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Abstract

Background: Amplified fragment length polymorphism is a popular DNA marker technique that has applications in
multiple fields of study. Technological improvements and decreasing costs have dramatically increased the number
of markers that can be generated in an amplified fragment length polymorphism experiment. As datasets increase
in size, the number of genotyping errors also increases. Error within a DNA marker dataset can result in reduced
statistical power, incorrect conclusions, and decreased reproducibility. It is essential that error within a dataset be
recognized and reduced where possible, while still balancing the need for genomic diversity.

Results: Using simple regression with a second-degree polynomial term, a model was fit to describe the
relationship between locus-specific error rate and the frequency of present alleles. This model was then used to set
a moving error rate threshold that varied based on the frequency of present alleles at a given locus. Loci with error
rates greater than the threshold were removed from further analyses. This method of selecting loci is advantageous,
as it accounts for differences in error rate between loci of varying frequencies of present alleles. An example using
this method to select loci is demonstrated in an amplified fragment length polymorphism dataset generated from
the North American prairie species big bluestem. Within this dataset the error rate was reduced from 12.5% to 8.8%
by removal of loci with error rates greater than the defined threshold. By repeating the method on selected loci,
the error rate was further reduced to 5.9%. This reduction in error resulted in a substantial increase in the amount
of genetic variation attributable to regional and population variation.

Conclusions: This paper demonstrates a logical and computationally simple method for selecting loci with a
reduced error rate. In the context of a genetic diversity study, this method resulted in an increased ability to detect
differences between populations. Further application of this locus selection method, in addition to error-reducing
methodological precautions, will result in amplified fragment length polymorphism datasets with reduced error
rates. This reduction in error rate should result in greater power to detect differences and increased reproducibility.
Background
The ability to determine genotypes using molecular mar-
kers has provided a wealth of genetic information in
numerous fields of study. In many biological fields ge-
notype information is now critical in the decision ma-
king process. Due to the time and cost associated with
these decisions, having accurate and reproducible data is
essential. Technology improvements and reduced costs
have resulted in genotype information increasing expo-
nentially. As datasets grow larger it is inevitable that
genotyping errors will occur [1]. Genotyping errors can
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be defined as a situation in which the observed genotype
differs from the real genotype of an individual [2]. How-
ever, determination of the actual genotype of an individ-
ual is rarely possible and therefore genotyping errors are
more often assayed by comparing genotypes obtained in-
dependently from the same individual. While genotyping
error is understood to be a common occurrence in mo-
lecular genetic studies, few studies within the current
literature document error rates associated with expe-
riments [2]. The causes of genotyping errors can be
numerous but are often associated with human error,
scoring limitations, and biochemical anomalies [1]. As
the number of samples and reactions increase, it can be
expected that the number of erroneous genotypes within
a dataset will also rise. Methods for controlling and
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Table 1 Description of AFLP loci without selection,
selected using Model 1, selected using Model 2 and
selected using fixed error rate thresholds

Model # of loci Mean allele
frequency

Error rate

No Selection 2711 0.169 12.53%

Model 1 1173 0.181 8.83%

Model 2 417 0.159 5.93%

Fixed threshold 20% 2062 0.088 6.96%

Fixed threshold 10% 1457 0.046 3.91%

Fixed threshold 5% 915 0.025 1.99%
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identifying genotyping errors include standard experi-
mental design procedures of randomization, replication,
and proper controls [1-3]. As a result of these efforts
genotyping error can be reduced, but is rarely eliminated
within DNA marker datasets.
Amplified fragment length polymorphism (AFLP) is a

popular dominant DNA marker technique that has been
used for many different applications since its introduc-
tion nearly twenty years ago [4]. The technique is based
on cleaving whole DNA using restriction enzymes, fol-
lowed by PCR amplification of a subset of the cleaved
fragments using selective primer combinations. Scoring
of AFLP markers is subsequently based on the presence
or absence of an amplified fragment. An AFLP locus is
defined as a specific fragment size having either the
present or absent allele. Applications of AFLP markers
and their analysis have been thoroughly reviewed in
the literature [5,6]. While next-generation sequencing
has created a wealth of genetic information, the AFLP
technique continues to provide useful information for
numerous experimental questions. This continued use
of the AFLP technique is largely due to its ability to
screen a large number of genomically representative
markers at a substantially lower cost compared to other
techniques within non-model species with few genomic
resources [6,7].
The introduction of AFLP fragment analysis using capil-

