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Abstract

Background: The quality of multiple protein structure alignments are usually computed and assessed based on
geometric functions of the coordinates of the backbone atoms from the protein chains. These purely geometric
methods do not utilize directly protein sequence similarity, and in fact, determining the proper way to incorporate
sequence similarity measures into the construction and assessment of protein multiple structure alignments has
proved surprisingly difficult.

Results: We present Formatt, a multiple structure alignment based on the Matt purely geometric multiple structure
alignment program, that also takes into account sequence similarity when constructing alignments. We show that
Formatt outperforms Matt and other popular structure alignment programs on the popular HOMSTRAD benchmark.
For the SABMark twilight zone benchmark set that captures more remote homology, Formatt and Matt outperform
other programs; depending on choice of embedded sequence aligner, Formatt produces either better sequence and
structural alignments with a smaller core size than Matt, or similarly sized alignments with better sequence similarity,
for a small cost in average RMSD.

Conclusions: Considering sequence information as well as purely geometric information seems to improve quality
of multiple structure alignments, though defining what constitutes the best alignment when sequence and structural
measures would suggest different alignments remains a difficult open question.

Background
Researchers in protein biology must often build struc-
tural alignments of multiple homologous proteins. Gen-
erally, both the protein sequence and its 3D structure are
available to a structural alignment program. The struc-
tural alignment program typically produces both a rigid
body transformation that aligns the structures in space,
plus a sequence alignment derived from that structural
alignment that proposes homologous residue-residue cor-
respondences. For a recent survey of the best current
structural alignment programs available, see [1]. In the
absence of hand-curated gold-standard benchmarks, the
quality of protein structure alignment is usually measured
based on purely geometric measures: some function of
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the number of residues declared to be alignable, together
with an average RMSD score for aligned residues, plus
perhaps a penalty for gaps. Similarly, most of the best
structural alignment programs in use today begin by
ignoring all sequence information, and working only with
the geometric location of the Cα atoms of the protein
backbones. It seems that this extra information could be
used to improve protein structural alignment. However, a
meaningful way to incorporate sequence information into
structural alignment algorithms in order to improve their
performance has remained elusive.
One of the reasons it has not been clear how best to

incorporate sequence information into structural align-
ment programs is that it is unclear what the goal is, or
rather, the goal might be problem-dependent. When a
sequence alignment and a structure alignment of two pro-
tein sequences give different answers, which one is cor-
rect? If the correct alignment is defined solely based on the
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geometric location of the Cα atoms of the protein back-
bones, then this alignment can always be computed with-
out ever looking at the protein sequences. At the opposite
end of the spectrum, we could imagine a “true” correct
alignment to be one that aligns residues that have evolved
from residues in a common ancestor protein. Ignoring the
fact that constructing a gold-standard benchmark to test
alignment algorithms according to this standard is impos-
sible without knowing ground truth, such an alignment
might result in aligned regions with very little geomet-
ric similarity, since there are known examples of pro-
teins with high sequence similarity but markedly different
folds [2].
Several researchers have developed algorithms, includ-

ing 3DCoffee [3], PROMALS3D [4], and SALIGN [5],
that consider both sequence and structure when con-
structing protein alignments. As has been demonstrated
by Kim and Lee [6], structure-based methods produce
better sequence alignments than methods based on
sequence information alone. These algorithms have all,
to some extent, had to address the question of what
their hybrid algorithm considers a “correct” alignment.
However, with the notable exception of SALIGN (see
below) most of these papers try to use structural infor-
mation to improve sequence alignments, whereas the
goal of this paper is to use sequence information to
improve structural alignments. Even though the “cor-
rect” alignment in both scenarios is presumably the same,
these are two very different problems, because the nat-
ural assumptions on the inputs to the two problems are
completely different: i.e., sequence alignment programs
cannot assume structural information is available for all
proteins.
Instead of asking if (partial) structural information can

