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Abstract

Background: We consider the problem of finding the maximum frequent agreement subtrees (MFASTs) in a
collection of phylogenetic trees. Existing methods for this problem often do not scale beyond datasets with around
100 taxa. Our goal is to address this problem for datasets with over a thousand taxa and hundreds of trees.

Results: We develop a heuristic solution that aims to find MFASTs in sets of many, large phylogenetic trees. Our
method works in multiple phases. In the first phase, it identifies small candidate subtrees from the set of input trees
which serve as the seeds of larger subtrees. In the second phase, it combines these small seeds to build larger
candidate MFASTs. In the final phase, it performs a post-processing step that ensures that we find a frequent
agreement subtree that is not contained in a larger frequent agreement subtree. We demonstrate that this heuristic
can easily handle data sets with 1000 taxa, greatly extending the estimation of MFASTs beyond current methods.

Conclusions: Although this heuristic does not guarantee to find all MFASTs or the largest MFAST, it found the MFAST
in all of our synthetic datasets where we could verify the correctness of the result. It also performed well on large
empirical data sets. Its performance is robust to the number and size of the input trees. Overall, this method provides a
simple and fast way to identify strongly supported subtrees within large phylogenetic hypotheses.
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Background
Phylogenetic trees represent the evolutionary relation-
ships of organisms. While recent advances in genomic
sequencing technology and computational methods have
enabled construction of extremely large phylogenetic
trees (e.g., [1-3]), assessing the support for phylogenetic
hypotheses, and ultimately identifying well-supported
relationships, remains a major challenge in phylogenet-
ics. Support for a tree often is determined by methods
such as nonparametric bootstrapping [4], jackknifing [5],
or Bayesian MCMC sampling (e.g., [6]), which generate
a collection of trees with identical taxa representing the
range of possible phylogenetic relationships. These trees
can be summarized in a consensus tree (see [7]). Consen-
sus methods can highlight support for specific nodes in
a tree, but they also may obscure highly supported sub-
trees. For example, in Figure 1, the subtree containing taxa
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A, B, C, and D is present in all five input trees. However,
due to the uncertain placement of taxon E, the majority
rule consensus tree implies that the clades in the tree have
relatively low (60%) support.
Alternate approaches have been proposed to reveal

highly supported subtrees. Themaximum agreement sub-
tree (MAST) problem seeks the largest subtree that is
present in all members of a given collection of trees [8].
For example, in Figure 1 the MAST includes taxa A, B,
C, and D. Finding the MAST is an NP-hard problem [9],
although efficient algorithms exist to compute the MAST
in some cases (e.g., [9-17]). In practice, since any differ-
ence in any single tree will reduce the size of the MAST,
the MAST is often quite small, limiting it usefulness.
A less restrictive problem is to find frequent agreement

subtrees (FAST), or subtrees that are found in many, but
not necessarily all, of the input trees (see [18]). In this
problem, a subtree is declared as frequent if it is in at
least as many trees as a user supplied frequency thresh-
old. Several algorithmic approaches have been suggested
to identify FASTs, and specifically the maximum FASTs
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Figure 1 (a) A collection of five input trees. The same subtree with taxa A, B, C, and D is present in all input trees, and only the position of taxa E
changes. (b) The majority rule consensus and maximum agreement subtrees of the 5 input trees in Figure 1a.

(MFASTs), or FASTs that contain the largest number of
taxa. A variant of this problem seeks the maximal FASTs,
i.e., FASTS that are not contained in any other FASTs.
Notice that an MFAST is a maximal FAST, however, the
inverse is not necessarily true. Zhang and Wang defined
algorithms, implemented in Phylominer, to identify FASTs
from a collection of phylogenetic trees [19,20]. These algo-
rithms are guaranteed to find all FASTs but they may
be prohibitively slow for data sets larger than 20 taxa.
Cranston and Rannala implemented Metropolis-Hastings
and Threshold Accepting searches to identify large FASTs
from a Bayesian posterior distribution of phylogenetic
trees [21]. This approach can handle thousands of input
trees but it may not be feasible if the trees have more than
100 taxa [21].
Another approach to reveal highly supported subtrees

from a collection of trees is to identify and remove rogue
taxa, or taxa whose position in the input trees is least con-
sistent. Recently, several methods have been developed
that can identify and remove rogue taxa from collec-
tions of trees with thousands of taxa [22-24]. However,
unlike MAST or FAST approaches, they do not provide
guarantees about the support for the remaining taxa.
In this paper, we describe a heuristic approach for iden-

tifying MFASTs in collections of trees. Unlike previous
methods, our method easily scales to datasets with over a
thousand taxa and hundreds of trees. Towards this goal,
we develop a heuristic solution that works in multiple
phases. In the first phase, it identifies small candidate sub-
trees from the set of input trees which serve as the seeds
of larger subtrees. In the second phase, it combines these
seeds to build larger candidateMFASTs. In the final phase,
it performs a post processing step. This step ensures that
the size (i.e., number of taxa) of the FAST found can not be
increased further by adding a new taxon without reducing
its frequency below a user supplied frequency thresh-
old. We demonstrate that this heuristic can easily handle
data sets with 1000 taxa. We test the effectiveness of

these approaches on simulated data sets and then demon-
strate its performance on large, empirical data sets.
Although our heuristic does not guarantee to find all
MFASTs or the largest MFAST in theory, it found the true
MFAST in all of our synthetic datasets where we could
verify the correctness of the result. It also performed well
on the empirical data sets. Its performance is robust with
respect to the number of input trees and the size of the
input trees.

Methods
In this section we describe our method that aims to find
Maximum Frequent Agreement SubTrees (MFASTs) in a
given set of m phylogenetic trees T = {T1, T2, · · · , Tm}.
Our method follows from the observation that an MFAST
is present in a large number of trees in T . The method
builds MFASTs bottom up from small subtrees of taxa in
the trees in T . Briefly, it works in three phases.

• Phase 1. Seed generation (Section “Phase one: Seed
generation”).
In the first phase, we identify small subtrees from the
input trees that have a potential to be a part of an
MFAST. We call each such subtree a seed.

• Phase 2. Seed combination (Section “Phase two: Seed
combination”).
In the second phase, we construct an initial FAST by
combining the seeds found in the first phase.

• Phase 3. Post processing (Section “Phase three:
Post-processing”).
In the third phase, we grow the FAST further to
obtain the maximal FAST that contains it by
individually considering the taxa which are not
already in the FAST. We report the resulting
maximal FAST as a possible MFAST.

First, we present the the basic definitions needed for this
paper in Section “Preliminaries and notation”. We then
discuss each of the three phases above in detail.
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Preliminaries and notation
In this section, we present the key definitions and nota-
tions needed to understand the rest of the paper. We
describe our method using rooted and bifurcating phylo-
genetic trees. However, our method and definitions can
easily be applied to unrooted or multifurcating trees with
minor or no modifications. Also, we assume that all the
taxa are placed at the leaf level nodes of the phylogenetic
tree, and all the internal nodes are inferred ancestors.
Figure 2(a) shows a sample phylogenetic tree built on five
taxa. We define the size of a tree as the number of taxa in
that tree. We start by defining key terms.