lary electrophoresis has increased both the throughput and
the quality of AFLP data [6]. This system has also increased
the resolution at which fragments can be separated and
therefore has resulted in a substantial increase in the num-
ber of fragments that can be used in analyses relative to gel
electrophoresis. With the development of automated scor-
ing software, fragments can now be compared at an ever-
increasing resolution and error at the genotype calling stage
can be greatly reduced [8]. Despite the error reduction at
the genotype calling stage increased resolution may lead to
the use of spurious fragments and other non-reproducible
data. Both of these situations could contribute to an
increased error rate within the dataset.
Within current AFLP literature, the existence of rela-

tively high genotyping error is well documented [9,10].
Despite the high potential of genotyping error, reporting
of error rate within AFLP datasets is rare. Being a dom-
inant marker, only the presence or absence of a band is
observable within AFLP datasets, therefore, error rate is
estimated by calculating the ratio of observed differences
between replicate samples and the total number of com-
parisons [2]. Use of all available loci in an analysis likely
includes loci that have multiple erroneous alleles, pos-
sibly leading to incorrect conclusions or potentially in-
creased amounts of noise within the dataset.
If error rate varies between loci, it is desirable to be

able to identify those loci that have greater estimated
amounts of error and remove those from the dataset.
Previous studies have demonstrated inaccurate popula-
tion substructure patterns in both datasets with high
genotyping error rates and datasets using selected loci
with very low error rates [7]. These results suggest that a
tradeoff exists between reducing error rate and main-
taining loci with high information content.
The objective of this paper is to outline a logical and

computationally simple method for selecting loci that
accounts for differences in error rate based on the fre-
quency of present alleles at a given locus. It is hypothe-
sized that by selecting loci using this method, error rate
within an AFLP experiment can be reduced, thereby
reducing the number of erroneous genotypes within a
dataset while maintaining genomic diversity. This reduc-
tion in erroneous genotypes is expected to increase
discrimination between differing samples and improve
the ability to detect genetic differences of interest.
Results
Selection of loci with reduced error rate
Big bluestem is a warm season grass native to the North
American prairie. From a geographically diverse panel of
458 big bluestem samples previously used in a study of
genetic diversity, 81 samples were replicated and used in
independent AFLP analyses [11]. Samples represented in-
dividual plants from 88 populations originating from three
groups (Northeastern U.S.A., Wisconsin, and released
accessions/cultivars). Nine EcoRI/MseI primer combina-
tions were used for selective amplification resulting in
2711 polymorphic loci with a mean of 301.2 loci per pri-
mer combination. Locus-specific error rate ranged from
0% - 62%, although more than half of the loci had error
rates less than 10% (Table 1). The estimated error rate per
primer combination ranged from 9.6% - 13.3% with a
mean of 12.5%. The number of present alleles per locus
ranged from 0 to 154, with a mean frequency of 0.169.
Simple regression using a second-degree polynomial

term was used to model the relationship between error
rate and the frequency of present alleles. The resulting
model for this analysis was Y=0.0053+1.18X −1.11X2
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(p-value<0.001, R2=0.786) (Figure 1). Using this model all
loci with error rates greater than predicted by the model
were removed from the analysis. A total of 1538 loci were
removed using this procedure (57% removed). The re-
moval of these loci resulted in a reduction of the mean
error rate to 8.8%, a 29% reduction in error rate com-
pared to using all loci. The mean frequency of present
alleles increased slightly to 0.181.
Following the same procedures regression analysis was