help sequence alignment algorithms, this paper instead
focuses on what we believe is a substantially easier com-
putational problem: we ask if sequence information can
help structural alignment algorithms in the typical set-
ting where purely structural alignment algorithms are
employed, specifically when 3D structural information
is available for all the proteins in the set. We sus-
pected it would help, because anecdotally, for even the
best structural alignment programs, we knew there were
always cases where it seemed a human being could hand-
“correct” the alignment into something that made more
sense from a sequence point of view, with little or no
loss in geometric fidelity. The kinds of errors produced by
structure alignment programs that do not take sequence
into account can be illustrated by an example pair of
proteins, aligned by our group’s own structure alignment
program, Matt [7]. Figure 1 illustrates how the structural
alignments produced are quite similar, but the Formatt
sequence alignment has fewer gaps, and thus fewer non-
core residues (three) than Matt (five). The HOMSTRAD

gold-standard alignment for these chains (PDB IDs 1c9f:A
residues 1-87 and 1d4b:A residues 1-122) indicates only
one gap in this short region. In this instance, Formatt
more closely matches HOMSTRAD both within this short
region and for the alignment as a whole. Note that while
we have chosen to show a bad alignment produced by our
Matt program, all the other purely structural alignment
algorithms that we have tested will sometimes produce
similar types of errors.
To avoid these offset problems, we modify Matt to also

take into account sequence similarity, in order to correct
this type of register error. In particular, we introduce “For-
matt” which stands for “Frame Offset Repair Matt” which
uses the same geometric information that Matt uses to
decide what regions of the protein should be considered
alignable. Formatt allows Matt to construct its bent align-
ment, which breaks a protein up into small tightly aligned
blocks, between which are regions where Matt would
greedily align the backbone between blocks (the Matt
“extension phase”) using solely geometric criteria. For-
matt, by contrast, considers both geometric and sequence
similarity criteria in choosing which residues to align in
these regions.
Note that our Matt structural aligner is specifically opti-

mized for more distant homology [8] and as we find
again in this paper, classical aligners may perform bet-
ter on highly homologous sequences. However, the hope
is the Formatt correction will improve Matt performance
on closely homologous sequences while preserving Matt’s
performance advantage on remote homologs. We show
below that this is indeed the case.
We test the performance of Formatt against the original

Matt [7], against Mustang [9], another well-known mul-
tiple structure alignment program, and against SALIGN
[5], which like Formatt incorporates sequence information
into a structural alignment. We also considered 3DCoffee
[10] and Promals3D [4]. We were unable to run 3DCoffee
successfully on more than a small sample of the HOM-
STRAD benchmark, because it was incompatible with our
network environment and crashed our fileserver repeat-
edly, but found on that sample that it was not competitive.
We also found Promals3D not to be competitive, but
we were able to run it successfully and report results in
Tables 1 and 2. Note that Promals3D does not provide a
3D structural alignment, so for Promals3D we can only
report sequence-based measures of alignment quality. Of
course, as remarked above, to be fair to 3DCoffee and Pro-
mals3D, they can also produce alignments (which Formatt
cannot) when structural information is only available for a
subset of the protein sequences to be aligned, andwere not
optimized for the full-information structural alignment
problem.
The metrics under which we tested performance on

HOMSTRAD include the correct gold-standard refer-
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(a) Matt structural alignment (b) Formatt structural alignment

(c) Matt sequence alignment (d) Formatt sequence alignment

Figure 1 Formatt frame-offset repair example. Example of Formatt’s frame-offset repair on a subset (residues 37-50 of chain A of PDB ID 1c9f,
and residues 64-76 of chain A of PDB ID 1d4b) of the HOMSTRAD “CIDE-N” group. In both sequence and structural alignments, difference between
Matt and Formatt are shown in orange and green; red and blue regions are α and β structures aligned identically by Matt and Formatt. Note that
the Formatt alignment has fewer non-core residues (three) than Matt (five).

