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Abstract

Background: Semantic similarity measures estimate the similarity between concepts, and play an important role in
many text processing tasks. Approaches to semantic similarity in the biomedical domain can be roughly divided
into knowledge based and distributional based methods. Knowledge based approaches utilize knowledge sources
such as dictionaries, taxonomies, and semantic networks, and include path finding measures and intrinsic
information content (IC) measures. Distributional measures utilize, in addition to a knowledge source, the
distribution of concepts within a corpus to compute similarity; these include corpus IC and context vector methods.
Prior evaluations of these measures in the biomedical domain showed that distributional measures outperform
knowledge based path finding methods; but more recent studies suggested that intrinsic IC based measures
exceed the accuracy of distributional approaches. Limitations of previous evaluations of similarity measures in the
biomedical domain include their focus on the SNOMED CT ontology, and their reliance on small benchmarks not
powered to detect significant differences between measure accuracy. There have been few evaluations of the
relative performance of these measures on other biomedical knowledge sources such as the UMLS, and on larger,
recently developed semantic similarity benchmarks.

Results: We evaluated knowledge based and corpus IC based semantic similarity measures derived from SNOMED
CT, MeSH, and the UMLS on recently developed semantic similarity benchmarks. Semantic similarity measures
based on the UMLS, which contains SNOMED CT and MeSH, significantly outperformed those based solely on
SNOMED CT or MeSH across evaluations. Intrinsic IC based measures significantly outperformed path-based and
distributional measures. We released all code required to reproduce our results and all tools developed as part of
this study as open source, available under http://code.google.com/p/ytex. We provide a publicly-accessible web
service to compute semantic similarity, available under http://informatics.med.yale.edu/ytex.weby/.

Conclusions: Knowledge based semantic similarity measures are more practical to compute than distributional
measures, as they do not require an external corpus. Furthermore, knowledge based measures significantly and
meaningfully outperformed distributional measures on large semantic similarity benchmarks, suggesting that they
are a practical alternative to distributional measures. Future evaluations of semantic similarity measures should
utilize benchmarks powered to detect significant differences in measure accuracy.
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Introduction

Semantic similarity measures estimate the similarity
between concepts, and play an important role in a var-
iety of text processing tasks, including document clas-
sification [1-5], information extraction [6], information
retrieval [7,8], word sense disambiguation [9,10], auto-
matic spelling error detection and correction systems
[11].

Similarity approaches utilized in the biomedical do-
main can be roughly divided into knowledge based and
distributional based methods [12-14]. Knowledge based
methods utilize pre-existing knowledge sources, includ-
ing dictionaries, taxonomies, and semantic networks.
Among the knowledge based approaches to which
much effort in the biomedical domain has been dedi-
cated are methods that utilize the taxonomic structure
of a biomedical terminology to compute similarity;
these include path finding measures and intrinsic infor-
mation content (IC) measures [13-16]. Distributional
methods utilize the distribution of concepts within a
corpus in conjunction with a knowledge source to
compute similarity; these include corpus IC and con-
text vector methods [13]. Information content is a
measure of concept specificity and is typically estimated
from concept frequencies within a corpus (corpus IC).
In contrast, intrinsic IC is an estimate of IC computed
from the structure of a taxonomy. Because they do not
rely on a corpus, knowledge based methods are more
practical to compute than distributional methods. How-
ever, it is unclear if knowledge based methods are as
accurate as distributional methods: evaluations in the
biomedical domain that compare these methods were
inconclusive.

In the biomedical domain, semantic similarity mea-
sures have been evaluated on the Systematized Nomen-
clature of Medicine-Clinical Terminology (SNOMED
CT); Medical Subject Headings (MeSH); and the Unified
Medical Language System (UMLS), a compendium of
biomedical source vocabularies that includes SNOMED
CT and MeSH [13,14,16-20]. Most of these evaluations
were performed on a small benchmark of 29 SNOMED
CT concept pairs.

In this study we aim to 1) evaluate the effect of bio-
medical knowledge source selection on semantic similar-
ity measure accuracy, 2) clarify the impact of using the
UMLS versus original source vocabularies, and 3) evalu-
ate knowledge based measures and compare them to
previously reported evaluations of distributional mea-
sures. We used larger, recently developed benchmarks
that potentially have the power to detect significant dif-
ferences between measures.

This paper is organized as follows: in the back-
ground section, we provide an overview of semantic

similarity and relatedness measures, biomedical
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knowledge sources, and previous evaluations. In the
methods section, we discuss our implementation of se-
mantic similarity measures and the techniques used to
evaluate them. In the results and discussion section, we
present and discuss the results of evaluations on seman-
tic similarity benchmarks.

Background

Semantic similarity and relatedness measures

Although technically they refer to different notions of
relatedness, the terms similarity and relatedness are
often used interchangeably [12]. This is in part due to
the fact that these measures are applied to the same
types of text processing tasks and evaluated on the same
benchmarks [9,21]. Semantic similarity is a type of
semantic relatedness, namely taxonomic relatedness,
e.g. Lovastatin is-a Statin [22]. Semantic relatedness
can refer to non-taxonomic relatedness such as anto-
nymy, meronymy (part-of), frequent association, and
other functional relationships (e.g. treated-by) [23].

