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Abstract

Background: Dysregulation of imprinted genes, which are expressed in a parent-of-origin-specific manner, plays an
important role in various human diseases, such as cancer and behavioral disorder. To date, however, fewer than
100 imprinted genes have been identified in the human genome. The recent availability of high-throughput
technology makes it possible to have large-scale prediction of imprinted genes. Here we propose a Bayesian model
(dsPIG) to predict imprinted genes on the basis of allelic expression observed in mRNA-Seq data of independent
human tissues.

Results: Our model (dsPIG) was capable of identifying imprinted genes with high sensitivity and specificity and a
low false discovery rate when the number of sequenced tissue samples was fairly large, according to simulations.
By applying dsPIG to the mRNA-Seq data, we predicted 94 imprinted genes in 20 cerebellum samples and
57 imprinted genes in 9 diverse tissue samples with expected low false discovery rates. We also assessed dsPIG
using previously validated imprinted and non-imprinted genes. With simulations, we further analyzed how
imbalanced allelic expression of non-imprinted genes or different minor allele frequencies affected the predictions
of dsPIG. Interestingly, we found that, among biallelically expressed genes, at least 18 genes expressed significantly
more transcripts from one allele than the other among different individuals and tissues.

Conclusion: With the prevalence of the mRNA-Seq technology, dsPIG has become a useful tool for analysis of
allelic expression and large-scale prediction of imprinted genes. For ease of use, we have set up a web service and
also provided an R package for dsPIG at http://www.shoudanliang.com/dsPIG/.

Keywords: Prediction of imprinted genes, Transcriptome deep sequencing, mRNA-Seq, Bayesian model, Analysis of
allelic expression
Background
Diploid eukaryotic species inherit two copies (i.e., two
alleles) of the same gene from both parents. If one allele
fails to work properly, the other allele can still imple-
ment a gene’s cellular function. For some genes, how-
ever, this protective mechanism is disabled because only
one allele is expressed and its failure probably leads to
cellular malfunction. These monoallelically expressed
genes can be classified into one of three categories [1]:
X-inactivated genes, which are regulated by a random
process in which one of the two X chromosomes present
in female mammals is silenced [2]; autosomal genes
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subject to random monoallelic gene expression, such as
the T cell receptors and natural killer cell receptors [3-9];
and autosomal imprinted genes (e.g., CDKN1C and H19),
which express from only one of the two alleles according
to their parental origin [10-13]. Imprinted genes play im-
portant functional roles in the control of embryonic
growth and development, as well as in post-natal devel-
opment [14-16]. As imprinted genes are expressed from
only one of the two parental chromosomes, a de facto
haploid state is caused by imprinting and leads to asym-
metric functions of parental genomes and loss of diploid
protection against recessive mutations [11]. Thus, im-
printing dysregulation is linked to numerous human gen-
etic diseases, such as developmental disorders (Prader-Willi
syndrome, Angelman syndrome) and cancers (neuro-
blastoma, Wilms’ tumor) [17-20]. In addition, environ-
mental factors can influence gene expression by targeting
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imprinted genes [21,22]. Because imprinted genes are
more susceptible to disease than non-imprinted genes
[23,24], it is of great importance to identify novel im-
printed genes for human.
Identifying imprinted genes experimentally has trad-

itionally been a slow process, and the number of vali-
dated ones is much lower than the previous estimation
(~1% of all human genes) [25]. However, recently devel-
oped high-throughput screening approaches (e.g., ex-
pression profiling and single-nucleotide polymorphism
[SNP] microarrays) and recently identified DNA se-
quence characteristics (e.g., the number and type of
repeated elements flanking a gene) have led to the pro-
posal of several new methods to predict imprinted genes
on a global scale [26-31]. With advances in next-
generation sequencing technology [32,33], mRNA-Seq is
becoming a powerful tool for transcriptome profiling [34].
It can generate not only the number of reads mapped to
exons, which reflects the expression levels of a gene, but
also the actual sequence, which may identify the allele
from which the mRNA is expressed. Therefore, inference
can be made for predicting imprinted genes. For ex-
ample, by sequencing whole transcriptomes from mice
embryos, Babak et al. (2008) measured allelic expression
bias and identified six novel imprinted genes [35].
However, to our knowledge, prediction of imprinted

genes by deeply sequencing transcriptomes (mRNA-Seq)
from multiple independent tissues is still an open prob-
lem. In this study, we proposed a Bayesian model –
dsPIG (deep sequencing-based Prediction of Imprinted
Genes) – to predict imprinted genes based on allelic ex-
pression inferred from observed SNPs in mRNA-Seq
data of independent human tissues. With dsPIG, we
were able to measure the imbalance of allelic expression
among various tissues and calculate the posterior prob-
ability of imprinting status for each gene. Under a strin-
gent probabilistic cut-off of the posteriors and other
reasonable biological criteria, we identified 57 potentially
imprinted genes from 9 diverse human tissues and 94
potentially imprinted genes from 20 cerebellar cortices,
with an expected low false discovery rate (FDR). Further-
more, analysis of allelic expression of the same genes
among different tissues revealed that, in some cases,
even if a gene was biallelically expressed, one allele al-
ways had higher expression level than the other.