Definition 1 (Clade). Let T be a phylogenetic tree. Given
an internal node of T, we define the set of all nodes and
edges of T contained under that node as the clade rooted at
that node.

Each internal node of a phylogenetic tree corresponds
to a clade of that tree. Figure 2(b) depicts the clade of the
tree in Figure 2(a) rooted at x1.

Definition 2 (Contraction). Let T be a phylogenetic tree
with n taxa. The contraction operation transforms T into a
tree with n − 1 taxa by removing a given taxon in T along
with the edge that connects that taxon to T.

The contraction operation can extract the clades of a
tree by removing all the taxa that are not a part of that
clade. It can also extract parts of the tree that are not nec-
essarily clades. We use the term subtree to denote a tree
that is obtained by applying contractions to arbitrary set
of taxa in a given tree. Formal definition is as follows.

Definition 3 (Subtree). Let T and T ′ be two phyloge-
netic trees. We say that T ′ is a subtree of T if T can be
transformed into T ′ by applying a series of contractions on
T.

If a tree T ′ is a subtree of another tree T , we say that
T ′ is present in T . Notice that a clade is always a subtree,

x2 x3

x1

x0

a b c d e
(a)

a b c
(b)

b c d
(c)

Figure 2 (a) A rooted, bifurcating phylogenetic tree T built on
five taxa labeled with a, b, c, d and e. The internal nodes are shown
with x0, x1, x2 and x3. (b) A clade of T rooted at x1. (b) and (c) Two
subtrees of T by contracting the taxa sets {d, e} and {a, e}.

but the inverse is not true all the time. Figures 2(b) and
2(c) illustrate two subtrees of the tree in Figure 2(a). Let us
denote the number of combinations of k taxa from a set of
n taxa with

(n
k
)
. In general, if a tree has n taxa, then that

tree contains
(n
k
)
subtrees with k taxa. As a consequence,

that tree contains 2n − 1 subtrees of any size including
itself.

Definition 4 (Frequency). Let T = {T1, T2, · · · , Tm} be
a set of m phylogenetic trees and T be a phylogenetic tree.
Let us denote the number of trees in T at which T is present
with the variable m′. We define the frequency of T in T as

freq(T , T ) = m′

m
.

Definition 5 (FAST). Let T = {T1, T2, · · · , Tm} be a set
of m phylogenetic trees and T be a phylogenetic tree. Let γ

be a number in [0, 1] interval that denotes frequency cutoff.
We say that T is a Frequent Agreement SubTree (FAST) of
T if its frequency in T is at least γ (i.e., freq(T ,T ) ≥ γ ).

We say that a FAST ismaximal if there is no other FAST
that contains all the taxa in that FAST. Clearly, larger
FASTs indicate biologically more relevant consensus pat-
terns. The following definition summarizes this.

Definition 6 (MFAST). Let T = {T1, T2, · · · , Tm} be a
set of m phylogenetic trees. Let γ be a number in [0, 1]
interval that denotes frequency cutoff. A FAST T of T is a
Maximum Frequent Agreement SubTree (MFAST) of T if
there is no other FAST T ′ of T that has a larger size than T.

Formally, given a set of phylogenetic trees T = {T1, T2,
· · · , Tm} and a frequency cutoff, γ , we would like to find
the MFASTs in T in this paper. We develop an algorithm
that aims to solve this problem. Table 1 lists the variables
used throughout the rest of this paper.

Table 1 Commonly used variables and functions in this
paper

T A set of phylogenetic trees

Ti ith tree

m Number of trees in T
n Number of taxa in each input tree

ai ith taxa

freq(T , T ) Frequency of the subtree T in T
γ Frequency cutoff

Si ith seed (each seed is a subtree of a tree in T )

k Size of a seed

c Number of contractions used to create a seed
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Phase one: Seed generation
The first phase extracts small subtrees from the given set
of trees. From these subtrees we extract the basic building
blocks which are used to construct MFASTs.We call these
building blocks seeds. Conceptually each seed is a phylo-
genetic tree that contains a small subset of the taxa that
make up the trees in T . We characterize each seed with
three features that are listed below. We elaborate on each
feature later in this section.

1. Seed size (k) is the number of taxa in the seed.
2. Number of contractions (c) is the number of taxa we

prune from a clade taken from an input tree in order
to extract the seed.

3. Frequency (f ) is the fraction of input trees in which
the seed is present.

We explain the seed features with the help of Figures 3
and 4. The first two characteristics explain how a seed can
be found in one of the trees in T . They indicate that there
is a clade of a tree in T such that this clade contains k + c
taxa and it can be transformed into that seed after c con-
tractions from that clade. For instance in Figure 3, when
k = 2 and c = 0, only seed S1 can be extracted from T1 by
choosing the clade rooted at x2. When k = 2 and c = 1,
seeds S1, S2 and S3 can be obtained using one contraction
(a3, a2 and a1 respectively) from the clade rooted at x1.
The last feature denotes the number of trees in T in

which the seed is present. For example in Figure 4, there
are nine seeds S1, S2, · · · , S9 extracted from the three input
trees using only one contraction. Among these, the fre-
quency of S1 is 1 as it is present in all the trees. Frequency
of S2 is about 0.67 for it is present in only two out of three
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Figure 3 T1 is an input tree built on four taxa a1, a2, a3 and a4.
The internal nodes of T1 are labeled as x0, x1 and x2. S1 is the only
seed obtained from T1 when k = 2 and c = 0. That is S1 is identical to
the clade rooted at x2. S1, S2 and S3 are the seeds extracted from T1
when k = 2 and c = 1. They are all extracted from the clade rooted at
x1 by contracting a3, a2 and a1 respectively.

trees (T1 and T2). The frequency of the rest of the seeds
is only about 0.33. Recall that, by definition, an MFAST is
present in at least a fraction γ of the trees in T . There-
fore, we consider only the seeds whose frequency values
are equal to or greater than this number ( i.e. , f ≥ γ ).
Given the values of k, c and γ , we extract all the seeds

which possess the desired feature values from the set of
input trees as follows. In the newick string representation
of a tree, a pair of matching parentheses corresponds to
an internal node in the tree. The number of taxa in the
clade rooted at this internal node is given by the number
of labels between the two matching parentheses. Follow-
ing from this observation, we scan the newick string of
each tree one by one. For each such tree, we identify the
clades which have k + c taxa. Notice that, if a tree con-
tains n taxa, then it contains at most n

k+c clades of size
k+ c as no two such clades can contain common taxa. We
then extract all combinations of k taxa from each of these
clades by contracting the remaining c taxa. The number
of ways this can be done is