Knowledge based semantic similarity measures include
random walk, path finding, and intrinsic IC based mea-
sures. These measures generate a concept graph from a
taxonomy or semantic network in which vertices repre-
sent concepts and edges represent semantic relation-
ships. Path finding and intrinsic IC based measures
utilize taxonomies, i.e. an acyclic, directed concept graph
in which edges represent taxonomic relationships. A tax-
onomy suitable for use with semantic similarity mea-
sures can be derived from a knowledge source by taking
a subset of hierarchical semantic relationships, and re-
moving relations that induce cycles. Concepts that are
generalizations of other concepts are referred to as par-
ents or hypernyms; specifications of a concept are re-
ferred to as children or hyponyms.

Path finding based semantic similarity measures
compute similarity as a function of the length of the
shortest path between two concepts. One limitation of
path finding measures is that they give equal weight to
all relationships [13]. Information content (IC) based
measures attempt to correct for this by weighting
edges based on IC, a measure of concept specificity
[13,14,24-26]. Relationships between specific concepts,
e.g. Lovastatin is-a Statin, should be weighted more
heavily than relationships between general concepts,
e.g. Lovastatin is-a Enyme Inhibitor. Intrinsic IC
based measures compute the information content of
concepts from the taxonomic structure. The assump-
tion underlying this approach is that the taxonomic
structure is organized in a meaningful way, such that
concepts with many hyponyms and few hypernyms
have lower IC [14,25].

Random walk measures compute the relatedness be-
tween a pair of concepts via random walks on a concept
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graph [21,27,28]. In contrast to path finding and intrin-
sic IC measures, random walk measures can utilize
graphs that contain undirected edges, non-taxonomic
relationships, and cycles. Instead of defining relatedness
as a function of the shortest path between concepts, ran-
dom walk methods measure the overall connectivity be-
tween concepts. We focus on the personalized PageRank
(PPR) algorithm that achieved state of the art perform-
ance on general language semantic similarity bench-
marks, but has not been evaluated on biomedical
semantic similarity tasks [21]. For a given concept, PPR
generates a score vector that represents its connectivity
to other concepts. The relatedness between a pair of
concepts is defined as the cosine of the angle between
their score vectors.

Distributional based measures utilize a domain corpus
in conjunction with a knowledge source; these include
corpus IC and context vector measures. Corpus IC based
methods are analogous to intrinsic IC based methods,
but estimate the information content of a concept from
its distribution in a corpus.

Context vector measures of semantic relatedness are
based on the assumption that words that appear in
similar contexts are related [13,29]. This approach
starts by creating word vectors from a corpus that rep-
resent word co-occurrence. Then descriptor terms for a
concept are derived from a knowledge source such as
a dictionary or thesaurus, and can be further expanded
to include descriptor terms from related concepts
[13,30-32]. The word vectors corresponding to a con-
cept’s descriptor terms are then aggregated to con-
struct a conmtext vector [13]. The similarity between a
pair of concepts is defined as the cosine of the angle
between their context vectors.

In the biomedical domain, a study by Pedersen et al.
that utilized a large medical corpus to estimate concept
distributions showed that distributional measures out-
performed taxonomy based path finding measures [13].
A more recent study by Sanchez et al. showed that
knowledge based intrinsic IC measures outperformed
distributional measures [14]. However, methodological
differences in this latter study prevent a direct compari-
son between knowledge based and distributional based
measures.

Previous work in the general language domain suggests
that distributional measures of similarity suffer from lim-
itations that stem from the imbalance, sparseness, and
textual ambiguity of corpora [23,33]. More recent work
that utilized a large (1.6 terabytes) web corpus, processed
using substantial computational resources (2000 CPU
cores), demonstrated that utilization of large corpora en-
able distributional measures to overcome these limita-
tions, allowing distributional measures to achieve the
same performance as knowledge based measures [12].
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However, it is not clear if these results obtained via
distributional methods in the general language domain
are applicable in the biomedical domain, due to the lack
of large, publicly available clinical corpora [14,34]. Fur-
thermore, the computational resources required to
process large corpora pose a practical challenge to the
implementation of distributional measures.

Evaluations of similarity measures in the biomedical
domain used private, institution-specific corpora of clin-
ical notes [13,32]. Large corpora of clinical notes are
not publicly available due to the sensitivity of the data
contained therein, and smaller, publicly available cor-
pora may bias concept frequency estimates [35]. Alter-
natively, it is possible to utilize a publicly available
biomedical corpus such as MEDLINE, which contains
over 19 million abstracts from biomedical journals [36].
However, evaluations of context vector measures based
on 300,000 MEDLINE abstracts demonstrated poorer
performance than measures based on a clinical corpus
[32]. Using a larger subset of MEDLINE may overcome
this problem, but processing this corpus represents a
technical challenge that may be prohibitive for many
applications. Furthermore, to compute corpus IC-based
measures, text must be mapped to concepts. Automated
concept mapping errors may bias concept frequency
counts, negatively impacting the accuracy of corpus IC
based measures [14].

Biomedical knowledge sources - SNOMED CT, MeSH,
UMLS

SNOMED CT is a comprehensive clinical ontology
maintained by the International Health Terminology
Standards  Development Organisation (IHTSDO).
MeSH is a controlled vocabulary thesaurus maintained
by the National Library of Medicine (NLM) and used
to index articles for the MEDLINE database. The
UMLS Metathesaurus is a compendium of over 168
biomedical vocabularies including SNOMED CT and
MeSH [37]. In this paper, when we refer to the UMLS,
we are in fact referring to the UMLS Metathesaurus.
All of these knowledge sources assign concepts unique
identifiers, associate concepts with lexical variants
(synonyms), and define hierarchical is-a relationships
between concepts. SNOMED CT and the UMLS also
enumerate additional semantic relationships, e.g. part-of
and treated-by.