Results
Statistical model development
Monoallelic expression generally falls into one of three
categories: imprinted expression, random monoallelic
expression and X-inactivation, all of which express only
one of two alleles in a single cell [1-10]. At a tissue level,
however, random monoallelic expression will allow both
alleles to be detected in total RNA because of the
“mosaicism” of the tissue [9,36] (also see discussion). Be-
cause our study was based on whole transcriptomes of
tissue samples, random monoallelic expression was rea-
sonably considered as biallelic expression when averaged
over the entire tissue. X-inactivation was also excluded
from this study by discarding all predictions on the X
chromosome. Thus imprinting is the most likely cause
of the observed monoallelic expression among transcrip-
tomes of different tissues even though we cannot infer
the parent of origin.
We used known SNPs from dbSNP [37] to distinguish

and count the two alleles of each gene. If a gene was
imprinted, we expected to observe only one of the two
alleles of each SNP in the exon region from the whole
transcriptome. With the allelic counts obtained from the
mRNA-Seq data (see Materials and Methods), we devel-
oped a Bayesian model (dsPIG) to compute the posterior
probability of imprinting based on each single SNP. Sup-
pose we have sequenced transcriptomes from n inde-
pendent tissue samples. For each sample, we count the
alleles of all known SNPs, discarding those with 0
counts. For each SNP, let the allelic counts be: (x1, y1),
(x2, y2). . ., (xn , yn), where xk and yk are the counts for
two alleles X and Y in the sample k (k=1, . . ., n). Because
each gene can only have two statuses: imprinted (I) or
non-imprinted (NI), we consider (I, NI) as a binary event
vector for the imprinting status. By denoting data =
{(x1, y1), (x2, y2). . ., (xn , yn)}, we have by Bayes’ Theorem:

Pr I dataj Þ ¼ð
PrdatajIð Þ � Pr Ið Þ

Pr data Ij Þ � Pr Ið Þ þ Pr data NIj Þ � Pr NIð Þðð ð1Þ

where Pr(I | data) is the posterior probability of imprint-
ing and Pr(I) is the prior of imprinting. Based on current
knowledge of prevalence of imprinted genes [25], we set
the prior Pr(I)=1%, thus Pr(NI) = 1 – Pr(I) = 99%. Since
samples were independent of each other and genotype
has only 3 possible combinations (XX, XY, YY), we denote
the genotype as follows:

δ ¼
1 the genotype is XX
2 the genotype is XY
3 the genotype is YY

8<
:

Assuming p and q are the allele frequencies for allele
X and Y, p + q =1. According to Hardy-Weinberg equi-
librium, the prior probabilities for the three genotypes
are calculated as follows:

Pr δð Þ ¼
¼ Pr Xð Þ2 ¼ p2 δ ¼ 1
¼ Pr Xð ÞPr Yð Þ ¼ 2pq δ ¼ 2
¼ Pr Yð Þ2 ¼ q2 δ ¼ 3

8<
:

Since values of p and q can be retrieved from dbSNP
[37], p and q are treated as constants.
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We used the law of total probability to calculate the
likelihood Pr(data|I) as follows:

Pr datajIð Þ ¼
Yn
k¼1

Pr xk ; yk Ij Þ n≥1ð Þð ð2Þ

¼
Yn
k¼1

Pr xk ; yk I; δ ¼ 1j Þ � p2 þ Pr xk ; yk I; δ ¼ 2j Þð��
�2pq þ Pr xk ; yk I; δ ¼ 3j Þ � q2

� �
By assuming that (i) the transcript levels of a gene’s

two alleles are equal if the gene is biallelically expressed,
(ii) two different alleles, if both expressed, have the same
chance to be sequenced by mRNA-Seq, and (iii) unex-
pressed alleles with counts >0 are due to sequencing
errors, we had the following derivation:

Pr xk ; yk jI; δ ¼ 1ð Þ ¼ f yk ; nk ; peð Þ ð3Þ
Pr xk ; yk jI; δ ¼ 3ð Þ ¼ f xk ; nk ; peð Þ ð4Þ
Pr xk ; yk I; δ ¼ 2j Þð
¼ Pr xk ; yk I; δ ¼ 2; θ ¼ 0j Þ � Pr θ ¼ 0ð Þð

þPr xk ; yk I; δ ¼ 2; θ ¼ 1j Þ � Pr θ ¼ 1ð Þð
¼ f yk ; nk ; peð Þ � 1

2
þ f xk ; nk ; peð Þ � 1

2
ð5Þ

Here, f denotes binomial distribution [i.e., f x; n; pð Þ ¼
n
x

� �
1� pð Þ n�xð Þpx], nk = xk + yk is assumed fixed, and pe

is the averaged sequencing error rate for each SNP (pe
was obtained from Wang et al. 2008). The binary vari-
able θ is defined as follows

θ ¼ 0 Only X can be expressed due to imprinting
1 Only Y can be expressed due to imprinting

�
.

Since X and Y have an equal chance to be inherited from
either maternal or paternal genome, X and Y have an
equal chance to be expressed in imprinted genes. Hence,

Pr θð Þ ¼ 1=2 θ ¼ 0
1=2 θ ¼ 1

�
.

Similarly for the likelihood function Pr(data|NI), we
have:

Pr datajNIð Þ ¼
Yn
k¼1

Pr xk ; yk NIj Þ n≥1ð Þð ð6Þ

¼
Yn
k¼1

Pr xk ; yk NI; δ ¼ 1j Þ � p2 þ Pr xk ; yk NI; δ ¼ 2j Þð��
�2pq þ Pr xk ; yk NI; δ ¼ 3j Þ � q2

� �
Pr xk ; yk jNI; δ ¼ 1ð Þ ¼ f yk ; nk ; peð Þ ð7Þ
Pr xk ; yk jNI; δ ¼ 3ð Þ ¼ f xk ; nk ; peð Þ ð8Þ
Based on our three assumptions (i) – (iii), Pr(xk, yk|NI,

δ = 2) follows a binomial distribution with p=0.5. There-
fore, we have:

Pr xk ; yk jNI; δ ¼ 2ð Þ ¼ xk þ yk
xk

� �
1
2

� �xkþyk

ð9Þ

Computation is performed separately for each single
SNP. Therefore, a posterior probability of imprinting for
a gene is associated with a specific SNP in this gene, un-
less otherwise specified.