(k+c
c

)
. Notice that all the small

trees extracted this way possess the first two character-
istics explained above. At this point, we however do not
know their frequencies. Therefore, we call them potential
seeds. It is worth mentioning that the same seed might be
extracted from different trees. As we extract a new poten-
tial seed, before storing it in the list of potential seeds, we
check if it is already present there. We include it in the
potential seed list only if it does not exist there yet. Other-
wise, we ignore it. This way, we maintain only one copy of
each seed.
Once we build our potential seed list for all the trees in

T , we go over them one by one and count their frequency
in T as the fraction of trees that contain them. We filter
all the potential seeds whose frequencies are less than the
frequency cutoff. We keep the remaining ones as the list
of seeds along with the frequency of each seed.
In Figure 4, consider the tree T1 that has four taxa. For

k = 3 and c = 1, there is only one clade of size k + c = 4
which is the tree T1 itself. We extract four potential seeds,
each having three leaves from this tree. The potential
seeds in this figure are given by S1, S2, S5 and S7 which
we extract by contracting a4, a3, a2 and a1 respectively
from T1.

Phase two: Seed combination
At the end of the first phase, we obtain a set of frequent
seeds from the input trees. Notice that each seed is a FAST
as each seed is present in sufficient number of trees speci-
fied by γ . These seeds are the basic building blocks of our
method. In the second phase of our method, we combine
subsets of these seeds to construct larger FASTs.
We first define what it means to combine two seeds. In

order to combine two seeds, it is a necessary condition
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Figure 4 The set of input trees T1, T2, T3 and the set of all nine potential seeds S1, S2 · · · S9 when the seed characteristics are set to
k = 3 and c = 1. All the potential seeds have three taxa as k=3. We need one contraction from the input tree to obtain each seed. S1 has frequency
1.0 as it is present in T1, T2 and T3. Seed S2 has frequency ∼0.67 as it is present in T1 and T2. Remaining seeds have frequency ∼0.33 as each appears
in only one of the three trees.

that both seeds are present in at least one common tree
T in T . We call such a tree T as the reference tree. We
combine two seeds with the guidance of a reference tree.
Let S1 and S2 be two seeds and let T be their reference
tree. Let L1, L2 and L be the set of taxa in S1, S2 and T
respectively. Combining S1 and S2 results in the tree that
is equivalent to the one obtained by contracting the taxa
in L− (L1 ∪ L2) from T . For simplicity, we will denote the
combine operation using T as the reference network with
the ⊕T symbol. For instance we denote combining S1 and
S2 with T being the reference tree as S1 ⊕T S2. To simplify
our notation, whenever the identity of the reference tree
is irrelevant, we will use the symbol ⊕ instead of ⊕T .
Figure 5 demonstrates how two seeds S1 and S2 are com-

bined with the help of the reference tree T . In this figure,
both S1 and S2 are subtrees of T . Thus, it is possible to
use T as the reference tree. We have L1 = {a1, a3, a4},
L2 = {a1, a2, a5, a7}. Thus, we build C = S1 ⊕T S2 by
contracting the taxa in L − (L1 ∪ L2) = {a6, a8} from T .
So far, we have explained how to combine two seeds S1

and S2 using a reference tree. It is possible that many trees
in T have both seeds present in them. Thus, one ques-
tion is which of these trees should we use as the reference
tree to combine the two seeds? The brief answer is that
all such trees need to be considered. However, we make
several observations that helps us avoid combining S1 and
S2 using each such reference tree one by one exhaus-
tively without ignoring any of such trees. We explain
them next.
Consider two trees T1 and T2 from T where both seeds

are present in. There are two cases for T1 and T2.

• CASE 1: S1 ⊕T1 S2 = S1 ⊕T2 S2. In this case, it does
not matter whether we use T1 or T2 as the reference
tree. They will both lead to the same combined
subtree. Thus, we use only one.

• CASE 2: S1 ⊕T1 S2 �= S1 ⊕T2 S2. In this case, the trees
T1 and T2 lead to alternative combination topologies.
So, we consider both of them separately.

We utilize the observations above as follows. We start
by picking one reference tree arbitrarily. Once we create a
combined subtree using that tree, we check whether that
subtree is present in the remaining trees in T . We mark
those trees that contain it as considered for reference tree
and never use them as reference for the same seed pair
again. This is because those trees fall into the first case
described above. This way, we also store the frequency of
the combined subtree in T . If the number of unmarked
trees is too small (i.e., less than γ × m) then it means that
even if all the remaining trees agree on the same combined
topology for the two seeds under consideration, they are
not sufficient to make it a FAST. Thus, we do not use any
of the remaining trees as reference for those two seeds.
Otherwise, we pick another unmarked tree arbitrarily and
repeat the same process until we run out of reference
trees.
The next question we need to answer is which seed pairs

should we combine? To answer this question we first make
the following proposition.

Proposition 1. Assume that we are given a set of phylo-
genetic trees T . Let S1 and S2 be two seeds constructed from
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Figure 5 T is the reference tree. S1 and S2 are the seeds to be
combined, both are present in T . C is obtained by pruning the
subtree containing taxa a1, a2, a3, a4, a5 and a7 from T .

the trees in T . For all trees T ∈ T , we have the following
inequality

freq(S1 ⊕T S2, T ) ≤ min{freq(S1, T ), freq(S2, T )}

Proof. For any T , both S1 and S2 are subtrees of S1 ⊕T
S2. Thus if S1 ⊕T S2 is present in a tree, then both S1 and
S2 are present in that tree. As a result, freq(S1 ⊕T S2, T ) ≤
freq(S1, T ) and freq(S1 ⊕T S2, T ) ≤ freq(S2, T ). Hence,

freq(S1 ⊕T S2, T ) ≤ min{freq(S1, T ), freq(S2, T )}

Proposition 1 states that as we combine pairs of seeds to
grow them, their frequencymonotonically decreases. This
suggests that it is desirable to combine two seeds if both
of them have large frequencies. This is because if one of
them has a small frequency, regardless of the frequency of
the other, the combined tree will have a small frequency.
As a result its chance to grow into a larger tree through
additional combine operations gets smaller. Following this

intuition, we develop two approaches for combining the
seeds.

1. In-order Combination (Section “In-order
combination”).

2. Minimum Overlap Combination (Section “Minimum
overlap combination”).

Both approaches accept the list of seeds computed in
the first phase as input and produce a larger FAST that is a
combination of multiple seeds. Both of them also assume
that the list of input seeds are already sorted in decreasing
order of their frequencies. We discuss these approaches
next.

In-order combination
The in-order combination approach follows from Propo-
sition 1. It assumes that the seeds with higher frequencies
have greater potential to be a part of anMFAST. It exploits
this assumption as follows, first it picks a seed as the start-
ing point to create a FAST. It then grows this seed by
combining it with other seeds starting from the most fre-
quent one as long as the frequency of the resulting tree
remains at least as large as the given cutoff γ . It repeats
this process by trying each seed as the starting point,
Algorithm 1 presents this approach.