Advantages of the UMLS with respect to SNOMED
CT or MeSH include robust tool support and broader
concept coverage. Several popular natural language
processing (NLP) tools map free text to UMLS con-
cepts, facilitating the application of similarity measures
based on the UMLS [38,39]. If a concept is missing
from a knowledge source, then it is not possible to
compute its similarity: use of multiple UMLS source
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vocabularies enables the computation of similarity
measures not possible with a single source such as
SNOMED CT or MeSH.

However, the UMLS introduces potential problems
that may affect the accuracy of semantic similarity mea-
sures. The UMLS representation of source vocabularies
may change concept granularity and/or distort relation-
ships between concepts, thereby negatively impacting se-
mantic similarity measures. For example, SNOMED CT
distinguishes between morphological abnormalities and
clinical findings: the Glomus tumor (morphologic abnor-
mality) and Glomus tumor (disorder) represent distinct
concepts in SNOMED CT; in the UMLS, these represent
the same concept [40]. Clarifying the impact of using the
UMLS versus original source vocabularies is one of the
goals of this study.

Semantic similarity benchmarks

Previous comparisons of semantic similarity and related-
ness measures in the biomedical domain were performed
on a benchmark of 29 SNOMED CT concept pairs cre-
ated by Pedersen et al. (referred to as the Pedersen
benchmark) [13]. Nine medical coders and three physi-
cians assessed the semantic relatedness of these medical
concept pairs. Pedersen et al. evaluated similarity mea-
sures against similarity scores for the coders, physicians,
and the average of scores between groups (‘combined’);
on this evaluation, distributional measures achieved the
highest correlation with human raters.

Subsequent evaluations of semantic similarity mea-
sures in the medical domain utilized Pedersen’s bench-
mark. However, these comparisons may be flawed due to
the difference in SNOMED CT versions used, and differ-
ences in the methods used to compute correlation be-
tween similarity measures and the reference standard: in
their original study Pedersen et al. used SNOMED CT
2004 and the non-parametric Spearman rank test to
measure the correlation between semantic similarity
measures and the reference standard, as annotators rated
concept similarity on an ordinal scale [13]. Subsequent
studies used later SNOMED CT versions, and used the
Pearson correlation coefficient, which is not comparable
to the Spearman rank correlation coefficient [14,15,17].
In addition, the limited size of this reference standard
may lack the power to detect significant differences be-
tween different measures.

Recently, Pakhomov et al. developed larger bench-
marks for semantic relatedness and similarity using
UMLS medical concept pairs. In the ‘Mayo’ benchmark,
the same 9 medical coders and 4 physicians that sup-
plied ratings for the Pedersen benchmark rated a set of
101 UMLS concept pairs for semantic relatedness on an
ordinal scale [41]. In the ‘UMN’ benchmark, eight
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medical residents ranked a set of 587 and 566 UMLS
concept pairs on a continuous scale for relatedness and
similarity respectively [19]. Because the UMN ratings
follow a multi-modal distribution, Pakhomov et al. used
the Spearman rank correlation to evaluate semantic
similarity and relatedness measures.

In the present study, in addition to the Pedersen
benchmark, we evaluated semantic similarity measures
on the Mayo and UMN benchmarks as they potentially
have the power to detect significant differences in the
accuracy of different measures.

Methods

Semantic similarity measures

In this section, we define the semantic similarity mea-
sures evaluated in this study. We modified some mea-
sures so that they conform to the universal definition of
similarity presented by Lin [26]: measures are limited to
the interval [0,1], and the similarity between a concept
and itself is 1.

Path finding measures
We focus on the Path [13], Leacock & Chodorow (LCH)
[42], and Wu & Palmer [43] path finding measures that
are based on the shortest path separating concepts. Let
p=path(c;, c,), the number of nodes in the shortest path
separating two concepts, c¢; and ¢,. The shortest path be-
tween two concepts traverses their Least Common Sub-
sumer (lcs(c;, ¢,)), i.e. their closest common parent. The
depth (depth(c)) of a concept is defined as the number
of nodes in the path to the root of the taxonomy; and d
represents the maximum depth of a taxonomy.

Path defines the similarity between two concepts sim-
ply as the inverse of the length of the path separating
them [13]:

Simputh(ChCZ) = l/p (1)

LCH is based on the ratio of path length to depth, but
performs a logarithmic scaling [42]. Originally, LCH was
defined as

sim}‘c’zlmled(cl, 0) = —log(p/2d)
log(2d) — log(p) (2)

As proposed in [4], we scale LCH to the unit interval by
dividing by log(2d). Dividing by a constant value has no
effect on the spearman correlation with benchmarks: the
relative ranks of concept pair similarities remain the same.

log
_ log(p) 3)
log(2d)
Wu & Palmer scales the depth of the LCS by the
length of the path between two concepts [43]:

simy(c1,60) =1
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Simunscaled(c c ) _ 2 % depth(lcs(cl’ CZ)) (4)
vP b0 path(cy, les(cr, ¢)) + path(ca, les(cr, ca)) + 2 x depth(les(cr, ca))
One problem with this definition is that the similarity 2 x IC(les(cr, )
of a concept with itself is less than 1 (if ¢; = ¢, then simyy(c1,¢2) = ’ 9)

path(cy, les(cy, ¢2)) + path(co, les(cy, ¢2)) =2).  Instead, we
adopt the definition of Wu & Palmer used in the Natural
Language Toolkit [44]:

2 x depth(lcs(c1, ¢3))
p—1+2 x depth(les(ci, c2))

simyp(c1,¢) = (5)

Under this definition, if ¢; = ¢,, then p-1 = 0, and the
similarity measure evaluates to 1.