Simulation-based model analysis
We generated allelic counts from simulated data by tak-
ing into account imprinting status, SNP frequency, and
sequencing error. We then applied dsPIG to estimate
the sensitivity, specificity and the FDR. We generated
two sets of allelic counts under the assumption that the
locus was either imprinted or not. The number of reads
for each allele was generated assuming the presence of
one dominating allele plus sequencing error for imprinted
case; and presence of equal amount of two alleles plus
sequencing error for non-imprinted case. The generated
allelic counts followed a distribution similar to the actual
mRNA-Seq data (Additional file 1 Figure S1). More de-
tails of the procedure were illustrated in Additional file 2
Figure S2. Given an allele frequency (0.5), a sequencing
error (0.02) and a prior (0.01) of imprinting, the poster-
ior probability calculated from the allelic counts gener-
ated for imprinted genes approached 1 as the sample
size increased, while concomitantly the posterior prob-
ability for biallelically expressed approached 0 (Figure 1a,b;
for each SNP, only the tissue samples with allelic counts
>2 were considered valid samples, and we used “sample
size” to refer to the number of valid samples in this
study). With minor allele frequencies between 0.005 to
0.5, sequencing errors between 0.01 to 0.05 and priors
between 0.005 to 0.02, we obtained similar results as
Figure 1a,b. Using 0.2 as the cut-off for posteriors Pr(I |
data) (see Model Analysis Based on Independent Test
Sets), sensitivity of our model-based prediction exceeded
99.9% when sample size was >9, and specificity exceeded
99.99% when sample size was >18 (Figure 1c). Under the
same cut-off and the allele frequency, the FDR of predicted
imprinted genes decreased as sample size increased: it
dropped to 5% and 1% as sample size exceeded 20 and
25, respectively (Figure 1d). Using the same cut-off (0.2),
we also examined how FDR varied when minor allele fre-
quency changed from 0.1 to 0.5 and sample size increased
from 1 to 50 (Figure 2). Based on these simulations, we
were able to provide estimated FDRs for most of our pre-
dictions in this study (Additional file 3 Table S1).



Figure 1 Simulation-based performance analysis of dsPIG. a, b, Simulated (natural log-transformed) posteriors of (a) biallelically expressed
genes and (b) imprinted genes. The dashed line in both panels stands for the log-transformed prior (0.01). Results in (a) and (b) were based on
20,000-time simulations with geometric mean as the method of averaging posteriors. c, Sensitivity (the black solid line) and specificity (the read
dashed line) of our model. d, the FDR of our predictions. When sample size was <5, the FDR was not computable as sensitivity and specificity
were both 0. Results in (c) and (d) were based on 20,000-time simulations with geometric mean as the method of averaging posteriors.

Figure 2 FDRs of our predictions with respect to different allele
frequencies. When minor allele frequency (mAF) decreased from
0.5 to 0.1, FDR generally increased if sample size was >10. Results
were based on 20,000-time simulations. For detailed values of FDR,
please refer to Additional file 4: Table S2.
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Predictions of imprinted genes
We collected two previously published mRNA-Seq data
sets. One set included 9 diverse tissue samples (Group I)
from Wang et al. 2008, and the other set had 20 cerebel-
lum cortex samples (Group II) from Mudge et al. 2008
(Table 1; see Data Collection in Materials and Methods)
[38,39]. Wang et al. 2008 showed that, in terms of
alternative isoform expression, cerebellum tissues were
clustered together and the 9 diverse samples were more
closely correlated. Here we performed hierarchical
clustering based on the imprinting-inclined SNPs
(i.e., SNPs with posteriors >0.01) and obtained similar
results (Figure 3; see Sample Clustering in Materials and
Methods). As we expected, samples from the cerebellar
cortex were clustered together, with Caucasian and Afri-
can American separated in two sub-clusters (Figure 3a).
Using Caucasian allele frequency on African American
samples, however, yielded a sub-cluster without separ-
ation between the two ethnicities (Figure 3b). This sug-
gests that the separation observed in Figure 3a was due
to differences in minor allele frequencies. As a test set, 3
breast cancer cell line samples were clustered together in



Table 1 Sample information and sequencing results from 9 various normal tissues (Group I) and 14 cerebellar cortices
with schizophrenia (SCZD) and 6 normal cerebellar cortices (Group II)

Sample Type Ethnicity Average read length Number of reads Unique genomic reads

Group I Adipose Normal Caucasian 32 27752231 63%

Brain Normal Caucasian 32 17246957 64%

Breast Normal Caucasian 32 16120746 66%

Colon Normal Caucasian 32 28435996 62%

Heart Normal Caucasian 32 20169301 56%

Liver Normal Caucasian 32 18517121 62%

Lymph node Normal Caucasian 32 27492254 57%

Skeletal muscle Normal Caucasian 32 22640454 64%

Testes Normal Caucasian 32 27303938 68%

Group II Cerebellum 1 SCZD African American 32 23241938 68%

Cerebellum 11S SCZD African American 35 14572861 54%

Cerebellum 18 SCZD Caucasian 32 25129004 69%

Cerebellum 1S SCZD Caucasian 32 36760977 64%

Cerebellum 2 SCZD African American 36 19241726 60%

Cerebellum 31 SCZD Caucasian 36 19867823 63%

Cerebellum 36 SCZD Caucasian 32 20111871 67%

Cerebellum 39 SCZD African American 33 23055778 63%

Cerebellum 3S SCZD African American 34 17846750 46%

Cerebellum 41 SCZD Caucasian 32 38658913 66%

Cerebellum 42 SCZD African American 35 17588723 56%

Cerebellum 5 SCZD Caucasian 36 21229299 61%

Cerebellum 5S SCZD African American 32 28944566 66%

Cerebellum 7S SCZD Caucasian 34 13769073 54%

Cerebellum 17 Normal Caucasian 36 12890252 47%

Cerebellum 2S Normal Caucasian 36 12482759 44%

Cerebellum 35 Normal African American 36 25402905 63%

Cerebellum 40 Normal Caucasian 36 24486091 64%

Cerebellum 6S Normal Caucasian 32 24347196 71%

Cerebellum 8S Normal African American 32 24016465 71%
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both cases. Compared with other non-cerebellum sam-
ples, the brain sample had higher correlation with cere-
bellum samples in both cases, which is sensible
biologically. The result that the 9 diverse tissue samples
were clustered together could be caused by many factors
such as different experimental conditions between Group
I and Group II samples.
Using dsPIG, we predicted imprinted genes for Group