ence alignments (which were curated by hand). On the
SABMark “Twilight Zone” benchmark [11], which we
chose to capture the alignment of more remotely homol-
ogous proteins, there is no gold-standard reference, and
so another measure of alignment quality must be devised.
We show that Formatt alignments are superior to Matt
alignments according to a purely objective measure that
does not require a reference alignment; namely, the “Stac-
cato” Seq, Str, and Cons scores as introduced by Shatsky,
Nussinov and Wolfson [12]. While Mustang and SALIGN
both produce reasonable HOMSTRAD alignments, and
in fact their HOMSTRAD alignments match the reference
alignments slightly better than either Matt or Formatt,
neither Mustang nor SALIGN produce SABMark align-
ments with reasonable RMSD, in contrast to both Formatt
and Matt.
Formatt source code is freely available for download

under the Gnu Public License at http://bcb.cs.tufts.edu/
formatt where we also make available HOMSTRAD
and SABMark benchmark reference alignments aligned
by Formatt.

Methods
Matt
The Matt structural aligner [7] belongs to the class
of fragment-pair chaining method aligners. Matt finds
blocks of between 5 and 9 amino acids in each chain
participating in a multiple alignment that share close
spatial alignment, without regard to the fact that the
regions between these blocks may include impossible
bends, translations, or twists. Matt then extends these
aligned blocks, adding adjacent amino acids that do not
diverge greatly in spatial alignment. Thus, Matt aligns
protein sequences based on root mean square distance
(RMSD). Ultimately, Matt chooses an optimal alignment
based on a balance of RMSD and the number of aligned
residues. Clearly, at the extrema, an RMSD of 0 could be
found for any set of amino acid chains with a length of
only 1 residue; likewise, maximally long alignments could
be achieved without regard to RMSD. Matt solves a bi-
criterion optimization problem, balancing the length of
the aligned cores with the minimization of RMSD. This
balance was achieved by finding a linear combination of

Table 1 HOMSTRADmultiple alignments (all values are averages)

Core length RMSD Seq Str Cons Partial length Partial Seq % Correct

HOMSTRAD 126.8 2.71 1.37 1.82 1.60 136.2 2.13 (100%)

Mustang 152.8 3.60 1.54 1.86 1.70 165.3 2.26 79.3%

Matt 178.4 1.72 1.54 1.55 1.55 189.0 2.34 73.4%

SAlign 172.6 2.29 1.79 2.86 2.32 190.8 2.45 78.1%

(Promals3D) 186.8 - 1.55 - - 198.6 2.08 43%

Formatt (mafft) 148.2 1.46 1.36 1.35 1.35 155.6 2.18 78.7%

Formatt (clustalw) 169.3 1.72 1.47 1.55 1.51 182.0 2.11 72.9%

Formatt (muscle) 169.6 1.72 1.48 1.55 1.51 179.1 2.15 72.4%

Formatt (probcons) 168.9 1.73 1.50 1.55 1.53 178.8 2.18 73.6%

http://bcb.cs.tufts.edu/formatt
http://bcb.cs.tufts.edu/formatt
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Table 2 SABMark Twilight Zonemultiple alignments (all values are averages)

Core length RMSD Seq Str Cons Partial length Partial Seq

Mustang 63.4 4.12 3.92 3.05 3.49 97.6 4.46

Matt 66.9 2.64 4.15 2.29 3.35 84.0 4.58

SAlign 59.6 3.51 3.88 2.83 3.36 90.7 4.34

(Promals3D) 75.4 - 3.89 - - 111.8 4.39

Formatt (mafft) 45.01 1.97 3.85 1.77 2.81 54.0 4.32

Formatt (clustalw) 64.05 2.75 3.98 2.32 3.15 76.2 4.49

Formatt (muscle) 64.37 2.77 3.99 2.33 3.16 76.0 4.55

Formatt (probcons) 64.5 2.97 4.00 2.44 3.22 75.6 4.54

RMSD and core length that optimally separated SABmark
[11] positive from decoy chains at the superfamily level of
homology.