IC based measures

Information content can be estimated solely from the
structure of a taxonomy (intrinsic IC), or from the distri-
bution of concepts in a text corpus in conjunction with
a taxonomy (corpus IC) [14,24,25].

The corpus IC (ICcopus(c)) of a concept is defined as
the inverse of the log of the concept’s frequency [24].
The frequency of a concept is recursively defined using a
taxonomy: it is based on the number of times the con-
cept ¢ occurs within a corpus (freq(c, C)), together with
the number of times its children occur:

1Coorpus(¢) = — log(freq(c)) (6)

freq(c) = freq(c,C)+ ) freq(cs) (7)

cs€children(c)

We follow the intrinsic IC definition proposed by San-
chez et al. [14]:

|leaves(c)| +1
b.

where leaves(c) is the set of leaves (concepts without
children) that are descendants of the concept ¢; subsu-
mers(c) contains ¢ and all its ancestors. The ratio of
leaves to subsumers quantifies the information a concept
carries— the more leaves a concept has relative to the
number of ancestors, the less information it carries; this
is normalized to the unit interval by max_leaves, the
total number of leaves in the taxonomy.

The IC based Lin measure compares the IC of a con-
cept pair to their LCS’s IC: the greater the LCS’s IC
(i.e. the more specific the LCS), the more ‘similar’
the pair of concepts.

IC(c) + IC(ca)

Sanchez & Batet redefined path finding measures in
terms of information content [14]. Path finding mea-
sures are defined in terms of the path length p and the
maximum depth d. Sanchez & Batet proposed redefining
the maximum depth d as ic,,,,, the maximum informa-
tion content of any concept; and proposed redefining
the minimum path length p between two concepts in
terms of Jiang & Conrath’s semantic distance [14,45]:

distic(c1, Cy) = IC(c1) + IC(c2) — 2 x IC(les(ci, c2))
(10)
The IC-based LCH measure is obtained simply by sub-

stituting dist;. and ic,,,, for p and d in equation 3 (1 is
added to dist;, to avoid taking the logarithm of 0):

B log(distjc(c1,¢2) + 1)
log(2 X i¢max)

(11)

Sim?ch_ic(c17 62) =1

One problem with this definition is that the IC-based
LCH can assume negative values. We modify this as
follows:

log(distjc(c1,¢2) + 1)
log(2 X icmax + 1)

Simlch,ic(ch CZ) =1- (12)

Both Sanchez & Batet’s and our definitions of the IC-
based LCH are monotonically decreasing functions of
distj., and thus produce identical spearman correlations
with benchmarks.

The IC-based Path measure is obtained simply by sub-
stituting dist;, for p (1 is added to dist;. to avoid dividing
by 0):

, 1
SiMpan_ic(c1, ¢2) = (13)

distic(c1,¢0) + 1

Personalized PageRank

The PageRank algorithm, originally developed to rank
web pages, is a general method for the ranking of verti-
ces in a graph based on importance [46,47]. The PageR-
ank algorithm models web surfing as a markovian
process, with a user randomly jumping across links
(edges) to other pages (vertices). The PageRank algo-
rithm produces a probability distribution over vertices
(probability vector): it assigns to each vertex a score that
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represents the portion of time a random surfer will
spend there. The personalized PageRank algorithm
biases random jumps toward a set of vertices [48]. In its
application to semantic relatedness, a graph is created in
which vertices represent concepts and undirected edges
represent semantic relationships [21]. For a given con-
cept, a probability vector is computed via the persona-
lized PageRank algorithm with random jumps biased
towards the given concept. The relatedness between two
concepts is defined as the cosine of the angle between
their probability vectors.

The Personalized PageRank algorithm models a know-
ledge source as a graph G with n vertices v;...v, corre-
sponding to concepts, and undirected edges between
concepts that represent semantic relationships [21]. Let
d; be the outdegree of node i. Let M be a nxn transition
probability matrix, where Mj; = 1/d; if a link from i to j
exists, and O otherwise. The PageRank vector P is
obtained by resolving the following equation:

P=cMP+ (1—c)v (14)

In the PageRank algorithm the vector v is an nx1 vec-
tor whose elements are 1/#, and c is the damping factor,
a scalar value in [0,1]. The first term c¢MP represents
navigation across the edges of the graph, and the second
term (1-c)v represents the probability of jumping to any
vertex. The damping factor weights the combination of
these terms; we used the default damping factor of 0.85.

In the personalized PageRank (PPR) algorithm, prob-
ability mass is concentrated on a set of entries in the
vector v, biasing the jumps towards certain vertices [48].
To compute the relatedness between a pair of concepts,
for each concept, the vector P is computed using the
PPR algorithm with v; = 1 for the corresponding con-
cept, and 0 otherwise. The relatedness of a pair of con-
cepts is defined as the cosine of the angle between their
PPR vectors.

Evaluation method
Concept graph construction
We evaluated measures using current knowledge source
releases: the July 2011 International Release of SNOMED
CT; the 2012 MeSH descriptors and supplementary con-
cept records; and the UMLS release 2011AB using a ‘de-
fault’ Metathesaurus installation with SNOMED CT and
all restriction-free (level 0) source vocabularies; this
includes MeSH and 60 other vocabularies. In this paper,
when we refer to ‘the UMLS’ we are in fact referring to
this default subset of the UMLS.

