, 29910, 23928,
17946, and 11964. the edge set sizes for Lieberman-Aiden
et al. are: 28426, 23921, 19328, 14689, and 10096 (healthy),
26798, 22681, 18471, 14053, and 9485 (cancer); the edge
set sizes for Tanizawa et al. are: 2167, 1806, 1445, 1084,
and 723.
Filtering methods 1 and 2 above allow us to sys-

tematically study the affect of removing low frequency
interactions and short-range interactions so that we can
identify which of these features contributes to the creation
of rigid components (existing filtering methods com-
bine the two properties making it difficult to isolate the
cause of rigid components). Filtering method 3 is rele-
vant since metrically consistent, low-error embeddings
are desireable when embedding chromosome conforma-
tion data.
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