Improving uponMatt
The chief limitation of Matt’s approach is that the regions
in between the original, closely-aligned, 5-9 amino acid
blocks are still aligned purely according to this balance
between core length and RMSD, and thus the final align-
ment may choose arbitrarily between different possible
alignments of similar RMSD values. This can lead to oth-
erwise obvious sequence similarities being discarded due
to negligible differences in RMSD. By preserving sequence
information, and allowing the input from a pure sequence
alignment tool to influence the final alignment, we aim to
improve the alignments of these regions between closely-
aligned blocks.
Formatt produces an initial “bent” alignment of 5-9

amino acid blocks, identically to Matt. It then extends
each aligned block as follows: given a region of residues
between blocks, produce candidate alignments using a
sequence aligner (of which Formatt supports CLUSTAL-
W [13], MUSCLE [14], ProbCons [15] and MAFFT [16]),
as well as a greedy structural alignment within an RMSD
threshold of 5Å using the original Matt algorithm. For-
matt then computes the Staccato [12] “Cons” conservation
score for both the resulting sequence-based alignment
and structural alignment, and chooses the alignment for
this region based on the lower (better) conservation score.
We describe our implementation of the Staccato score
below.
We present results for Formatt based on all four

sequence aligners, but considering our results in the next
section, we clearly recommend MAFFT as the default
sequence aligner for use with Formatt on closely homolo-
gous sequences.

Core Alignments, Partial Alignments
Both Matt and Formatt support partial alignments; that
is, they allow columns that align only some subset of

structures, while other substructures have gaps in these
positions. We define the core of the alignment to be the
columns in which there are no gaps placed in the align-
ment; that is, every structure contributes a residue. When
evaluating our alignments, some metrics make sense to
evaluate over the entire alignments, while other metrics
make sense to evaluate only on core positions: in partic-
ular, since the optimal structural superimposition based
on a particular protein sequence alignment is classically
computed based only on core positions, all measures with
a geometric component are only defined based on core
positions, namely RMSD, Staccato Str, and Staccato Cons.
In order to evaluate the effect of partial alignment, we

report not only the aligned core length (the number of
columns of the alignment in which every protein chain
has a residue rather than a gap) but also a partial core
length. We define partial core length as the total length of
the alignment, l, multiplied by a partial alignment factor p,
where p is the average, over the length of the alignment, of
the number of possible pairs in each column in which both
members contain residues, divided by the total number of
possible pairs (which is simply k choose 2 for an alignment

of k proteins):
∑n

i=0
m
(k2)

n , where n is the number of columns
in the alignment and m is |{i, j|i, j ← 0 · · · k ∧ i �= j}|
such that neither i nor j are gaps. Similarly, we can report
Staccato Seq scores for both core and partial alignments.

Staccato scores
In order to determine whether sequence-based or
structure-based alignment performs better for a given
region of the multiple alignment, we implement the Stac-
cato scores described by Shatsky et al. [12].
Given a multiple structure alignmentA and columns c ∈

A, let the “Seq” sequence conservation score Seq = 9 ×
(
1 − (

Seq′ + 4
)
/9.75

)
, where Seq′ =

∑
c∈A

N∑
i

N∑
j>i

wiwjS(ci,cj)/W

|A|

and S(ci, cj) =
⎧⎨
⎩
Blosum62(i, j) if i �= j,
20∑
i=1

Blosum62(i, i) otherwise.
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Let the weights above be defined as wi =
N∑
j �=i

d(i,j)

(N−1) and

W =
N∑
i

N∑
j>i

wiwj, where d(i, j) = 1 − PercentIdentity(Si,Sj)
100 . N

is the number of sequences in the alignment A.
Also given an alignment A and columns c ∈ A, let the