Algorithm 1 In order combination
FAST ← ∅
for all seeds Si do

FAST ′ ← Si
Mark Si as considered
repeat
Sj ← seed with highest frequency among
unconsidered seeds
Mark Sj as considered
CUTOFF ← γ

t FAST ′ ← FAST ′
repeat
Pick the next unconsidered tree T ∈ T as
reference

Mark all the trees as that contain FAST ′ ⊕T Sj as
considered

if freq(FAST ′ ⊕T Sj, T ) ≥ CUTOFF then
t FAST ′ ← FAST ′ ⊕T Sj
CUTOFF ← freq(FAST ′ ⊕T Sj, T )

end if
until Less than γ × m unmarked reference trees are
left in T
FAST ′ ← t FAST ′
Unmark all trees in T

until all seeds are considered
if size of FAST ′ ≥ size of FAST then
FAST ← FAST ′
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end if
Unmark all seeds

end for

In Algorithm 1 we first initialize the FAST as empty. We
then consider each seed one by one. We initialize a tem-
porary subtree denoted by FAST’ with the seed Si under
consideration and mark Si as considered. We combine the
FAST’ with a seed Sj which has the highest frequency
amongst the seeds that have not been added. If multiple
seeds have the highest frequency, we randomly pick one of
them and mark that seed Sj as added to the FAST’. There
can be alternative ways to combine FAST’ with Sj leading
to different topologies. We use the trees in T that con-
tain both FAST’ and Sj as guides to try only the topologies
that exist in T . We stop constructing alternative topolo-
gies as soon as we ensure that there are not sufficient
number of trees to yield frequency of γ . We set FAST’ to
the combined seed if the combined seed has large enough
frequency. We then consider the seed with the next high-
est frequency for addition and repeat this step till all Sj
have been considered. If the resulting temporary FAST is
larger than FAST we replace the smaller FAST with the
larger one. In the next iteration, we initialize the FAST
with the next Si. Using this approach we can initialize the
FAST with all Si, alternatively if the user wishes to limit
the amount of time spent using a maximum time cutoff
we stop the outermost loop (i.e., alternative initializations
of FAST’) as soon as the allowed running time budget is
reached.
Notice that in Algorithm 3 each seed Si can lead to a dif-

ferent FAST. We record only the FAST that has the largest
size. However, it is trivial to maintain the top k FASTs
with the largest size instead if the user is looking for k
alternative maximal FASTs.

Minimumoverlap combination
The purpose of combining seeds is to construct a FAST
that is large in size. Our in-order combination approach
(Section “In-order combination”) aimed to maximize the
frequency of the combined seeds. In this section, we
develop our second approach, named Minimum Over-
lap Combination. This approach picks seeds so that their
combination produced as large subtree as possible. We
elaborate on this approach next.
When we combine two seeds, the size of the resulting

tree becomes at least as big as the size of each of these
seeds. Formally let S1 and S2 be two seeds (i.e., trees). Let
L1 and L2 be the set of taxa combined in S1 and S2. We
denote the size of a set, say L1, with |L1|. The size of the
tree resulting from combination of S1 and S2 is |L1|+|L2|−
|L1 ∩ L2|. For a given fixed seed size, the first two terms
of this formulation remains unchanged regardless of the
seed. The last term determines the growth in the size of

the FAST. Thus, in order to grow the FAST rapidly, it is
desirable to combine two frequent subtrees with a small
number of common taxa.
Our second approach follows from the observation

above. We introduce a criteria called the overlap between
two subtrees as the number of taxa common between
them. Our minimum overlap combination approach
works the same as Algorithm 1 with a minor difference in
selecting the seed Sj that will be combined with the cur-
rent temporary FAST (i.e., FAST’). Rather than choosing
the seed with the largest frequency, this approach chooses
the one that has the least overlap with FAST’ among all
the unconsidered and frequent seeds. If multiple seeds
have the same smallest overlap, it considers the frequency
as the tie breaker and chooses the one with the largest
frequency among those.

Phase three: Post-processing
So far we described how to obtain seeds (Section “Phase
one: Seed generation”) and how to combine them to con-
struct FAST (Section “Phase two: Seed combination” ).
The two approaches we developed for combining seeds
aim to maximize the size of FAST. However, they do not
ensure the maximality of the resulting FAST. There are
two main reasons that prevent our seed combining algo-
rithms from constructing maximal FAST. First, some of
the taxa of a maximal FAST may not appear in any seed
(i.e. false negatives). As a result no combination of seeds
will lead to that maximal FAST. Second, even if all the taxa
of a maximal FAST are parts of at least one seed, our algo-
rithms will reject combining that seed with the FAST of
the seeds if those seeds contain other taxa that are not part
of the maximal FAST (i.e. false positives).
In the post-processing phase, we tackle above-

mentioned problem. Algorithm 3 describes the post
processing phase in detail. We do this by considering all
taxa which are not already present in the FAST one by
one. We iteratively grow the current FAST by including
one more taxon at a time if the frequency of the resulting
FAST remains at least as large as the frequency cutoff
γ . We repeat these iterations until no new taxon can
be included in the FAST. Thus the resulting FAST is
guaranteed to be maximal.

Algorithm 2 Post processing
INPUT = FAST from the seed combination phase
INPUT = T
OUTPUT =Maximal FAST

RESULT ← FAST
for all ai not in FAST do
CUTOFF ← γ

t RESULT ← RESULT
repeat
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Pick the next unconsidered tree T ∈ T as reference
RESULT’ ← RESULT ⊕Tai
Mark all the trees that contain RESULT’ as
considered
if frequency of RESULT’ ≥ CUTOFF then
t RESULT ← RESULT’
CUTOFF ← frequency of RESULT’

end if
until Less than γ × m unmarked reference trees are

left in T
RESULT ← t RESULT
Unmark all trees in T

end for
return RESULT

We expect the post processing step to identify quickly
the taxa that have a potential to be in an MFAST that
might have not been considered during the seed genera-
tion and seed combination phases. At the end of the post
processing step we obtain an MFAST.

Complexity analysis of our method
In this section we discuss the complexity of our method in
terms of the three phases involved in it. Let T be a set of
m phylogenetic trees having n leaves each. The complexity
of the different phases of our method are as follows.

Phase one. Finding the seeds involves enumerating all
the subtrees and checking their frequencies. Given seed
size k and number of contractions c, each tree will con-
tain at most n

k+c clades each leading to
(k+c

c
)
alternative

subtrees. Thus, in total there can be up to mn
k+c

(k+c
c

)
seeds

(possibly many of them identical) from all the trees in T .
Typically, the values of k and c are fixed and small (in our
experiments we have k ∈ {3, 4, 5} and c ∈ {0, 1, 2, 3, 4, 5})
leading to O(mn) seeds.
The complexity of finding whether a seed is present in

a single tree is O(n log n). Given that there are m trees in
T , the cost of computing the frequency of a single seed
is O(mn log n). Thus, the time complexity for finding the
frequency of all the seeds is this expression multiplied by
the number of seeds, which is O(m2n2 log n).