We compared similarity measures that utilize concept
graphs derived from SNOMED CT, MeSH, the UMLS
SNOMED CT and MeSH source vocabularies, and the

entire UMLS. For each knowledge source, we
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constructed a taxonomy for use with semantic similarity
measures; computed the depth and intrinsic IC of each
concept; and implemented semantic similarity measures.
We used is-a relationships in taxonomies derived from
SNOMED CT; we utilized all hierarchical relationships
in taxonomies derived from the MeSH and the UMLS.

To evaluate the PPR, we constructed two types of un-
directed concept graphs: graphs that used only taxo-
nomic relationships (PPR-taxonomy), and graphs that
used all relationships from the respective knowledge
sources (PPR-all). One major advantage of the PPR
method is its ability to leverage non-taxonomic relation-
ships to compute concept relatedness. Evaluating the
PPR on both types of concept graphs allows us to quan-
tify the contribution of non-taxonomic relationships to
the computation of concept relatedness. Refer to
Additional file 1: Appendix 1 for a detailed description
of concept graph construction.

We evaluated measures on the Pedersen, Mayo, and
UMN similarity and relatedness benchmarks [13,19,41].
We also evaluated measures on a ‘high agreement’ subset
of the UMN relatedness benchmark: term pairs from
this subset had a inter-class correlation coefficient of
0.73 or greater, and had a distribution of scores and
broad semantic types similar to the entire set [32].

Comparison between SNOMED CT/MeSH and their UMLS
representations

To determine the effect of the UMLS representation on
similarity measure accuracy, we evaluated similarity
measures on concept graphs derived from SNOMED
CT, MeSH, and the UMLS SNOMED CT and MeSH
source vocabularies. We evaluated measures based on
SNOMED CT on the Pedersen benchmark only. We did
not evaluate measures based on SNOMED CT on the
Mayo and UMN benchmarks, as the SNOMED CT con-
cept mappings for the term pairs from these benchmarks
are not available. These benchmarks provide UMLS con-
cept mappings, and a single UMLS concept may map to
multiple SNOMED CT concepts.

Effect of source vocabulary selection

To determine the effect of UMLS source vocabulary se-
lection on similarity measures, we evaluated similarity
measures derived from concept graphs constructed from
the UMLS SNOMED CT source vocabulary, UMLS
SNOMED CT + MeSH source vocabularies, and entire
UMLS. We evaluated measures for these concept graphs
on the Pedersen, Mayo, and UMN benchmarks.

Corpus vs. Intrinsic IC

We compared the Lin measure using both the intrinsic
IC and corpus IC on taxonomies derived from MeSH
and its UMLS representation. We used MeSH for the
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comparison of intrinsic to corpus IC due to the availabil-
ity of concept frequencies: the 2012 MEDLINE/PubMed
Baseline Repository (MBR) provides the frequencies of
MeSH headings used to index MEDLINE articles. The
2012 baseline contains frequencies from over 20 million
citations [49]. We used these frequencies to compute
the corpus IC for all MeSH concepts as defined in
equation 6.

We adapted the Pedersen, UMN, and Mayo bench-
marks for use with MeSH and its UMLS representation.
Several concepts from the Pedersen benchmark are miss-
ing from the MeSH vocabulary. To enable correlation
with semantic similarity measures based on MeSH, we
used the ‘closest’ corresponding MeSH header; e.g. we
used the MeSH header for ‘knee’ in place of ‘knee menis-
cus’. We used subsets of the UMN and Mayo bench-
marks for which both members of the concept pair are
found in the MeSH. There is a many-to-one correspond-
ence between concepts from the UMLS MeSH source
vocabulary and MeSH descriptors; this allows the unam-
biguous mapping of UMLS concepts from the UMN and
Mayo benchmarks to MeSH descriptors.

We used different concept mappings for the Pedersen
benchmark and subsets of the UMN and Mayo bench-
marks, therefore the MeSH correlations are not directly
comparable to correlations obtained using SNOMED
CT or other UMLS source vocabularies. Refer to
Additional file 1: Appendix 1 for a detailed listing of
term to concept mappings used for these benchmarks.

Statistical analysis

We assessed accuracy using the non-parametric spear-
man rank, which computes the correlation p between
two random variables from their relative ranks. The path
finding LCH and Path are monotonically decreasing
functions of the shortest path between concepts and
therefore produce the same relative ranks and are thus
identical for the purposes of evaluating their correlation.
We applied the Fisher r-to-z transformation to test the
significance of difference in correlation between different
measures and concept graphs, and to compare our
results to previously published results obtained using
distributional measures. The null hypothesis is that there

Table 1 Concept graph dimensions
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is no significant difference in correlation between differ-
ent measures. The probability of rejecting the null
hypothesis when it is in fact false — the statistical power —
is higher on the larger UMN benchmarks. We used R
version 2.10.1 for all statistical calculations. We released all
code and scripts required to reproduce our results as open
source.

Results

Concept graph dimensions

Concepts from the UMLS SNOMED CT source vocabu-
lary are in general more coarse-grained than SNOMED
CT concepts; thus, the taxonomy derived from the
UMLS SNOMED CT source vocabulary is smaller than
the taxonomy derived from SNOMED CT (Table 1). In
contrast, concepts from the UMLS MeSH source vo-
cabulary are more fine-grained than MeSH headings: the
taxonomy derived from the UMLS MeSH source vo-
cabulary is larger than the taxonomy derived from
MeSH. Combining the UMLS SNOMED CT and MeSH
source vocabularies (sct-msh) is almost equivalent to the
sum of the source vocabularies (sct-umls, msh-umls), in-
dicating that there is little overlap between these source
vocabularies. The combination of all UMLS source vo-
cabularies results in a taxonomy that is substantially lar-
ger than concept graphs based solely on SNOMED CT
and/or MeSH.