“Str” structural conservation score Str =
∑
c∈A

D(ci,cj)

|A| , where

D(i, j) =

∑
c∈A

⎧⎪⎨
⎪⎩
9 if rmsd(ci, cj) > 22.62Å,

1
f+ 1−f

rmsd(ci ,cj)
otherwise

|A| , and f
is defined as 0.07 as it was in [12].
Finally, the overall Staccato “cons” conservation score is

simply ω × Seq + (1 − ω) × Str, where ω is set as 0.5,
equally weighting the sequence and structure scores, just
as in [12].
We diverge from the Staccato paper in the way that we

compute these scores in one important respect: by default,
we only consider core positions in the alignment (where
a core position places no gaps in the alignment) when
scoring a multiple alignment.
In addition, we also compute a partial Seq score iden-

tical to the Seq score in the Staccato paper, treating an
alignment of a gap with any residue or with another gap as
a score of zero. We report these values alongside the final
conservation score.

Validation
In order to quantitatively assess Formatt’s performance,
we evaluate it against two well-known benchmark sets,
HOMSTRAD [17] and SABMark [11].
The HOMSTRAD multiple-alignment benchmark con-

sists of a manually curated set of 1,028 alignments, each
of which contains between two and 41 structures. To
duplicate the benchmark in [7], we test our methods on
the 398 HOMSTRAD alignments with more than two
structures in the alignment (that is, HOMSTRAD sets
with between three and 41 structures that necessitate a
multiple rather than a pairwise structure alignment pro-
gram). For HOMSTRAD alignments, we can assume the
manually curated alignment form a gold-standard set of
“correct” alignments.
The SABMark benchmark is divided into superfam-

ily and “Twilight Zone” benchmark datasets, each of
which contains subsets of 3 to 25 remotely homolo-
gous protein structures. We test Formatt and its com-
petitors on the 209 subsets in the “Twilight Zone”
set. Note that for these more distant homologs, we
do not have a gold-standard set of “correct” align-
ments, andmust determine alignment quality by objective
means, such as core length, average pairwise RMSD, as
well as the Staccato scores, as introduced by [12] and
discussed above.

Results
As can be seen in Table 1, on the 398 HOMSTRAD mul-
tiple alignments, according to the Staccato “Cons” overall
score, Formatt with MAFFT performs best of all the
choices tested (including as compared to the supposed
“gold-standard” hand-curated HOMSTRAD alignments).
It produces the best RMSD, average sequence, and average
structure scores compared to all the methods as well. In
fact, it completely dominates the supposed HOMSTRAD
gold-standard alignment on not only these measures, but
also average core length, meaning it is producing longer
alignments with better sequence and structural agreement
than the gold-standard manually curated alignment. Note
that Formatt (MAFFT) is, however, being more conser-
vative with declaring residues in the common core of the
alignment than any of the other alignment programs we
tested (but still less conservative than the HOMSTRAD
gold-standard alignment). The other versions of Formatt
that we tested (with MUSCLE, CLUSTAL-W, and Prob-
Cons as the internal sequence alignment program) have
worse Staccato Seq, Str, and Cons scores than Formatt
(MAFFT), and have a smaller percentage of their residues
agreeing with the HOMSTRAD manually curated align-
ment. However, they place an average of about 20 more
residues in the common core of the alignment. As can be
seen in Table 1, the other versions of Formatt perform
much more similarly to original Matt (the purely geomet-
ric version of our structural aligner). These versions of
Formatt still have slightly shorter core sizes than original
Matt alignments, but then achieve slightly better sequence
alignment scores, with similar struct and RMSD scores.
Table 2 shows that the pattern is similar for the SAB-

Mark “Twilight Zone” benchmark set, though of course
we do not have gold-standard reference alignments for
SABMark, making the results harder to interpret. Again,
however, Formatt (MAFFT) is the most conservative in
terms of common core length, but then achieves the
best sequence, structural, and combined conservation
scores. However, here is where other choices of sequence
aligner within Formatt might be desirable if a longer core
length is the goal. In particular, if we examine Formatt
(CLUSTAL-W), Formatt (MUSCLE) and Formatt (Prob-
Cons), they, along with original Matt clearly outperform
either Mustang or SALIGN on this benchmark, achiev-
ing better RMSD as well as Staccato Seq, Str, and Cons
scores for alignments with longer core lengths. Which of
the Matt or Formatt variants is best then becomes a ques-
tion of how one wishes to trade off the importance of the
sequence versus the structural scores.