Phase two. Consider a set of p frequent seeds that will
be considered for combining in this phase. Recall that we
have two approaches to combine them. Below, we focus
on each.
INORDER COMBINATION We try to combine each seed

with every other seed leading to O(p2) iterations. The
complexity of checking the frequency of each combined
subtree is O(mn log n). Also, there can be up to O(m)

different reference trees for guiding the combine opera-
tion. Multiplying these terms, we obtain the complexity of
phase using this approach as O(p2m2n log n).

MINIMUM OVERLAP COMBINATION The complexity of
combining the frequent seeds using the minimum over-
lap combination approach is very similar to the inorder
approach except for an additional term. The additional
complexity is because we maintain the overlap between
the subtrees. This leads to the complexity O(p2n2 +
p2m2n log n).

Phase three. Here, we consider the FAST obtained from
each of the p frequent seeds in phase two. For each FAST,
we sequentially go over each taxa one by one leading to
O(n) iterations. There can be up toO(γ ×m) references to
add a taxon. So the cost of extending all p FASTs is O(γ ×
mnp).
Notice that each frequent seed has to appear in at least

γ × m trees. Thus, the number of unique frequent seeds
p is bounded by O( mn

γ×m )= O( n
γ
). Thus, adding the cost

of all the three phases, the overall time complexity of our
method using inorder combination is

O(m2n2 log n + m2n3 log n
γ 2 + mn2).

That using minimum overlap combination is

O(m2n2 log n + m2n3 log n
γ 2 + n4 log n

γ 2 + mn2).

In the two summations above, the second term is
asymptotically larger than the first and the last terms.
Thus, we can simplify the asymptotic time complexity of
inorder and minimum overlap combinations as

O(
m2n3 log n

γ 2 )

and

O(
n3 log n

γ 2 (m2 + n))

respectively.

Results and discussion
This section evaluates the performance of our MFAST
algorithm experimentally.

Implementation details. We implemented our MFAST
algorithm using C and Perl. More specifically, we imple-
mented the first two phases (seed generation and seed
combination) in C and the third phase (post processing)
in Perl. We utilize the functions provided in the newick
Utilities [25] package by modifying the source code pro-
vided in that package. We use k ∈ {3, 4, 5} and c ∈
{0, 1, 2, 3, 4, 5} in all of our experiments unless oth-
erwise stated. In our experiments, we observed that the
minimum overlap combination produced larger MFASTs
than the in-order combination approach. Therefore, we
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limit our experimental results to the minimum overlap
combination approach.

Methods compared against. We have compared our
method against Phylominer [20] and theMAST command
implemented in PAUP* [26]. Among these, Phylominer
also seeks MFASTs in a collection of trees. However, the
time complexity of this method is exponential in the size
of the input trees, and hence it becomes intractable for
large trees. In our experiments, we observed that it does
not scale beyond 50 taxa. PAUP* is primarily a program
for phylogenetic inference, although it also can compute
MASTs. MASTs have a strict 100% agreement criterion
unlike the arbitrary frequency cutoff values γ in our
method.

Evaluation Criteria. We evaluate our algorithm based
on the size of the MFAST found. Larger MFASTs are
preferable. When possible, we report the size of the opti-
mal solution as well.

Test Environment. We ran our experiments on Linux
servers equipped with dual AMD Opteron dual core pro-
cessors running at 2.2 GHz and 3 GB of main memory to
test the performance of our method.

Datasets We test the performance and verify the results
of our method on synthetic datasets and real datasets.

• SYNTHETIC DATASET We built synthetic datasets in
which we embedded an MFAST as described below.
We characterize each synthetic dataset using five
parameters.

1. Tree size (n).
2. Number of trees (m).
3. MFAST frequency (f ).
4. MFAST size (n′).
5. Noise percentage (ε).

The first two parameters denote the size and number
of trees in T . MFAST frequency specifies the fraction
of trees in T which contain an MFAST. MFAST size
is the number of taxa in the embedded MFAST. The
noise percentage is the percentage of taxa that is not
a part of the embedded MFAST but is placed on the
branches within the clade that contains the MFAST.
We place all the other taxa on the branches outside
this clade.
Given an instantiation of these parameters, we first
created a tree that has n′ taxa. This tree serves as the
MFAST. We then createdm × f trees that contain
this MFAST. We build each of these trees by inserting
n− n′ taxa randomly in the MFAST. With probability
ε we insert each taxa within the clade that contains

MFAST. With probability 1 − ε we insert it outside
that clade. We then createdm− (m× f ) trees that do
not contain the current MFAST.We simply do this by
inserting all the taxa one by one at a random location.

• REAL DATASETS.We use two empirical datasets to
evaluate the performance of our heuristic. The data
sets contain 200 bootstrap trees generated from
phylogenetic analysis of the Gymnosperm [27] and
Saxifragales (Burleigh, unpublished) plant clades. To
make the bootstrap trees, we assembled
super-matrices, matrices of concatenated gene
alignments with partial taxon overlap, from gene
sequence data available in GenBank. We performed a
maximum likelihood bootstrap analysis on each
super-matrix using RAxML v. 7.0.4 [28]. The
Gymnosperm trees each contain 959 taxa, and the
Saxifragales trees each contain 950 taxa.

Effects of number of input trees
In our first experiment, we analyze how the number of
input trees in T affects the performance of our algorithm.
For this purpose, we created 30 synthetic datasets. The
size of the embedded MFAST in all the datasets was 15.
Among these 30 datasets, 10 contained 50 trees, 10 con-
tained 100 trees and 10 contained 200 trees. We set the
noise percentage to 20% in all the datasets. The frequency
of the embedded MFAST was 0.8. We set the number of
taxa in all the trees in these datasets to 100.
We ran our algorithm on each of these datasets to find

the size of the MFAST for γ = 0.7. Table 2 lists the
average MFAST size we found for each of the dataset
sizes before post processing (i.e., at the end of phase two)
and after post processing (i.e., at the end of phase three).
The results demonstrate that our method can identify an
MFAST that is almost as big as the embedded one even
without post processing, regardless of the number of trees
in the dataset. Post processing improves the MFAST size
slightly. On the average, we always find an MFAST that is
as large as or larger than the embedded one. An MFAST
larger than 15 here implies that while randomly inserting
the taxa that are not in the embeddedMFAST, at least one
of themwas placed under the same clade at least a fraction
γ of the time. More importantly, our method successfully
located such taxa along with the rest of the MFAST.