repeated on the 1173 loci selected under the first model.
This analysis resulted in a second model predicting error
rate from the frequency of present alleles, Y=−0.0020
+0.82X −0.72X2 (p-value<0.001, R2=0.844) (Figure 1).
Again, those loci with error rates greater than predicted
by the model were removed from the analysis. Using this
procedure 756 loci were removed, reducing the number
of loci to 417 (64% removed). The mean error rate of
the remaining loci was 5.9% and the mean frequency of
present alleles was 0.159. Additional rounds of selection
were not initiated due to the limited numbers of loci
that would have been available after further rounds of
selection.
For comparison, locus selection was also conducted

using fixed thresholds of 20%, 10%, and 5%. Using these
thresholds, all loci having error rates greater than the
threshold were removed from analysis. Mean error rate
was reduced dramatically, deceasing to less than 2%
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Figure 1 Error rate by frequency of present alleles. Scatterplot of locus
Model 1 is polynomial model describing relationship (Y=0.0053+1.18X −1.1
with error rates less than predicted by Model 1 (Y=−0.0020+0.82X −0.72X2,
using the most conservative threshold (Table 1). While
using a fixed error rate threshold reduced error and
maintained a high number of loci, it came at the expense
of a decrease in the mean allele frequency, reducing the
mean from 0.169 per locus to 0.025 per locus. This re-
duction in mean allele frequency indicates that by using
a fixed error rate threshold the dataset becomes domi-
nated by loci with low allele frequencies.

Testing
Significance of the observed changes due to selection was
tested by permutation test, randomly selecting 417 loci
from the original 2711 loci. This procedure was repeated
1000 times, creating a distribution of error rate for ran-
domly selected loci (Figure 2). The mean error rate of the
permuted selections ranged from 10.8% - 14.2%, with a
mean of 12.5%. Error rate of the loci selected using Model
2 was 5.9%, significantly different from the bounds of the
permuted null distribution (p-value = 0.001).

Implementation
Analysis of molecular variance analysis (AMOVA) was
used to test the practical significance of the observed
reduction in error rate. Three separate analyses were
conducted on 458 big bluestem samples using different
subsets of loci: (1) the original loci, (2) the loci selected
under Model 1, and (3) the loci selected under Model 2.
0.6 0.8

 of present alleles (all loci)

of present alleles

Locus Selection Model

Model 1
Model 2

-specific error rates in relation to the frequency of present alleles.
1X2, p-value<0.001, R2=0.786). Model 2 describes relationship of points
p-value<0.001, R2=0.844).



Histogram of error rates permuted by selection of 417 loci
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Figure 2 Histogram of error rates permuted by selection of
random loci. Histogram of 1000 permuted error rates created by
selection of 417 random loci. Mean of permuted error rates is 12.5%,
compared to 5.9% of those loci selected using locus selection
procedure.
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Samples represented individual plants from 88 populations
originating from three geographic groups (Northeastern
U.S.A, Wisconsin, and released accessions mostly from
the Central U.S.A.) [11]. Variance was partitioned in a
hierarchical manner among groups, among populations
within groups, and plants within populations. Using loci
selected under Model 1 AMOVA analysis demonstrated
an increase in the variance explained among groups, in-
creasing from 2.8% to 3.7% (Table 2). Using loci selected
using Model 2 the percentage of variance explained by
populations within groups increased from 6.6% to 9.6%
and variance among groups increased from 2.8% to
4.2%. The observed changes in the amount of explain-
able variance demonstrate that the locus selection pro-
cedure has practical effects, in this example resulting in
increased power to detect difference between groups
and populations. Due to the geographic isolation of the
populations tested in this example some amount of
Table 2 Analysis of molecular variance (AMOVA) for 458 indiv
loci selected using Model 1, and loci selected using Model 2

No selection Err

Source Est. Variance % of Variance Est

Among groups 7.751 2.8% 4

Populations within groups 18.015 6.6% 7

Plants within populations 247.659 90.6% 108

Total 273.425 100.0% 121

All variances were significant (p-value <0.001) based on permutation test.
genetic divergence was expected. By removing more
error prone loci from the dataset evidence of this diver-
gence is more apparent.
Using the fixed rate error thresholds, changes to the

amount of variance explained within in the AMOVA
analysis differed from those observed using the moving
error rate threshold. Variance explained by populations
within groups increased as the error rate threshold be-
came stricter, from 6.6% to 9.1% (Table 3). In contrast,
variance explained among groups decreased from 2.8%
to 2.3% by using a more strict error rate threshold
(Table 3). This decrease in the amount of explainable
variance and the observed difference from the results
using the moving error rate threshold may be due to the
major reduction in moderate frequency alleles that
resulted from using a fixed error rate threshold.