Discussion
In this implementation, we have followed the example of
Shatsky et al [12] in equally weighting the sequence and
structure components of the Staccato score, and we have
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left the choice of longer aligned core versus better align-
ment quality to the user. We are using the Staccato scores,
but there are several weaknesses in this approach. First,
the combined “Cons” score, which we use to decide if
Formatt should use a sequence- or structure-based align-
ment for a particular region, equally weights the “Seq” and
“Str” scores, but this seems arbitrary. Secondly, and more
seriously, Staccato scores are not length-invariant – that
is, while they are appropriate to compare different align-
ments of the same length, they will always prefer shorter
alignments. In fact, one could worry that the only gain
that Formatt makes over Matt in Staccato score is due to
Formatt preferring shorter, more conservative alignments
(particularly when Mafft is used as the sequence aligner).
To show that this is not the case, we created a ‘trun-
cated’ Matt alignment by ranking the columns of the Matt
alignment by Staccato Cons score, and, on a structure-by-
structure basis, greedily dropped columns from the Matt
alignment until it matched the Formatt (Mafft) alignment
in length. This resulted in an identical average core length
of 148.2 on the HOMSTRAD and 45.01 on the SABMark
benchmarks. However, Formatt (Mafft) is qualitatively
better than this truncated Matt, both in terms of the Stac-
cato Cons score (1.39 for truncated Matt versus 1.35 for
Formatt (Mafft) on HOMSTRAD, and 2.86 for truncated
Matt versus 2.81 for Formatt (Mafft) on SABMark) and
in terms of the percent correct on HOMSTRAD (78.4%
for truncatedMatt versus 78.7% for Formatt (Mafft)). This
proves that it is worth considering sequence alignment as
Formatt does, directly, and not just in terms of Staccato
score. The problem of how to normalize a Staccato mea-
sure of alignment ‘quality’ with alignment length remains
an interesting question. One way to achieve this normal-
ization is suggested by [8]. A plot of aligned core length
versus Staccato conservation score for one thousand ran-
dom pairs of same-family and different-family protein
domains can illustrate a possible method for trading off
between core length and alignment quality (see Figure 2).
We see that an optimal linear separator of 0.126×x−0.213
divides same-family from different-family domains. Thus,
given two possible alignments a1 and a2, with Staccato
“cons” scores of c1 and c2, and core lengths of l1 and l2
respectively, we could view these as points in the space
defined by “cons” score and core length. We could then
compute the y-intercept of a line with a slope of .0126
through each point; we would then favor the alignment
with the lower y-intercept.We suggest that this would be a
plausible way to rationally quantify the trade-off between
alignment quality and core length.
We remark that, while results are not shown in the tables

above, we also tested Promals3D on the HOMSTRAD
benchmark set. Note that Promals3D outputs only a
sequence alignment without coordinates, so an RMSD
or other structural scores were not calculated. However,

0 200 400 600 800
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3

corelen

co
ns

Different Family
Same Family

Figure 2 Staccato conservation score vs. alignment length.
Separation of 1,000 domain pairs where both domains are in the
same SCOP family, and 1,000 domain pairs where both domains are
in different SCOP families, along the dimensions of Staccato
conservation score and core length of the pairwise alignment.

when we compared the Promals3D to the HOMSTRAD
gold-standard alignments, the average percentage correct
was only 43%. We tested a subset of the HOMSTRAD
benchmark set against 3DCoffee and the results were even
worse. Thus, we conclude that Promals3D and 3DCof-
fee are not producing competitive alignments on this
benchmark.