The taxonomies include only those concepts that par-
take in taxonomic relationships. All concepts in the
SNOMED CT and MeSH knowledge sources partake in
taxonomic relationships; thus the concept coverage for
the PPR graphs is identical to that of the corresponding
taxonomies. On the UMLS, the PPR concept graphs that
utilize all relationships from the UMLS have broader
concept coverage than taxonomies constructed from the
UMLS.

Semantic similarity measure evaluation

We present the correlation for each combination of
reference standard, concept graph (sct, sct-umls, sct-
msh, umls), and measure in Table 2. We present the
correlation for each combination of reference standard
and measure for the concept graphs derived from

Name Description Taxonomy PPR concept graph
Concepts Relations Concepts Relations
sct SNOMED CT 295,700 440,641 295,701 869,962
sct-umls UMLS SNOMED CT source vocabulary 284,213 431,393 319,824 1,272,567
msh MeSH 232,290 331,345 232,290 331,234
msh-umls UMLS MeSH source vocabulary 315,081 426,139 321,306 1,266,235
sct-msh UMLS SNOMED CT and MeSH source vocabularies 588,153 953,213 615,845 2,528,089
umils All UMLS Level 0 source vocabularies and SNOMED CT 1,861,805 2,580,066 2,046,351 7,876,264
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Table 2 Comparison of correlations across measures and reference standards

Benchmark Concept graph Knowledge based Distributional
Path Intrinsic IC PPR
Wu & Palmer Path LCH Lin Path LCH Taxonomy All Lin  Vector
Pedersen Coders N=29 Pedersen 2006 [13] 051 0.75 0.75
sct 0.66 066 061 0.60 0.61 0.61 0.66
sct-umls 0.56 054 049 045 045 070 1026
sct-msh 0.64 076 059 058 0.61 0.75 046
umls 0.74 065 070 069 069 076 073
Pedersen Physicians N=29 Pedersen 2006 0.36 0.60 0.84
sct 0.54 050 052 049 049 049 062
sct-umls 044 038 041 *035 035 056 "0.19
sct-msh 0.57 062 053 052 0.53 060 043
umls 0.66 060 072 069 069 067 063
Pedersen Combined N=29 Pedersen 2006 048 0.69 0.76
sct 0.59 056 056 053 0.54 0.55 0.67
sct-umls 049 044 045 038 038 063 1020
sct-msh 062 069 057 056 057 066 045
umls 0.70 061 072 070 070 069 068
Mayo N=101 Pakhomov 2011 [41] 0.30 0.29
sct-umls *0.05 003 *009 *0.12  *030 *0.17  *0.00
sct-msh 0.28 022 032 033 035 044 7013
umls 038 030 039 041 044 046 021
UMN similarity N=566 Pakhomov 2010 [19] 0.14 0.02
sct-umls 0.21 023 022 023 *036 023 1000
sct-msh 0.30 030 032 032 *037 033 0.07
umls 0.39 040 043 043 046 041 0.25
UMN relatedness N=587 Pakhomov 2010 0.10 -0.13
sct-umls 0.14 017 016 016 **030 017 -001
sct-msh 0.21 020 022 023 *031 023 *004
umls 032 034 035 035 0.39 033 0.18
UMN relatedness subset N=430 Liu 2010 [32] 046
sct-umls 013 017 016 016 **030 0.17 7003
sct-msh 0.20 020 022 023 *032 023 1005
umls 033 036 036 036 040 035 0.22

+Correlation not significant at 0.05 level. Significance of difference between Intrinsic LCH and Path Finding LCH **<0.05, *< 0.20. Abbreviations: LCH - Leacock &
Chodorow, PPR - Personalized PageRank. Refer to Table 1 for concept graph descriptions.

MeSH and its UMLS representation (msh, msh-umls)
in Table 3. We also include the results of previous eva-
luations, where they are comparable. We present the
significance of the difference between the intrinsic IC
based LCH (intrinsic LCH) and path finding based
LCH. Refer to Additional file 2: Appendix 2 for a list-
ing of the significance of differences between all pairs
of measures, and between concept graphs.

Differences between knowledge based measures

In general, intrinsic IC based measures outperformed path
finding measures. On the larger Mayo and UMN reference
standards, intrinsic IC based measures significantly

outperformed path finding measures. The intrinsic IC
based LCH measure achieved the best performance, but
the improvement relative to other intrinsic IC based mea-
sures was usually not statistically significant (see
Additional file 2: Appendix 2 for p-values).

In general, the PPR measure computed with all rela-
tionships (PPR - all) achieved poor performance, and
was significantly outperformed by path and intrinsic IC
based measures. The PPR measure computed with taxo-
nomic relationships (PPR — taxonomy) significantly out-
performed path-based measures on the Mayo reference
standard, and significantly outperformed intrinsic IC
based measures on the Pedersen coders reference
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Table 3 Comparison of correlations across measures and reference standards with MeSH
Benchmark Concept Graph Knowledge Based
PPR Path finding Intrinsic IC Corpus IC Lin
Taxonomy  All Wu & Palmer  Path, LCH Path LCH Lin
Pedersen Coders N=29 msh 036 042 042 051 054 051 051
msh-umls 0.20 0.20 037 038 044 0.53 045 043
Pedersen Physicians N=29  msh 0.30 040 040 041 0.39 041 041
msh-umls 0.15 0.15 040 041 042 041 042 038
Pedersen Combined N=29  msh 031 042 042 046 043 046 046
msh-umls 0.16 0.16 041 042 044 045 045 041
Mayo N=61 msh 0.27 037 035 047 0.37 046 045
msh-umls 0.05 0.05 0.20 0.26 0.25 0.25 0.25 0.20
UMN similarity N=429 msh 0.27 0.25 0.26 032 0.29 033 033
msh-umls 0.18 018 026 0.25 0.29 0.29 030 029
UMN relatedness N=432 msh 0.35 033 033 041 0.36 041 042
msh-umls 0.18 0.18 0.35 0.34 0.34 0.35 0.34 0.34