Discussion
Increasing numbers of AFLP loci require that discretion
be used in selecting loci for further analysis. Ideally,
selected loci should be reproducible and have as low of
error rate as possible while maintaining genomic diver-
sity. It is therefore essential that a method be in place
for determining which loci best fit these requirements.
The method proposed in this paper uses a simple regres-
sion approach to implement a moving error rate thresh-
old that is optimized based on the frequency of present
alleles at a given locus. By using the frequency of present
alleles and simple regression models an error rate
threshold can be set that is both computationally simple
and accounts for the relationship between the frequency
of present alleles and error within a given dataset. With
the widespread use of the AFLP technique in various
species and differing equipment with various protocols,
a customizable error threshold accounts for technical
marker variation that may be unique to an individual
dataset.
The need for a moving error rate threshold can be

demonstrated within the example dataset of replicated
big bluestem AFLP markers. When a fixed error rate
threshold (e.g. 10%) is used the majority of the selected
loci are those with extremely high or low frequencies of
present alleles. This effect is easily observed within a
iduals of big bluestem based on loci without selection,

or less than Model 1 Error less than Model 2

. Variance % of Variance Est. Variance % of Variance

.448 3.7% 1.853 4.2%

.937 6.5% 4.215 9.6%

.887 89.8% 37.957 86.2%

.271 100.0% 44.026 100.0%



Table 3 Analysis of molecular variance (AMOVA) for 458 individuals of big bluestem based on loci selected using fixed
error rate thresholds

20% error rate threshold 10% error rate threshold 5% error rate threshold

Source Est. Variance % of Variance Est. Variance % of Variance Est. Variance % of Variance

Among groups 3.923 2.8% 1.540 2.5% 0.538 2.3%

Populations within groups 10.657 7.7% 5.015 8.3% 2.110 9.1%

Plants within populations 123.658 89.5% 54.155 89.2% 20.669 88.7%

Total 138.237 100.0% 60.709 100.0% 23.316 100.0%

All variances were significant (p-value <0.001) based on permutation test.
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scatterplot showing the relationship between frequency
of present alleles and error rate (Figure 1). Using the
fixed rate threshold of 20% reduces the frequency present
alleles by 48% to 0.088 (Table 1). This reduction is even
more drastic if a threshold of 5% is used, reducing the
frequency of present alleles to 0.025 (Table 1). Use of a
fixed error rate threshold effectively eliminates loci with
moderate frequencies of present alleles, therefore intro-
ducing bias into the selection process. It is important that
these moderate frequency alleles be included, as those
loci having high or low frequencies of present alleles only
represent relatively rare alleles. In contrast, loci having a
moderate frequency of present alleles represent common
alleles. These common alleles are often those that are im-
portant for distinguishing differences between groups
and populations of samples that differ largely in allele fre-
quencies. If loci with moderate frequencies of present
alleles are removed, the ability to distinguish between
populations may be diminished.
The effectiveness of the proposed locus selection

method for reducing error rate was demonstrated using
an AFLP dataset resulting from experiments to test the
genetic diversity of the prairie species big bluestem. By
using a simple regression model with a second-degree
polynomial term to set the error rate threshold, error rate
within the dataset was reduced from 12.5% to 8.8%. Ap-
plying the same technique to selected loci resulted in an
additional decrease in error rate to 5.9%. Overall the use
of the proposed methods reduced error rate by more
than one half. Prior to locus selection this dataset had an
error rate that would have been considered relatively
high. By using Model 2 to select loci, the error rate was
lowered to a level that is within the range typically found
in an AFLP datasets [8-10]. Comparatively, the use of
fixed rate error thresholds was very effective at reducing
error rate, reducing error rate to 7.0%, 3.9%, and 2.0% for
respectively for thresholds of 20%, 10%, and 5% (Table 1).
Despite these large decreases in mean error rate, one
must consider the tradeoff that is made between redu-
cing error rate and maintaining genomic diversity. The
use of fixed error rate thresholds dramatically decreased
the mean frequency of present alleles compared to the
use of a moving error rate threshold in model 1 and
model 2 (Table 1). This reduction indicates that the ma-
jority of loci conserved using fixed error rate thresholds
have very low frequencies of present alleles. By using the-
ses loci in further analyses much of the genomic diversity
that exists within the dataset is lost. Previous studies have
demonstrated that larger datasets having higher error
rate can yield greater information than a small number
of loci with little error [7]. This reduction in information
content may be related to the reduction of loci with
moderate allele frequencies, as a result of using fixed
error rate thresholds.
Equally important to lowering error rate to acceptable