I and Group II separately. To call a gene imprinted, we
checked the posteriors of all the SNPs on the same gene
to make sure that (i) the gene had at least one SNP with
a posterior >0.2, which was the same cut-off used in
simulations, and (ii) all the other SNPs did not show any
contradictory evidence (i.e., all the other posteriors were
>0.002 [our 20,000-time simulations showed that 95% of
the posteriors of imprinted genes were >0.002]). After
applying dsPIG to the mRNA-Seq data and using the
above criteria, we predicted 57 potentially imprinted
genes for Group I samples and 94 potentially imprinted
genes for Group II samples out of a total of 20,559 genes
(0.28% and 0.46%, respectively) that had allele frequency
data in dbSNP. The distribution of sample sizes for SNPs
was shown in Additional file 5 Figure S3. We listed the
top 15 predictions for both groups with respect to
their posterior probabilities of imprinting in Table 2 (see
Additional file 3 Table S1 for the complete list). Surpris-
ingly, we found only 13 common genes between the 57-
gene list and the 94-gene list. Functional enrichment
analysis performed in IngenuityW Pathway Analysis
(IPA) showed that the two lists of genes were signifi-
cantly enriched (p-value<0.05 after “BH” correction [40])
in certain Bio Functions but not in any canonical path-
ways defined by IPA (Additional file 6 Figure S4). We
also compared our predictions with the 371 genes that
are subject to random monoallelic expression [1] and
found none of our predicted genes in either group



Figure 3 Sample clustering in terms of imprinting-inclined SNPs. Spearman correlations were calculated between each pair of samples using
the posterior on each SNP calculated by dsPIG in each sample. Hierarchical clustering was conducted with average linkage as the agglomerative
method. Posterior probabilities of African American samples were computed with African American allele frequency in panel (a) and with
Caucasian allele frequency in panel (b).
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overlapped with them, which further validates the quality
of our predictions and strongly suggests that our predic-
tions are not affected by random monoallelic expression.

Model analysis based on independent test sets
We collected 66 validated imprinted genes and 155 vali-
dated non-imprinted genes ([31,41]; see Data Collection)
and used them to check for false-positive and false-
negative predictions made by dsPIG. Based on the
mRNA-Seq data of Group I samples, 28 of the 66 im-
printed genes and 119 of the 155 non-imprinted genes
had allelic counts for known SNPs; based on the
mRNA-Seq data of Group II samples, 26 of the 66
imprinted genes and 110 of the 155 non-imprinted genes
had allelic counts for known SNPs. Under the same cri-
teria used to predict imprinted genes in Table 2, dsPIG
identified 2 out of 28 imprinted genes from Group I
samples and 9 out of 26 imprinted genes from Group II
samples, based on the mRNA-Seq data; under the same
criteria, dsPIG misidentified 0 out of 119 non-imprinted
genes from Group I samples and 0 out of 110 non-
imprinted genes from Group II samples. Moreover,
among those imprinted genes, only 8 out of 28 (Group I)
and 17 out of 26 (Group II) have sample sizes >5. On the
contrary, all 11 dsPIG-identified imprinted genes (2 for
Group I and 9 for Group II) have sample size >5. There-
fore, for imprinted genes with sample size > 5, 2 out of 8
genes and 9 out of 17 genes could be identified by dsPIG
for Group I and Group II, respectively. Again, this
showed that the sensitivity of dsPIG increased as sample
size increased and dsPIG could probably identify more
imprinted genes if the number of sequenced tissue sam-
ples further increased. This also agreed with the sim-
ulation results. Interestingly, some of the validated
imprinted genes had very small posteriors (<10-8), which
indicated that they had biallelic expression (or random
monoallelic expression) in certain tissues (Table 3).
We used the same sets of imprinted and non-

imprinted genes to determine the cut-off of the poster-
iors used in the prediction of imprinted genes. Because
most genes (~99%) are expected to be non-imprinted,
the cut-off has to yield a very high specificity (>99%) so
that the overall FDR of our predictions can be low
enough (<50%) for further validations. After trying dif-
ferent cut-offs (0.1, 0.2, . . ., 0.9), we found 0.2 to be the
most appropriate cut-off in terms of the validated gene
sets because (i) increasing the cut-off from 0.2 only low-
ered the sensitivity while left the specificity unchanged
(~0%), and (ii) decreasing the cut-off from 0.2 lowered
the specificity while the sensitivity didn’t change a lot,
which substantially increased the FDR of predictions
(Additional file 7: Figure S5). We also showed the ROC
curves for dsPIG in Additional file 7: Figure S5.

Candidates for experimental validation
We chose top 30 candidate genes from our predictions
and listed them in Table 4. Except one SNP (rs#3106189),
all the SNPs in Table 4 have high minor allele frequen-
cies (>0.184), which indicates >30% chance of observing
heterozygous alleles in experiments. In addition, these



Table 2 The top 30 predictions of imprinted genes based on mRNA-Seq data from Group I and Group II samples