Abbreviations: LCH - Leacock & Chodorow, PPR - Personalized PageRank. Refer to Table 1 for concept graph descriptions.

standard. On larger reference standards, this relationship
was reversed: intrinsic IC based measures significantly
outperformed PPR-taxonomy based measures on the
Mayo and UMN datasets.

Effect of UMLS representation

Measures based on concept graphs derived from
SNOMED CT and MeSH outperformed their respective
UMLS representations (sct vs. sct-umls, msh vs. msh-
umls). We evaluated SNOMED CT only on the Pedersen
benchmark, in which the difference was significant only
for PPR using all relationships (Table 2, PPR-all, p-values
in Additional file 2: Appendix 2). We evaluated MeSH
and its UMLS representation on all benchmarks (Table 3,
p-values in Additional file 2: Appendix 2). The difference
in performance between measures based on MeSH and
its UMLS representation was significant for some bench-
mark/measure combinations.

Effect of UMLS source vocabulary selection

Increasing the concept graph size improved the per-
formance of both path finding and intrinsic IC based
measures: measure performance increased with the size
of the concept graph. Measures based on the concept
graph derived from the entire UMLS achieved the best
performance, and this difference was statistically signifi-
cant and meaningful (Table 4).

Knowledge vs. distributional based methods

Pedersen. On the Pedersen coders and combined
benchmarks, there is no significant difference between
the best knowledge and distributional based measures
(Table 2, Coders 0.76 vs. 0.75, Combined 0.72 vs 0.76 );

on the Pedersen Physicians benchmark, the context vec-
tor measure outperforms the best knowledge based
measure (0.72 vs 0.84, p-value=0.18).

UMN. All knowledge based measures significantly out-
performed the context vector measure on the UMN
similarity and relatedness benchmarks (Table 2, UMN
similarity and relatedness benchmarks, p-value=0 on
umls concept graph). Pakhomov et al. evaluated the con-
text vector measure on the UMN benchmark [19]. The
context vector utilized a co-occurrence matrix derived
from 500,000 EMR inpatient reports and had correla-
tions of 0.02 and -0.13 with the UMN similarity and re-
latedness benchmarks respectively; for comparison, the
worst-performing path-based measures from our evalua-
tions had correlations of 0.21 and 0.14 respectively.

UMN Relatedness Subset. Liu et al. evaluated the con-
text vector measure on a subset of the UMN benchmark
[32]. Although they achieved a higher correlation, the

Table 4 Significance of differences in Intrinsic LCH
correlation between taxonomies

Benchmark Concept graphs

sct-umls vs umls sct-msh vs umls

Pedersen Coders

Pedersen Physicians *

Pedersen Combined *

Mayo

UMN similarity * *
UMN relatedness * *

Significance of difference between Intrinsic IC based LCH on different concept
graphs *< 0.20. Refer to the Additional file 2: Appendix 2 for p-values.
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difference to the best knowledge based measure was not
statistically significant (Table 2, UMN relatedness subset,
0.46 vs 0.40).

Intrinsic IC vs. Corpus IC. We evaluated the corpus
and intrinsic IC based Lin measure using MeSH. There
was no significant difference in correlation between the
intrinsic and corpus IC based measures on any reference
standard. In general, the intrinsic IC based Lin outper-
formed corpus IC based Lin on UMLS MeSH taxonomy
(msh-umls); however, these differences were not statisti-
cally significant (refer to Additional file 2: Appendix 2
for p-values).

System performance and interoperability

The system we developed is open source and written in
the platform independent Java language. It is a
generalizable framework for the computation of seman-
tic similarity measures from any taxonomy or semantic
network; in this study we utilized SNOMED CT, MeSH,
and the UMLS Metathesaurus. The system allows the
declarative definition of concept graphs or taxonomies
and stores these graphs in a binary format. For taxon-
omies, it computes the depth and intrinsic information
content of each node. The system provides program-
matic, command line, RESTful, and XML web services
interfaces to users to compute similarity measures. We
provide a publicly available web service to compute se-
mantic similarity measures. Notable aspects of our sys-
tem include the ability to compute both intrinsic IC and
corpus IC based measures, and the ability to compute
similarity measures from a wide range of biomedical
knowledge sources. The pure java implementation sim-
plifies the integration of our system with popular java
based text processing frameworks such as the Unstruc-
tured Information Management Architecture (UIMA)
and the General Architecture for Text Engineering
(GATE) [50,51].

The time and computational resources needed to gen-
erate concept graphs varies based on size. Computing
the intrinsic information content is the most computa-
tionally and memory intensive step in preparing a tax-
onomy. This required less than 1 minute with 1GB of
memory for a small concept graph such as SNOMED
CT; for the entire UMLS, this required 90 minutes with
8GB of memory. Once created, the concept graph can
be loaded and used to compute similarity measures. The
time and resources needed to load the concept graph
depends on its size; loading the taxonomy for the entire
UMLS required 30 seconds and 1 GB of memory. All
computations were performed on a 64-bit Ubuntu 10
Linux workstation with dual quad-core 3.00GHz Intel
Xeon processors.
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Computing path finding and IC based similarity mea-
sures on the UMN relatedness benchmark (n=582) with
the UMLS taxonomy required 8 seconds (after
initialization). The computation of relatedness via the
personalized PageRank algorithm is computationally in-
tensive, and increases with concept graph size. Comput-
ing PPR for the UMN relatedness benchmark with the
UMLS concept graph required 5 hours.