Effects of tree size
Our second experiment considers the impact of the num-
ber of taxa in the input trees contained in T on the success
of our method. To carry out this test, we built datasets
with varying tree sizes (i.e., n). Particularly, we used n =
100, 250, 500 and 1000. For each value of n, we repeated
the experiment 10 times by creating 10 datasets with the
same properties. In all datasets, we set the number of trees
tom= 100, the noise percentage at ε = 20%, the size of the
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Table 2 Evaluation of the effect of the number of trees inT

Number of trees
MFAST size

Before post processing After post processing

50 14.5 16.0

100 15.3 15.8

200 14.4 15.4

The number of trees is set to 50, 100 and 200. For each number of trees we run
our experiments on ten datasets. Each dataset contains trees with 100 taxa and
an embedded MFAST of size 15. We report the average size of the MFAST
obtained by our method across the ten datasets.

embeddedMFAST at 15% of n, and theMFAST frequency
at 0.8.
Table 3 reports the average MFAST size found by our

method for varying tree sizes. Second column shows the
embedded MFAST size. Last two columns list the aver-
age size of the MFAST found by our method across the
ten datasets. Before, going into detailed discussion of the
results, it is crucial to observe that our method could run
to completion for datasets that have as many as 1000 taxa.
When we tried to run Phylominer, it did not return any
results for datasets that have more than 100 taxa. The
results also demonstrate that our method could success-
fully identify the embedded MFAST in all the datasets
regardless of the size of the input trees. In some datasets,
the reported MFAST was slightly larger than the embed-
ded one. This indicates that while randomly inserting the
taxa that are not part of the embeddedMFAST, it is possi-
ble that a few taxa was consistently placed under the same
same clade.
The results also suggest that our method identifies a sig-

nificant percentage of the taxa in the embedded MFAST
after the second phase (i.e., before post-processing) when
the tree size is small. As the tree size grows, it starts
missing some taxa at this phase. It however recovers the
missing taxa during the post-processing phase even for
the largest tree size. This indicates that at the end of phase

Table 3 Evaluation of the effect of the size of the trees inT
Number of MFAST size

taxa Embedded Reported

Before post After post

processing processing

100 15 15.3 15.8

250 38 32.3 38.8

500 75 43.7 76.0

1000 150 69.8 151.0

The tree size is set to 100, 250, 500 and 1000. For each tree size we run our
experiments on ten datasets. Each dataset contains 100 trees with an embedded
MFAST of size 15% of the input tree size. Second column shows the embedded
MFAST size. Last two columns list the average size of the MFAST found by our
method across the ten datasets.

two our method could identify a backbone of the actual
MFAST. The unidentified taxa at this phase are scattered
throughout the clades in the input trees. Thus, there is no
clade of size k + c that contains them with c contractions
for small k or c. As evident from Table 3, this however
does not prevent our method from recovering them. This
is because the backbone reported at the end of phase two
is large enough, and thus specific enough, to recover the
missing taxa one by one in the last phase. This is a sig-
nificant observation as it demonstrates that our method
works well even with small values of k and c.

Effects of noise percentage
Recall that the noise percentage ε denotes the percent-
age of taxa that is added inside the clade that contains the
MFAST. As ε increases, the pairs of taxa in theMFAST get
farther away from each other in the tree that contains it.
As a result, fewer taxa from MFAST will be contained in
small clades of size k+ c. This raises the question whether
our method works well as ε increase and thus the MFAST
taxa gets scattered around in the trees that contain it.
In this experiment, we answer the question above and

analyze the effect of the noise percentage on the success
of our method. We create synthetic datasets with various
ε values. Particularly, we use ε = 20, 40 and 60%. We set
the size of the embedded MFAST to n′ = 15, the tree size
to n = 100, number of trees to m = 100 and the MFAST
frequency to f = 0.8. We repeat our experiment for each
parameter 10 times by recreating the dataset randomly
using the same parameters. We set the frequency cutoff to
γ = 0.7. We report the average MFAST size found by our
method in Table 4.
The results suggest that our method can identify the

embedded MFAST successfully even when the noise per-
centage is very high. We observe that the size of the
MFAST found by our method before post processing
decreases slowly with increasing amount of noise. This
is not surprising as the taxa contained in the embedded
MFAST gets more spread out (and thus farther away from
each other) in the trees in T with increasing noise. As a
result, if there are taxa that are not part of any seed with
the provided values of k and c, they will never be included

Table 4 Evaluation of the effect of the noise in the trees
in T

Noise (%)
MFAST size

Before post processing After post processing

20 15.3 15.8

40 13.6 15.0

60 12.7 15.0

The size of the embedded MFAST in all the experiments is 15. We list the
average size of the MFAST found by our method before and after the post
processing phase.
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in the computed MFAST at the end of phase two. We
however observe that (i) only a small number of such taxa
exists. For instance, even for the largest noise percentage
(ε = 60%), only 2.3 taxa (i.e., 15 - 12.7) are missing on the
average. (ii) The missing taxa are recovered during phase
three. This is because the computed MFAST at the end
of phase two is very large, and thus it is specific to the
embedded MFAST.

Impact of seed creation
So far, in our experiments we consistently observed
two major points for all the parameter settings (see
Sections “Effects of number of input trees” to “Effects
of noise percentage”): (i) Our method always finds a
large subtree of the embedded MFAST after phase two.
(ii) Our method always recovers the entire embedded
MFAST after phase three. The second observation can be
explained from the first one that the outcome of phase two
is large enough to build the entire MFAST precisely. The
first observation however indicates that the set of seeds
generated in phase one contain a significant percentage of
the taxa in the embedded MFAST. In this section, we take
a closer look into this phenomenon and explain why this
is the case even for small values of seed size k and contrac-
tion amount c, and large noise percentage ε. To do that,
we will compute the probability that a subset of the taxa
of the embeddedMFAST appears in at least one seed gen-
erated in phase one. In our computation, we will assume
that the taxa can appear at any location of a given tree
with the same probability. We discuss the implication of
this assumption later in this section.
The number of rooted bifurcating trees for a given set of

n taxa is

R(n) = (2n − 3)!
2n−2(n − 2)!

.

Consider a clade with k + c taxa. The number of trees
with n taxa that contains this clade is R(n − (k + c) + 1)
as the topology of the k + c sized clade is fixed. For a
given a subtree with k taxa, let us denote the number of
clade topologies of size k + c that contains that subtree
with NU(k, c). We can compute this function recursively
as NU(k, 0) = 1 and for c > 0,

NU(k, c) = NU(k, c − 1) × 2 × (k + c − 2).

Let us denote one of these clades by U(k, c). Also, let
us denote the probability that the clade U(k, c) exists in a
random tree topology that contains n taxa with P(n, k, c).
Intuitively, P(n, k, c) is the probability that our method
will extract a specific k taxa subtree from one n taxa tree
after only c contractions. We can compute this probability
as the ratio of the number of tree topologies that satisfy

this constraint to that of all possible tree topologies. We
formulate this as

P(n, k, c) = NU(k, c) × R(n − (k + c) + 1)
R(n)

.