SNP(rs#) Chr Location Str Posterior GeneID Symbol SS FDR Group

11538691 chr17 4789783 + 1 5216 PFN1 9 0 I

178412 chr7 73173272 - 1 3984 LIMK1 8 0 I

17094371 chr14 57677831 + 1 145407 C14orf37 9 0 I

2596331 chr1 143820905 - 0.999996 9554 SEC22B 7 0.26 I

8110904 chr19 47723208 + 0.999995 634 CEACAM1 4 0 I

11555395 chr17 67629054 + 0.999993 6662 SOX9 5 0 I

4015375 chr7 89628110 + 0.99997 26872 STEAP1 6 0 I

4015375 chr7 89628110 + 0.99997 256227 MGC87042 6 0 I

10208923 chr2 141157767 + 0.9998 53353 LRP1B 5 0 I

9807047 chr17 46229893 + 0.999751 731414 LOC731414 7 0 I

584959 chr3 61703763 + 0.995669 100128936 RPL10AP6 9 0.052 I

10800864 chr1 201003241 + 0.995398 10765 KDM5B 9 0.052 I

10306 chr10 74437407 - 0.993645 5033 P4HA1 4 0 I

2009646 chr5 108148856 + 0.989758 2241 FER 6 0 I

2009646 chr5 108148856 + 0.989758 643534 LOC643534 6 0 I

178412 chr7 73173272 - 1 3984 LIMK1 11 0.098 II

11538691 chr17 4789783 + 1 5216 PFN1 20 0.023 II

11541557 chr1 226352225 + 1 375 ARF1 9 0 II

17492855 chr2 158989711 + 0.999999 130940 CCDC148 18 0.014 II

2352731 chr3 144378737 + 0.999995 5089 PBX2 10 0.072 II

1065453 chr7 99755171 - 0.999992 441272 SPDYE3 5 0 II

11066116 chr12 110915447 + 0.999989 89894 TMEM116 8 0 II

2499 chr6 30021520 - 0.999982 3105 HLA-A 7 0.26 II

3093976 chr6 31610839 - 0.99993 7919 BAT1 8 0.12 II

705 chr15 22770604 + 0.999919 6638 SNRPN 20 0.023 II

705 chr15 22770604 + 0.999919 8926 SNURF 20 0.023 II

3132453 chr6 31712022 - 0.999913 7916 BAT2 4 0 II

1051470 chr12 117067614 + 0.999874 5037 PEBP1 14 0.051 II

1364261 chr16 70597171 - 0.999859 100130263 LOC100130263 8 0 II

11160608 chr14 100382845 + 0.999796 100130955 LOC100130955 20 0.023 II

Abbreviations: rs#-SNP identification number, Chr-chromosome, Str-strand, SS-sample size.
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genes also met at least one of the following three cri-
teria: (i) their SNPs (the 4th column of Table 4) had a
relatively low FDR (<0.3), (ii) they had multiple SNPs
with posteriors > 0.2 (dsPIG calculated a posterior for
each SNP in a gene), and (iii) they were located near
existing imprinted genes (distance <2M base pairs)
[10,42]. These additional criteria further increased the
possibility of imprinting.

Detection of allele-preferred expression
By investigating the biallelically expressed genes identi-
fied in the mRNA-Seq data, we found that at least 18
genes expressed significantly more transcripts from one
specific allele than the other among various individuals
and tissues (P < 0.05 by binomial test; Table 5; see Bino-
mial Test in Materials and Methods). This indicated that
the difference between expression levels of the two
alleles was not caused by sequencing errors or stochastic
effects in RT-PCR. In future, as more mRNA-Seq data
are generated, if more genes with one specific allele al-
ways under-expressed are observed, we would speculate
that a sophisticated mechanism (such as nonsense-
mediated mRNA decay [43]) may exist to explain this
type of allelic preference in gene expression for bialleli-
cally expressed genes.

Web-based service and R package for dsPIG
We have provided a web-based service for dsPIG at
http://www.shoudanliang.com/dsPIG/. Users need to up-
load either mapped mRNA-Seq data in the supported
format or processed data files containing allelic counts
for each SNP (see the website for more details). After
uploading the data, users may set the values for (i) the
cut-off for posteriors, (ii) the average sequencing error

http://www.shoudanliang.com/dsPIG/


Table 3 Tissues where validated imprinted genes most likely had biallelic expression

SNP(rs#) Chr Location Str Posterior Gene ID Gene Symbol Tissue Group

3807551 chr7 50627897 - 6.84E-17 2887 GRB10 Skeletal Muscle I

2585 chr11 2107019 + 9.09E-210 3481 IGF2 Liver I

10770125 chr11 2125589 + 7.15E-43 3481 IGF2 Liver I

8813 chr11 3065081 - 1.20E-11 114879 OSBPL5 Colon I

17178177 chr11 3065446 + 6.83E-10 114879 OSBPL5 Colon I

10770125 chr11 2125589 + 7.15E-43 51214 IGF2AS Liver I

7121 chr20 56912201 + 0 2778 GNAS Lymph node I

854547 chr7 94761791 + 1.61E-10 55607 PPP1R9A Cerebellum II

8164 chr11 6372457 + 1.54E-30 6609 SMPD1 Cerebellum II

7951904 chr11 6369506 + 2.68E-10 6609 SMPD1 Cerebellum II

11601088 chr11 6371967 + 1.62E-09 6609 SMPD1 Cerebellum II

2272666 chr8 1.46E+08 + 2.63E-17 79581 GPR172A Cerebellum II

2280840 chr8 1.46E+08 + 1.05E-57 79581 GPR172A Cerebellum II

2615374 chr8 1.41E+08 + 1.51E-13 51305 KCNK9 Cerebellum II

Posteriors were calculated based on Group I or II (see Table 5). The “Tissue” column indicates where genes were most likely biallelically expressed. Genes with
contradictory evidence (i.e., genes had posteriors <10-8 and posteriors ≥0.2) were discarded. IGF2, OSBPL5, SMPD1 and GPR172A had at least 2 SNPs with
posteriors less than 10-8. Abbreviations are the same as in Table 2.
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rate, (iii) the prior of imprinting, and (iv) QS (quality
score). In addition, users need to specify the human gen-
ome build and the SNP build for dsPIG. Our server will
calculate the posterior probabilities of imprinting for
each gene and email the results back to the users. In the
final submission form, users may request additional ana-
lysis, such as suggesting tissues where known imprinted
genes most likely have biallelic expression. In addition,
we have made an R package for dsPIG, which is available
both on the website and in the supplementary materials
(Additional file 8 for UNIX and Additional file 9 for
Windows). The instruction and the sample files for this
R package are in Additional file 10. The web service and
the R package generate the same result on the predic-
tions of imprinted genes. For reference, we have also
provided the annotated code for dsPIG (including both
the R code and the C code) used in this study as
Additional file 11 and on the website.