Conclusions
We have introduced Formatt and showed that incorpo-
rating sequence information can improve the quality of
structural alignments, both in terms of gold-standard
alignment benchmarks, and in terms of objective mea-
sures of sequence and structural alignment quality such
as the Staccato score [12]. We were particularly inter-
ested in “correcting” Matt structural alignments to better
capture sequence homology because of our extensive use
of the Matt structural alignment program in the train-
ing phase as we build HMMs [18] and Markov Random
Fields [19,20] from sets of solved protein structures that
fold into the similar shapes, to learn to recognize new pro-
tein sequences that match these models. More consistent
alignments lead to better structural templates, and there-
fore better motif recognition programs. This is the same
problem domain that motivated the work on the SALIGN
program as well [5].
Formatt is a variant of the Matt [7] multiple struc-

ture alignment program, one of a new generation of
structural alignment programs that incorporate flexibility
into multiple protein structure alignments. Other recent
pairwise and multiple structure alignment programs that
also incorporate some form of flexibility into alignments
include FlexProt [21], Fatcat [22], Posa [23], Rapido [24],
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and FlexSnap [25]. It would be interesting to see if some
form of sequence alignment could be incorporated into
these programs as well, and whether it could improve their
structural alignments.
The question of what makes a good alignment is not

simple to answer. Recall Figure 1, in which the greater
number of core residues in the Formatt alignment seems
intuitively better than the very slightly tighter RMSD of
the Matt alignment. In reality, aligning proteins is an
attempt to capture the evolutionary history by which
those proteins diverged. However, since in general we do
not have a history of every mutation in chronological
order, we must rely on sequence and structure conser-
vation scores, and infer that the closest alignment, rep-
resenting the fewest changes, is the most likely. Why do
we seek to more faithfully reconstruct evolutionary his-
tory in protein alignments? We commonly use protein
alignments to build profiles for remote homology detec-
tion approaches such as profile hidden Markov models
(HMMs) [18,26] or Markov random fields [19,20]. The
match states of an HMM derive from the core positions
of a multiple alignment, and the HMM is a probabilistic
model which attempts to capture the evolutionary process
by which proteins are related. Thus, alignments that more
faithfully represent evolutionary relationships should lead
to more accurate remote homology detection. An inter-
esting, if computationally intensive measure of alignment
quality would be to see whether Formatt alignments of
protein superfamilies lead to more accurate HMM pre-
dictions of remote homology than do the comparable
alignments produced by existing software such as Matt.
As mentioned above, we followed [12] in using a con-

stant ω of 0.5 when weighting the Staccato sequence and
structural conservation scores to produce the combined
“Cons” score, in order to determine whether sequence-
based alignment or structure-based alignment performed
better in a given region. Clearly, this ω represents a pos-
sible tuning parameter, which a computational biologist
aligning proteins known to be of closer or more remote
homology might use to adjust the performance of For-
matt. As the “Cons” score itself does not incorporate core
length, it favors shorter, tighter alignments. One possible
improvement could be to compute a score that trades off
this score against core length, as in [8]. Another possible
improvement would be to run all available sequence align-
ers on each region, and choose the best alignment from
among all of them as well, as we now choose between one
sequence aligner and the structural alignment. However,
as MAFFT produces the shortest but best-scoring align-
ments, this would lead to nearly always preferringMAFFT
over the other sequence aligners unless a modified score
which incorporated core length were used.
Likewise, while Formatt performed similarly regardless

of the choice of CLUSTALW, ProbCons, or MUSCLE as

a sequence aligner, MAFFT produced distinctly shorter
but more highly conserved alignments, and this distinc-
tion was magnified at the more remote level of homol-
ogy exhibited by SABMARK’s twilight zone benchmark.
Thus, a user may also prefer MAFFT for more closely
homologous alignments, and MUSCLE for more remote
homologs.
Benchmark alignments produced by Formatt with each

of the four sequence aligners, as well as the Formatt soft-
ware (under the GNU Public License) are available at
http://bcb.cs.tufts.edu/formatt/.
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