Recall that it suffices for our algorithm to have a k taxa
subtree of the MFAST in at least one tree in the given set
ofm trees. The probability that the clade U(k, c) exists in at
least one of them random tree topologies each containing
n taxa is

P(n, k, c,m) = 1 − (1 − P(n, k, c))m.

Assume that the MFAST size in the given set of trees T
is h. Let us denote the number of k taxa subtrees of the
MFAST as NS(h, k). The probability that at least one of
these subtrees will be found in at least one of the input
trees is then

P(n, k, c,m, h) = 1 − (1 − P(n, k, c,m))NS(h,k).

A lower bound to NS(h, k) is h − k + 1 which can be
obtained by picking a contiguous block of k taxa from the
canonical newick representation of theMFAST by consid-
ering all possible h− k+1 starting point locations. Notice
that the larger the value of P(n, k, c,m, h), the higher the
chances that our algorithm will construct some part of
the MFAST. Similarly, the larger the value of NS(h, k), the
higher the chances that our algorithm will construct some
part of the MFAST.
Figure 6 plots the success probability (i.e., P(n, k, c,

m, h)) of our method for varying parameter values. As
the MFAST size increases, the success probability rapidly
increases. This is because the number of alternative sub-
trees of the MFAST increases with increasing MFAST
size. Thus, the chance of observing at least one increases
as well. We observe that when the size of MFAST is
around 20% of the tree size, for all the parameters reported
our success probability becomes almost 1. As the num-
ber of contractions increases, the probability of success
increases. This is because large number of contractions
increases the possibility of eliminating false positive taxa
from clades. In other words, it helps gluing the taxa that
are normally scattered in the input trees back together
by removing the remaining taxa among them. When c
= 5, our success probability becomes almost one even
for MFASTs that are as small as a 4-6% of the tree size.
As the number of trees increases, the success probability
increases as well. This is because we have more alternative
topologies with increasing number of trees. Thus, there
are more chances to have a small clade that contains a part
of the MFAST. Finally, it is worth noting that these results
are computed based on the assumption that the trees in T
are uniformly distributed among all possible topologies. In
practice, we expect that these trees are constructed with
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Figure 6 The probability of finding at least one seed which contains a part of an MFAST. The number of contractions c is set to 3, 4 and 5 and
the corresponding seed size k is 5, 4 or 3. The x-axis shows the MFAST size in terms of the percentage of the number of taxa in the trees in T . In (a),
we set the total number of treesm = 500. In (b) we setm = 1000.

the same or similar objectives (such as maximum parsi-
mony or maximum likelihood). As a result, they will likely
have a higher chance to contain largeMFASTs. The results
we expect in practice will thus be similar or even better
than the theoretical results in Figure 6.
Overall, we conclude from this experiment that even

small values of k and c suffices to capture a part of the
MFAST in phase two. Therefore, although our algorithm’s
complexity increases exponentially with k and c, we do not
need to use large values for k and c. This enables our algo-
rithm to scale to very large datasets with thousands of taxa
and trees. These results explain the theory behind the prac-
tical results we observed in Sections “Effects of number of
input trees” to “Effects of noise percentage”.

Evaluation of state of the art methods
So far, we have shown that our method could success-
fully find the MFASTs contained in sets of trees T for up
to 1000 taxa and 200 trees (i.e., n = 1000 and m = 200).
An obvious question is how well do existing methods per-
form on the same datasets. Here, we answer this question
for two existing programs, namely PAUP* (version 4.0b10)
and Phylominer.
When we fix the number of trees and the number of

taxa to 100, PAUP* was able to find the MAST for for all
datasets. As we grow the number of taxa to 250 or larger
while keeping the number of trees as 100, PAUP* runs our
of memory and fails to return any results. After reducing
the number of trees to 50, PAUP* still runs out of memory
and cannot report any results for more than 100 taxa.
The scalability problem of Phylominer is even more

severe. Phylominer is able to compute the MFASTs on

datasets with up to 20 taxa. However, as we increase
the number of taxa further, its performance deteriorates
quickly. When we set the number of taxa to 100, even with
as few as 100 trees, Phylominer takes more than a week
to report a result. Moreover, in our experiments, the max-
imum size of the subtrees it found on average contained
fewer than 7 taxa, even though the size of the true MAST
was 10.
Another interesting question about existing methods

would be whether the majority consensus rule can be used
to find MFASTs. To evaluate this, we used the same three
synthetic datasets used in Section “Effects of noise per-
centage”. Recall each of these three datasets contains an
MFAST of size 15 which is embedded in 80% of the trees.
The datasets are created with 20%, 40% and 60% noise
indicating different levels of difficulty in recovering the
embedded MFAST. We computed 70% majority consen-
sus tree. Notice that if majority consensus rule can identify
anMFAST, that would correspond to a bifurcating subtree
topology in the consensus tree. In other words a subtree
is bifurcating in this experiment only if 70% or more of
the input trees agree on the topology of that subtree. The
resulting tree, however, wasmultifurcating for all the three
datasets. This means that majority consensus rule could
not recover even a smaller portion of the embedded tree
while our method was able to locate the entire MFAST
successfully (see Table 4).
These results demonstrate that both PAUP* and Phy-

lominer are not well suited to finding agreement subtrees
in larger datasets, our method scales better in terms of
both the number of taxa and the number of trees. When
PAUP* runs to completion, we observed that it reports
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the true results. Recall from previous experiments that
our method always found the true results on the same
datasets as well as larger datasets. This suggests that our
method has the potential to have an impact in large scale
phylogenetic analysis when existing methods fail.

Empirical dataset experiments
To examine the performance of the MFAST method on
real data, we performed experiments using 200 maximum
likelihood bootstrap trees from a phylogenetic analysis
of gymnosperms (959 taxa) and Saxifragales (950 taxa).
Specifically, we evaluated how the performance of the
MFAST algorithm was affected by the number of input
trees and the size of the input trees.

Effects of number of input trees
We first examined the effect of input tree number on
the size of MFAST. For both the gymnosperm and Sax-
ifragales trees, we generated 10 sets of 50 and 100 trees
by randomly sampling from the original 200 trees with-
out replacement. We compared the average size of the
MFAST in the 50 and 100 tree data sets with the size of the
MFAST in the original 200 tree data set. First, in all anal-
ysis, the post-processing step greatly increases the size of
the MFAST, sometimes more than doubling it (Table 5).
This increase is similar to the one observed in the 1000
taxon simulated data sets (Table 2), emphasizing again
the importance of the post-processing step with large tree
data sets. Although the sizes of the MFASTs were simi-
lar, they decreased slightly with the addition of more trees
(Table 5). This may simply be a matter of observing more
conflict with more trees.
The large gap between theMFAST sizes before and after

the post processing suggests that phase three is the main
reason behind the success of our method, and thus, the
costly seed combination phase (i.e., phase two) may be
unnecessary. To answer whether this conjecture is correct,
we ran a variant of our method by disabling the second
phase; we only ran the post processing phase starting from