Discussion
dsPIG operates under the assumption that if a gene is
biallelically expressed, the transcript levels of two alleles
are the same. However, because imbalance of allelic ex-
pression has been widely detected in human tissues
[27,44-46], our assumption may not always be correct.
Indeed, within our 29-tissue samples, allelic imbalance
was observed even after excluding possible expression
from imprinted genes (data not shown here). However,
our simulation studies showed that our model can still
distinguish imprinted genes from non-imprinted ones in
most situations (Figure 4), unless one specific allele is al-
ways expressed at <13% of the other allele’s expression
level across different samples (no supporting literature
for this yet). Stochastic RT-PCR amplification [4] is not
of particular concern in dsPIG because this has been
taken into account as allelic imbalances.
dsPIG is sensitive to biallelic expression and unlikely

to falsely predict imprinted genes. A gene will get a very
low posterior probability of imprinting when it obviously
has biallelic expression in one tissue, even if only one al-
lele of this gene is observed in the transcriptomes from
all other tissues (Additional file 12: Figure S6). For ex-
ample, a gene may have monoallelic expression because
of allele-specific differences caused by either heterozy-
gous SNPs or somatic mutations in the promoter region
of the gene; as long as monoallelic expression caused by
these conditions is not present population-wide and a
large number (e.g., >25 in our study) of independent tis-
sue samples is used in dsPIG, these genes will not be
falsely predicted as imprinted genes. However, for the
same reason, if transcriptomes are collected from vari-
ous tissues, it becomes very hard for dsPIG to detect
tissue-specific imprinted genes. This partially explains
why dsPIG predicted much less imprinted genes in
Group I samples than in Group II samples (another rea-
son is that Group II has more samples than Group I).
One advantage of dsPIG is that it is able to predict

imprinted genes without sequencing the genotype. Al-
though a homozygous allele will also lead to identifica-
tion of only one allele in the transcriptome, the result
will not elevate the posterior belief of imprinting in our
model. This is very important and practical for human
because we no longer need to sequence the genome for
genotypes. However, a disadvantage is that dsPIG cannot
tell the parent of origin for predicted imprinted genes,
which can be verified only by other studies.



Table 4 Suggested predictions for experimental validation.

Gene Symbol Chr Str SNP(rs#) Location Posterior SS FDR Group

CCDC148 chr2 + 17492855 158989711 0.999999314 18 0.014 II

BAT1 chr6 - 3093976 31610839 0.999930191 8 0.12 II

PEBP1 chr12 + 1051470 117067614 0.999873859 14 0.051 II

LOC100130955 chr14 + 11160608 100382845 0.999795515 20 0.023 II

RPL10AP6 chr3 + 584959 61703763 0.999517203 11 0.055 II

KCNJ12 chr17 + 16962951 21259999 0.998953843 11 0.055 II

VARS2 chr6 + 1043483 31001706 0.998607936 14 0.051 II

BAT2 chr6 - 2272593 31709322 0.998223631 9 0.052 II

RPL10AP6 chr3 + 584959 61703763 0.995668725 9 0.052 I

KDM5B chr1 + 10800864 201003241 0.995398014 9 0.052 I

TAPBP chr6 - 1059288 33375649 0.995270134 13 0.057 II

KCNQ5 chr6 - 2000203 73753786 0.993101795 13 0.069 II

FER chr5 + 2009646 108148856 0.989758091 6 0 I

LOC643534 chr5 + 2009646 108148856 0.989758091 6 0 I

LY6G5B chr6 - 1266076 31748496 0.98719144 16 0.028 II

NOMO2 chr16 + 7179 14897344 0.979473344 7 0 II

BAT5 chr6 - 1475865 31765391 0.979015507 7 0 II

RXRB chr6 - 6531 33271428 0.977747582 6 0 II

FER chr5 + 2009646 108148856 0.962143895 6 0 II

ZBTB22 Chr6 - 1061783 33390605 0.96804794 12 0.076 II

LOC283398 chr12 - 3827521 93467186 0.908227908 7 0 I

UCRC chr22 + 14115 28493525 0.889141351 15 0.039 II

MT2A chr16 + 10636 55200843 0.709333922 10 0.142 II

RQCD1 chr2 + 526897 219141840 0.683651187 13 0.128 II

PSMC3IP chr17 - 6963 37985122 0.661403579 12 0.146 II

CSTF3 chr11 - 1028564 33118584 0.479199531 8 0.373 II

LOC100128252 chr19 + 3971706 61697880 0.478128233 4 0.343 I

LOC100130814 chr14 - 2295655 100608883 0.446498085 18 0.228 II

IMPDH1 chr7 - 2228075 127821864 0.283348511 17 0.318 II

CLDN4 chr7 + 1127155 72884396 0.270700082 4 0.594 I

Boldface indicates proximity to known imprinted genes. Underline indicates a gene has multiple (≥3) SNPs with posteriors > 0.2. Genes are sorted by their
posteriors. RPL10AP6 and FER are listed for both Group I and Group II. Abbreviations are the same as in Table 2.
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One obvious limit of dsPIG is that it was modeled
based on single SNPs. This means, if a gene has more
than 1 SNP site in its exons, it may have different single-
SNP-based allelic counts and thus different posterior
probabilities from dsPIG. Therefore, one single strong
posterior cannot determine the imprinting status of this
gene. Instead, we have to look into all SNP sites of each
gene and make sure no contradictory posterior exists for
our predictions (as stated in results). In future, a possible
improvement would be integration of all SNP informa-
tion of a gene and calculate a single posterior to predict
imprinting status.