Discussion

Effect of UMLS representation

Our results suggest that the UMLS representation of
source vocabularies such as MeSH and SNOMED CT
changes them in a manner that negatively impacts se-
mantic similarity measure performance. However, the
utilization of other UMLS source vocabularies in
addition to the UMLS SNOMED CT and MeSH source
vocabularies more than makes up for this: using multiple
vocabularies enables broader concept coverage, and sig-
nificantly improves the correlation of similarity measures
with human judgments.

Differences between knowledge based measures
Intrinsic IC based measures in general outperformed
path based measures; in some cases, these differences
were significant. Intrinsic IC and path based measures
compute similarity as a function of the distance between
concepts in a taxonomy. IC based measures achieve
higher performance than path based measures by
weighting taxonomic links based on concept specificity.
The personalized PageRank algorithm achieved state
of the art performance on general language semantic
similarity tasks, but did not outperform simpler know-
ledge based methods on these benchmarks. Further-
more, PPR is orders of magnitude more computationally
intensive than simpler semantic similarity measures, and
may be impractical for some applications. In contrast to
other knowledge based similarity measures, PPR can
utilize non-taxonomic relationships to compute concept
relatedness. However, using non-taxonomic relationships
significantly reduced PPR’s performance on these bench-
marks. The UMLS contains many types of non-
taxonomic relationships. It may be possible that using a
subset of non-taxonomic relationships would improve
PPR’s performance.

Knowledge vs. distributional based measures

Our results suggest that knowledge based measures can
outperform distributional measures. Knowledge based
measures are also more practical than distributional
measures, as they do not require a corpus from which
word co-occurrence or concept frequencies must be
estimated.
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Knowledge based measures significantly and meaning-
fully outperformed distributional vector based measures
on the larger UMN benchmarks. One limitation to our
study is that we compared knowledge based methods to
previously published distributional vector based mea-
sures: we cannot exclude the possibility that differences
in the UMLS version used may have biased results.
However, our reasons for not implementing context vec-
tor measures represent exactly their limitations: a large
clinical corpus is not available to us; it is not clear if
publicly available corpora such as MEDLINE abstracts
are suitable for this purpose; and the processing of large
corpora is computationally intensive.

Distributional vector based measures in the biomedical
domain may suffer from imbalance and sparseness due
to limited corpus sizes [23,33]. Use of a larger clinical
corpus may rectify these issues, and improve the per-
formance of vector based measures relative to know-
ledge based measures. Even if performance could be
improved with a large corpus, it is not clear what prac-
tical consequences this would have, as many applications
of semantic similarity measures lack access to large clin-
ical corpora.

Our evaluation showed no significant differences be-
tween corpus IC and intrinsic IC based measures. We
used MeSH for the comparison of intrinsic IC to corpus
IC, and estimated corpus IC using the frequencies of
MeSH headings derived from over 20 million MEDLINE
abstracts. These results suggest that, given the ease with
which IC can be estimated from a taxonomy, intrinsic
IC based measures are a practical alternative to corpus
IC based measures. One limitation of our study is that
we only evaluated corpus IC based measures with MeSH
using concept frequencies estimated from a biomedical
corpus. Results obtained with SNOMED CT or the
UMLS using concept frequencies from a clinical corpus
may differ. However, for many applications, computing
corpus IC may not be practical: in addition to the lack of
availability of large clinical corpora, the estimation of
concept frequencies requires an annotated corpus. Auto-
mated concept annotation methods may be confounded
by textual ambiguity, and manual concept annotation
may be impractical for large corpora [14].

Future directions

Strengths of our study include the evaluation of a wide
range of measures using multiple benchmarks and
knowledge sources, and the assessment of the statistical
significance of differences between measures and across
knowledge sources. Previous evaluations of semantic
similarity and relatedness in the biomedical domain uti-
lized the Pedersen benchmark of 29 concept pairs with
SNOMED CT. On the smaller Pedersen physicians
benchmark, distributional vector based measures
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significantly outperformed knowledge based measures.
In contrast, on the larger UMN benchmark, intrinsic IC
based measures significantly outperformed path finding
and distributional vector based measures. These findings
suggest that future evaluations of semantic similarity
and relatedness measures in the biomedical domain
should utilize larger benchmarks to ensure the reliability
of results.

To facilitate the application of semantic similarity
measures to text processing applications, we developed
tools for computing semantic similarity measures; we
integrated these tools with a popular clinical natural lan-
guage processing pipeline; and we released them as open
source, available under http://code.google.com/p/ytex.
We are currently evaluating semantic similarity mea-
sures on word sense disambiguation and document clas-
sification tasks.

Conclusion

We evaluated knowledge based semantic similarity mea-
sures using different biomedical knowledge sources, and
we compared the accuracy of these measures against
benchmarks of semantic similarity and relatedness. We
found that intrinsic IC based measures achieved the best
performance across a wide range of benchmarks and
knowledge sources; intrinsic IC based measures per-
formed as well or better than distributional measures;
and that measures based on the UMLS achieve signifi-
cantly higher accuracy than those based on smaller
knowledge sources such as MeSH or SNOMED CT.
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