Table 5 The size of theMFAST found by our method on the
Gymnosperms and Saxifragales datasets before and after
post processing (phase three)

Number of
MFAST size

trees
Gymnosperms Saxifragales

Before After Only Before After Only

50 78.5 129.8 99.5 64.7 122.0 84.1

100 68.4 119.2 83.1 55.4 112.8 74.7

200 76.0 118.0 84.0 40.0 105.0 75.0

The size of the MFAST found by running only the post processing step is also
shown. We run our method on the entire dataset that contains 200 trees as well
as randomly selected subsets of 50 and 100 trees. We repeated the 50 and 100
tree experiments 10 times by randomly selecting the trees from the entire
dataset and reported the average value.

each seed as the initial MFAST one by one. We reported
the largest MFAST found that way as the output of this
variant in Table 5. The results demonstrate that although
phase three can grow a large FAST, phase two is essential
to find the largest frequent agreement subtree. In other
words, post processing finds the true MFAST only if a
large portion of it is already found (which is the role served
by phase two). In conclusion, phase three of our method
cannot replace phase two, yet both phases are essential for
the success of our method.

Effects of size of input tree
Next, we examined the effect of number of leaves in the
input trees on the size of MFASTs. For both the gym-
nosperm and Saxifragales trees, we generated 10 sets of
200 input trees with 100, 250, and 500 taxa. To make
each set, we randomly selected 100, 250, or 500 taxa,
and we deleted all other taxa from the original sets of
200 trees. Thus, these sets of trees with 100, 250, or 500
taxa are subtrees of the original data sets. The size of
the average MFAST increases with more taxa in the orig-
inal trees (Table 6). However, interestingly, the average
size of the MFASTs for the gymnosperm data set with
500 trees is larger than the MFAST found from the orig-
inal gymnosperm trees with all the taxa (Table 6). Since
the MFAST from the 500 taxon data sets should all be
found within the full data set, this indicates that on the
larger trees, our method may not always find the true (i.e.,
largest) MFAST. The full data sets may require a larger
number of contractions to find the true MFASTs.
Similar to the experiments in Section “Effects of num-

ber of input trees”, we investigated the gap between the
MFAST sizes before and after the post processing step.We
ran a variant of our method by disabling the second phase;
we only ran the post processing phase starting from each
seed as the initial MFAST one by one. We reported the
largestMFAST found that way as the output of this variant

Table 6 The size of theMFAST found by our method on the
Gymnosperms and Saxifragales datasets before and after
post processing (phase three) for different number of taxa

Number of
MFAST size

leaves
Gymnosperms Saxifragales

Before After Only Before After Only

100 41.2 56.1 43.5 43.5 50.7 38.5

250 67.2 88.5 63.0 62.3 76.2 54.6

500 91.6 123.0 74.9 52.0 86.7 62.9

All 76.0 118.0 84.0 40.0 105.0 75.0

The size of the MFAST found by running only the post processing step is also
shown. We run our method on the entire dataset that contains all the taxa (last
row) as well as randomly selected taxa subsets of size 100, 250 and 500. We
repeated the 50, 100 and 250 taxa experiments 10 times by randomly selecting
the taxa from the entire dataset and reported the average value.
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Table 7 The size of theMFAST found by our method on the
Gymnosperms and Saxifragales datasets for different
random subsamples of the total number of taxa

Sampling MFAST size

percentage Gymnosperms Saxifragales

2 85.9 74.3

5 87.5 75.6

10 88.4 75.2

25 87.5 75.5

50 88.5 76.2

100 88.5 76.2

We run our method by randomly picking 2%, 5%, 10%, 25%, 50%, 100% of the
seeds found in phase one for combination in phase two.

in Table 6. The results are in parallel with those in Table 5.
Phase three can grow a large frequent agreement subtree,
but not quite as big as that when both phase two and three
are executed.

Effects of sample size
In our final experiment, we evaluated the effect of the
maximum time cutoff, we described in Section “In-order
combination” on the accuracy of our method. Recall that,
this cutoff limits the number of initial seeds tried in our
algorithm by randomly sampling a small percentage of the
seeds. It only uses the sampled seeds as possible initial
seeds. However, it uses the entire set of seeds while grow-
ing the MFAST determined by the initial seed. As each
initial seed roughly takes the same amount of time to grow
into an MFAST, using x% of the seeds as the sample set
reduces the total running time our method to roughly x%
of that of our original implementation.
We carried out this experiment as follows. For both

the gymnosperm and Saxifragales trees, we ran 10 sets
of experiments for each sampling percentage of 2, 5, 10,
25, 50 and 100%. Thus, totally we ran 60 (6 × 10) exper-
iments. Table 7 presents the average MFAST sizes for
varying sample sizes. The results demonstrate that even
for very small sampling percentages, our method finds
MFAST that is almost as big as theMFAST found by using
the entire dataset (i.e., 100% sampling percentage). This is
very promising as it demonstrates that the running time
cost of our method can easily be cut to a small fraction
by sampling the starting seeds. The rationale behind this
is that the MFAST contains many seeds. Starting from
any of these seeds, our algorithm has the potential to lead
to that MFAST. The probability that at least one of these
seeds appear in the sample set is large particularly for large
MFASTs.

Conclusion
In this paper, we present a heuristic for finding the maxi-
mum agreement subtrees. The heuristic uses a multi-step

approach which first identifies small candidate subtrees
(called seeds), from the set of input trees, combines the
seeds to build larger candidate MFASTs, and then per-
forms a post-processing step to increase the size of the
candidate MFASTs. We demonstrate that this heuristic
can easily handle data sets with 1000 taxa, greatly extend-
ing the estimation of MFASTs beyond current meth-
ods. Although this heuristic is not guaranteed to find
all MFASTs, it performs well using both simulated and
empirical data sets. Its performance is relatively robust to
the number of input trees and the size of the input trees,
although with the larger data sets, the post processing
step becomes more important. Overall this method pro-
vides a simple and fast way to identify strongly supported
subtrees within large phylogenetic hypotheses.
Although the method we developed is described and

implemented for the rooted and bifurcating trees, it can
be trivially extended to multifurcating as well as unrooted
trees. The central technical difference in the case of
unrooted trees would be the definition of clade (see Def-
inition 1) as the definition requires a root. A clade in an
unrooted tree encompasses two sets of nodes; (i) a given
set of taxa X, (ii) the set of all internal nodes that are on
a path between two taxa in X on the phylogenetic tree.
We expect that this will increase the number of seeds
substantially and thus make the problem more compu-
tationally intensive. The amount of increase will depend
on the tree topology. The theoretical worst case happens
when all the taxa are connected to a single internal node
(i.e., star topology). In that case any subset of taxa can
lead to a potential seed as long as the subset size is equal
to the seed size allowed. One possible way to overcome
this problem would be to exploit randomization or graph
coloring strategies and avoid enumerating majority of the
possible seeds.
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