Conclusions
In this paper, we proposed a new method – dsPIG, ap-
plicable to all mammals with genomic imprinting, to
predict imprinted genes based on mRNA-Seq data of
various independent tissues. With enough sequenced
samples, dsPIG is capable of predicting imprinted genes
on a genome-wide scale with expected low FDRs. The
power of dsPIG will be further enhanced after more data
generated by mRNA-Seq technology become available in
the near future.
Methods
Data collection
To predict gene imprinting status, we used ~650 million
short reads from 29 human tissue samples [38,39]: 206
million from 9 different normal tissues, 320 million from
14 cerebellar cortices with schizophrenia and 124 million
from 6 normal cerebellar cortices. Tissue samples were



Table 5 20 SNPs of which one specific allele had a higher transcript level than the other one among various tissues
and individuals

SNP Chr Position Str Ratio P-value Gene Symbol

rs13884 chr19 18545100 + 1/24 3.58E-05 UBA52

rs4621 chr11 65380094 + 0/17 9.16E-05 CFL1

rs425485 chr19 3004801 + 0/13 0.000976563 AES

rs4874 chr17 17227958 - 0/12 0.001171875 LOC388344

rs6565924 chr18 72820212 + 0/12 0.001171875 MBP

rs6554 chr19 18546963 + 0/11 0.001953125 UBA52

rs11543289 chr17 34136120 + 0/10 0.003348214 MLLT6/LOC100129395

rs17626 chr19 44618360 - 1/13 0.005126953 RPS16

rs8118 chr16 4787169 - 0/9 0.005208333 ROGDI

rs9199 chr18 72821323 - 0/8 0.009375 MBP

rs7612 chr7 5533637 + 1/11 0.01171875 ACTB

rs6597982 chr11 778006 - 1/11 0.01171875 CEND1

rs1803283 chr14 1.03E+08 - 2/14 0.011944111 CKB

rs7982 chr8 27518397 - 2/13 0.015854779 CLU

rs3743566 chr16 57103285 + 2/13 0.015854779 NDRG4

rs2821 chr20 5853778 + 3/16 0.015854779 CHGB

rs7121 chr20 56912201 + 3/16 0.015854779 GNAS

rs12165042 chr17 30502328 + 4/18 0.020589193 UNC45B

rs1150 chr17 8003307 + 2/12 0.024362664 VAMP2

rs10064485 chr5 1.75E+08 + 2/11 0.039257813 CPLX2

The “Ratio” column shows the proportion of samples with one specific allele’s transcript level higher than the other’s. P-values have been adjusted by “BH”
correction [40]. Abbreviations are the same as in Table 2.
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collected from 29 independent individuals, among which
20 were Caucasian and 9 were African American
(Table 1). We downloaded SNP data from UCSC gen-
ome browser using the table function [47] and used
SNPs with only two alleles to make predictions in this
study. The source of the original data was SNP Database
(dbSNP) build 129 from NCBI [37]. Known imprinted
and non-imprinted genes were collected from Additional
file 3: Table S1 and Additional file 4: Table S2 in the
supplementary research data of Luedi et al. (2007) [31]
and from Catalogue of Parent of Origin Effects (http://
igc.otago.ac.nz/home.html) [41].

Calculation of allelic counts
RNA-Seq reads were mapped to human genome hg18
from UCSC genome browser using Eland (GAPipeline-
1.3.2). The unmapped reads were mapped to the exon-
exon junctions downloaded from http://genes.mit.edu/
burgelab/mrna-seq/ [38]. The junctions contain 56
(28×2) base pairs in total, allowing the reads (32 base
pairs) to be mapped with a minimum of 4 base pairs on
each side of the junctions [38]. To compute the number
of alleles for each SNP, we scanned each mapped tag for
all known SNPs (in terms of dbSNP) and counted the
number of times each nucleotide occurred at each SNP
position in each sample. To reduce the amount of
calculation, we only retained SNPs that were covered by
any sequencing tag in any sample. This generated allelic
counts for a total of 1,261,906 SNPs in the 29 tissue
samples. We then discarded SNPs with unknown fre-
quency and very low allelic counts (i.e., total allelic
counts <3 in each sample). In addition, we defined a
quality score-QS (see Definition of QS) and discarded
SNPs with QS <0.9 in all 29 samples (see Additional file
13: Figure S7). After these steps, allelic counts for 82,916
SNPs remained, and these were used in dsPIG.

Definition of QS
We only used biallelic SNPs in dbSNP, which is the ma-
jority of SNPs. Nucleotides observed other than these
two (alleles) were considered as sequencing errors due
to low sequencing quality at the SNP site, or indicted
that the allelic information of the SNP was wrong in
dbSNP. Thus, we defined quality score-QS to improve
the quality of the SNPs used in our predictions:

QSk ¼
xk þ yk

xk þ yk þ ek

In the above equation, xk and yk are the allelic counts
of allele X and Y in the kth sample (X and Y were deter-
mined by dsSNP), and ek is the count of additional

http://igc.otago.ac.nz/home.html
http://igc.otago.ac.nz/home.html
http://genes.mit.edu/burgelab/mrna-seq/
http://genes.mit.edu/burgelab/mrna-seq/


Figure 4 Effect of imbalanced transcript levels on the
posteriors of biallelically expressed genes. Solid lines stand for
simulated posteriors for imprinted genes (black line) and biallelically
expressed genes (non-black lines). “Randomly imbalanced” means
that in each sample we randomly picked one allele to have a lower
expression level than the other allele. FIC indicates “Fixed
Imbalanced Coefficient”, which means one allele is always expressed
at a “FIC” level of the other one in all samples. The dashed line
stands for the log-transformed prior. When FIC is low enough
(typically <13%), posteriors are not able to tell the difference
between imprinted (solid black line) and biallelic expression
(green line).
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nucleotide(s). QS was calculated for each SNP in each
sample. We arbitrarily chose 0.9 as a cut-off for QS
(Additional file 13: Figure S7) and only those SNPs with
QS>0.9 were used in dsPIG.

Sample clustering
By applying dsPIG to each of the 29 samples, we
obtained 29 lists of posterior probabilities (each list had
87,852 posteriors for 87,852 SNPs), which were first
multiplied by 100 and then natural logarithm trans-
formed. Thus, if the posterior was the same as the prior
(0.01), it would become 0 after the transform. After that,
for each SNP, all posteriors ≤ 0 were modified to 0, while
all posteriors > 0 were kept at the same value. If all 29
posteriors for a SNP were 0, the SNP was removed from
the 29 lists. By doing this, only the SNPs that showed an
increased probability of imprinting were kept for cluster-
ing. We then computed spearman correlations between
samples based on the remaining 29 lists of posteriors,
used these correlation values to determine distance be-
tween samples, and performed hierarchical clustering in
R (http://www.r-project.org). By using this method, we
clustered samples in terms of imprinting-inclined SNPs,
and thus reduced the influence of biallelically expressed
genes.