levels is the effect that reduced error can have on the
ability to eliminate noise in the dataset and increase the
ability to detect differences between samples. In the ex-
ample shown in this paper, locus selection resulted in
increased differentiation between samples from differing
groups under Model 1. Using Model 2 the ability to dif-
ferentiate between samples from differing populations
within groups also increased. In contrast, the use of fixed
rate error thresholds decreased the amount of observable
differentiation among groups to levels lower than
observed without locus selection. In this example the dif-
ferences in differentiation observed using the moving
error rate thresholds made a major contribution to the
understanding of big bluestem diversity in the tested
samples [11]. It can be expected that results of a similar
magnitude will be observed in other AFLP datasets.

Conclusions
High error rates within AFLP datasets can cause
increased noise and possibly incorrect conclusions.
Using an arbitrary error rate threshold to remove loci
with high error rates can bias locus selection by remov-
ing moderate frequency alleles. This paper demonstrates
the use of simple regression to model the relationship
between error rate and the frequency of present alleles.
These models create moving error rate thresholds that
can be subsequently used for selecting loci for use in fu-
ture analyses with reduced error rates. In the present ex-
ample, using loci selected with the proposed method
resulted in a reduction in mean error rate for AFLP mar-
kers in big bluestem. In addition to reducing error, the
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removal of loci with high error rates from the dataset
increased differentiation between samples from differing
groups and populations.
Genotyping errors within AFLP datasets have been

shown to be nontrivial. Despite this, error rates for
AFLP datasets are rarely measured or reported. The use
of a locus selection procedure such as those proposed
carries with it an inherent tradeoff between reducing
error rate and maintaining genomic diversity. This trade-
off must be balanced as the reduction of genomic diver-
sity resulting from arbitrary or strict locus selection may
introduce bias in a dataset by removing informative
alleles. Equally, the inclusion of substantial genotyping
error may reduce power to detect differences within a
dataset and will reduce repeatability. Within the example
dataset in this paper two rounds of selection were con-
sidered appropriate due to the large number of loci, high
initial error rate, and the goals for this data. Within
other datasets the number of rounds of locus selection
may need to change in order to meet the objectives of
an individual study and the mean error rate that is ac-
ceptable for a given study. The proposed methods pro-
vide a tool that researchers can use to better understand
genotyping error within AFLP datasets, leading to
improved reproducibility and greater ability to discern
genetic differences.

Methods
Plant materials for this study came from a diverse
collection of natural and cultivated populations of big
bluestem (Andropogon gerardii Vitam.) [11]. A single
leaf was collected from 458 plants associated with 88
populations originating from three geographic groups
(Northeastern U.S.A., Wisconsin, and released acces-
sions mostly from the Central U.S.A.). DNA was extrac-
ted from lyophilized leaf tissue using a modified sorbitol
extraction method [12]. Of the 458 samples 81 (17.6%)
were randomly selected as replicates and an independent
DNA extraction was performed for all replicates. Follo-
wing extraction, DNA concentration was normalized to
100 ng uL-1. DNA samples were distributed randomly
into 96-well plates in order to minimize plate to plate
variation [6]. Multiple negative controls containing only
water were distributed randomly in each plate to control
for failed amplifications.
AFLP amplification was completed using the protocol of

Clarke and Meudt [13]. Nine selective primer combina-
tions were used by creating all combinations of three MseI
selective primers (MseI+CGA, MseI+CTG, and MseI+
CTT) and three EcoRI selective primers (EcoRI+AAG,
EcoRI+AGC, and EcoRI+AGG, fluorescently labeled with
FAM, TAMRA and HEX respectively). Following selective
amplification products were combined by MseI primer,
such that multiple primer combinations could be analyzed
in a single run. Amplified fragments were separated using
ABI 3730 automatic capillary DNA sequencer (Applied
Biosystems, Foster City, CA) and electropherograms were
processed using Peak Scanner v1.0 (Applied Biosystems)
using default parameters. Fragment sizes were determined
relative to a GeneScan 500 ROX Size Standard (Applied
Biosystems). Fragment data was scored for presence (1)
or absence (0) using the RawGeno package v1.1-2 [8] in
the R statistical package (http://www.r-project.org) [14].
Scoring parameters used were as follows: Scoring range
100–400 bp; minimum intensity, 100 rfu; minimum bin
width, 0 bp; maximum bin width, 2 bp. Closely sized bins
were removed. Bins with rare alleles (less than 3 present
alleles) were removed from further analysis. All mono-
morphic bands were removed from subsequent analyses.
Samples having similar banding patterns to the negative
controls were removed from the analysis.
Fragment scoring results were used to create a binary

matrix table indicating the presence or absence of a frag-
ment at each locus. Results from the replicated samples
were compared to their replicate, and it was determined
if the presence or absence of a fragment matched be-
tween replicates. For each locus a locus-specific error
rate was estimated by dividing the number of mis-
matches by the total number of comparisons [2]. A
mean error rate was subsequently calculated by dividing
the sum of the estimated error for all loci by the total
number of loci.
Locus-specific error rates were compared to the fre-

quency of individuals having the present allele pheno-
type for a given locus. This comparison was visualized
with a scatterplot displaying the frequency of present
alleles on the x-axis and locus-specific error rate on the
y-axis. The relationship was quantified by creating a
model using simple regression analysis with a second-
degree polynomial term in R [14] to predict error rate as
a function of frequency of present alleles. Locus selec-
tion was done by removing all loci having error rates
greater than predicted by the frequency of present alleles
based on the predictive model (Model 1). Following the
initial selection, a second regression analysis was com-
pleted on the selected loci following the same procedure
as previously described. The second model (Model 2)
was used to perform an additional round of locus selec-
tion, removing those loci with greater than expected
error rates based on the second model. Mean error rates
were subsequently estimated for those loci selected in
both the initial and the second selection.
To test the significance of the change in error rate due

to the selection procedure, a permutation test was con-
ducted using the complete set of 2711 loci. A custom
Macro was created using MS visual basic (Microsoft
Corporation, Redmond, WA), to randomly select a
defined number of loci. Following selection the mean

http://www.r-project.org


Price and Casler BMC Bioinformatics 2012, 13:268 Page 7 of 7
http://www.biomedcentral.com/1471-2105/13/268
error rate for the selected loci was estimated using the
previously outlined methods. The random selection and
estimation procedure was repeated 1000 times, and a
distribution of mean error rates was created. The hy-
pothesis that the error rates from the loci selected based
on the models were significantly different than those
selected randomly was tested by comparing the esti-
mated error rate of those loci selected under each model
to the distribution of those selected randomly. The p-
value of each being equal to the proportion of those
means selected randomly with equal or lower error rates
than those selected under the models.
Fixed rate error thresholds were implemented by re-

moving all loci with error rates greater than 20%, 10%,
or 5%. Mean error rates were subsequently estimated for
those loci selected at each threshold.
Comparisons of the effects of locus selection on ana-

lysis results were done using the data without locus
selection, loci selected under Model 1, loci selected
under Model 2, and loci selected using fixed thresh-
olds. The analysis of molecular variance test [15] was
performed on all 458 samples using GenAlEx 6 [16].
Variance was partitioned in a hierarchal manner among
and within the three groups of samples, collections sites
or accession, and individual samples. Significance of the
AMOVA was tested using 999 permutations.
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