Binomial test
For a single SNP, we first defined Pk ¼ xk

yk
, where xk and

yk are the allelic counts for its alleles X and Y in the

sample k (k=1, . . ., n). We then defined z ¼
Xn
k¼1

I Pkð Þ ,

where I Pkð Þ ¼ 1; if Pk > 1
0; if Pk < 1

�
. We used the following

criteria to find the SNPs with both alleles (XY) expressed
in the sample k: xk>10, yk>10, xk+yk>50, xk/yk<10 and
yk/xk<10. The criteria made it very unlikely to observe
biallelic expression because of sequencing error. For
each SNP that met the criteria in n samples, if no allele
was preferably expressed by the transcription machinery,
z should follow a binomial distribution f(z; n, p) with
p=0.5. To obtain enough testing power, SNPs with n ≥ 8
were deemed qualified for the binomial test. Under the
above criteria, we found 24 qualified SNPs and listed all
20 significant testing results in Table 5.

Additional files

Additional file 1: Figure S1. Distribution of simulation-generated allelic
counts vs. observed distribution in real data. Red line stands for the
generated distribution; black line stands for the observed distribution.
The red text and black text in the upper right green box are summarized
statistics for red line and black line, respectively

Additional file 2: Figure S2. Flowchart showing steps in data
simulation and model assessment. In step 2, the differences in data
generation are caused by two factors: (i) imprinted genes need to
express only one allele at a tissue level while non-imprinted genes don’t,
(ii) two alleles expressed from non-imprinted genes need to be
sequenced in RNA-Seq with an equal probability, while imprinted genes
only have one allele expressed. In this step we also need to assume that
sequencing error leads to misread of one nucleotide to the other three
with an equal probability. RT-PCR amplification is not shown in the
process because we assume that it amplifies both alleles synchronously
(for details, see Discussion)

Additional file 3: Table S1. The predicted imprinted genes based on
mRNA-Seq data from Group I and Group II samples. Abbreviations: rs#-
SNP identification number, Chr-chromosome, Str-strand, SS-sample size.
“NA” in the “FDR” column means the FDR could not be estimated based
on our 20,000-time simulations

Additional file 4: Table S2. The FDR values with respect to different
sample sizes and allele frequencies. “NA” means FDR could not be
estimated based on our 20,000-time simulations

Additional file 5: Figure S3. Distribution of SNPs’ sample sizes in Group
I (from 9 diverse tissue samples) and Group II (from 20 cerebellum
samples). Group I and Group II had a total of 44007 SNPs and 66294
SNPs with sample size >0, respectively

Additional file 6: Figure S4. Functional enrichment analysis of the 57
genes and the 94 genes in IngenuityW Pathway Analysis. (a) Comparison
of enrichment in Bio Functions between the two gene lists. (b)
Comparison of enrichment in Canonical Pathways between the two gene
lists. The height of each bar in (a) and (b) represents the logartihm (10-
based) transformed p-values calculated from Fisher’s exact test. In (a), the
horizontal yellow line is the threshold [i.e., -log10(0.05)] above which bars
(p-values) were considered significant; in (b), there is no bar above the

http://www.r-project.org
http://www.biomedcentral.com/content/supplementary/1471-2105-13-271-S1.tiff
http://www.biomedcentral.com/content/supplementary/1471-2105-13-271-S2.tiff
http://www.biomedcentral.com/content/supplementary/1471-2105-13-271-S3.doc
http://www.biomedcentral.com/content/supplementary/1471-2105-13-271-S4.doc
http://www.biomedcentral.com/content/supplementary/1471-2105-13-271-S5.png
http://www.biomedcentral.com/content/supplementary/1471-2105-13-271-S6.pdf
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threshold which is not shown here. (Figure S4 is located in a separate
PDF file: “Fig. S4.pdf”.)

Additional file 7: Figure S5. Sensitivity and specificity analysis of dsPIG
based on the genes with known patterns of allelic expression. (a)
Sensitivity analysis based on the validated imprinted genes. (b) Specificity
analysis based on the validated non-imprinted genes. In (a) and (b), the
solid black lines, which showed the numbers of genes identified by
dsPIG as “imprinted”, were based on the mRNA-Seq data of Group I
samples, and the dotted black lines were based on Group II samples; the
red line is the cut-off (0.2) used in this study to predict imprinted genes.
(c) ROC curve for dsPIG based on Group I samples. (d) ROC curve for
dsPIG based on Group II samples

Additional file 8: R package (dsPIG, version 3.0) for UNIX).

Additional file 9: R package (dsPIG, version 3.0) for Windows).

Additional file 10: The instruction and the sample files for the R
package of dsPIG.

Additional file 11: The annotated R code and C code for dsPIG
used in our study.

Additional file 12: Figure S6. Simulated (log-transformed) posteriors of
genes with biallelic expression in only one sample. Each positive integer
(x) on the x-axis (“Sample size”) includes two parts: 1 sample of biallelic
expression and (x-1) samples of imprinted expression. Posteriors were
calculated by dsPIG. The dashed line stands for the log-transformed prior
(0.01). This result was based on 20,000-time simulations with geometric
mean as the method of averaging posteriors

Additional file 13: Figure S7. Distributions of QS in 32 samples
(including 3 breast cancer cell line samples). The x-axis is the number of
sequencing tags that covered the SNP site, and the y-axis is the QS.
Tissue names are located at the lower right side of each plot, where
“Cancer” stands for “breast cancer cell line sample” and “C.” stands for
“cerebellum sample”. Dashed lines in the 32 samples represent the cut-
off (0.9) for QS
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