
Bošnački et al. BMC Bioinformatics 2012, 13:281
http://www.biomedcentral.com/1471-2105/13/281

SOFTWARE Open Access

Efficient reconstruction of biological networks
via transitive reduction on general purpose
graphics processors
Dragan Bošnački*, Maximilian R. Odenbrett, Anton Wijs, Willem Ligtenberg and Peter Hilbers

Abstract

Background: Techniques for reconstruction of biological networks which are based on perturbation experiments
often predict direct interactions between nodes that do not exist. Transitive reduction removes such relations if they
can be explained by an indirect path of influences. The existing algorithms for transitive reduction are sequential and
might suffer from too long run times for large networks. They also exhibit the anomaly that some existing direct
interactions are also removed.

Results: We develop efficient scalable parallel algorithms for transitive reduction on general purpose graphics
processing units for both standard (unweighted) and weighted graphs. Edge weights are regarded as uncertainties of
interactions. A direct interaction is removed only if there exists an indirect interaction path between the same nodes
which is strictly more certain than the direct one. This is a refinement of the removal condition for the unweighted
graphs and avoids to a great extent the erroneous elimination of direct edges.

Conclusions: Parallel implementations of these algorithms can achieve speed-ups of two orders of magnitude
compared to their sequential counterparts. Our experiments show that: i) taking into account the edge weights
improves the reconstruction quality compared to the unweighted case; ii) it is advantageous not to distinguish
between positive and negative interactions since this lowers the complexity of the algorithms from NP-complete to
polynomial without loss of quality.

Background
Techniques for the reconstruction of biological networks,
such as genetic, metabolic or signaling networks, are used
for getting insight into the inner mechanisms of the cell.
They are usually based on perturbation experiments, e.g.,
gene knockouts or knockdowns, in which one or more
network nodes (e.g. genes) are systematically perturbed
and the effects on the other nodes are observed. More
concretely, in the context of genetic regulatory networks
with knockout experiments, the nodes of the networks
are genes. Each gene is knocked out at least once and
the expressions of the other genes are measured for each
knockout experiment. The expression change with regard
to the unperturbed wild type defines the influence of the

*Correspondence: D.Bosnacki@tue.nl
Department of Biomedical Engineering, Eindhoven University of Technology,
PO Box 513, 5600 MB, Eindhoven, The Netherlands

knocked out gene on the other genes. Based on that, con-
nections between the genes can be established. Using the
difference in the expression between the perturbed and
the wild type, weights and signs can be associated with the
connections to quantify the influence and indicate over-
and under-expression, respectively.
An important problem in this kind of network recon-

struction is that direct connections between genes might
be established that are spurious, i.e., do not exist in real-
ity. We illustrate this with the following example. Suppose
that the transcription factor A, produced by gene a, is
needed to activate gene b. The activation of b results in
the production of transcription factor B which is encoded
by b. Let B on its turn activate gene c, which is mani-
fested by the production of the corresponding protein C.
Also, assume that genes b and c cannot be activated by any
other gene/transcription factor. Now, if we disable gene a,
for instance by deleting it from the genome, the produc-
tion of transcription factor A is prevented and as a result

© 2012 Bošnački et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.



Bošnački et al. BMC Bioinformatics 2012, 13:281 Page 2 of 13
http://www.biomedcentral.com/1471-2105/13/281

B and C will not be produced. Thus, our measurement of
the expression of genes a, b, and c will show that a directly
influences both b and c. In the reconstructed networks we
prefer to directly relate two nodes only if there is a direct
influence between them. So, a direct connection between
a and c, resulting from the transitive influence via b, would
be obsolete, and the process of removing such indirect
influences is called transitive reduction (TR) [1].
There are several ways to remove spurious direct rela-

tions depending on the representation of the biological
networks. For instance, in [2] this is done by comparing
the measured influence strength between the direct and
indirect interactions, i.e., an interaction chains that do
not contain the direct interaction. The direct interaction
is removed if it is weaker than the last edge of the indi-
rect one. Similarly, in the genetic networks inference tool
ARACNE the method of data processing inequality is used
to remove indirect interactions [3]. This method works for
undirected networks. For each triple of genes their pair-
wise interactions are checked. The one with the lowest
score is assumed to be a result of an indirect interaction
of the other two. Other approaches to remove obsolete
interactions can be found in [4].
Using TR for filtering out spurious connections was pro-

posed by Wagner [5]. The rule is to remove the direct
interaction for each gene pair g and g′, if there is an alter-
native chain of interactions between g and g′. Going back
to our example above, TR would mean that the undesired
edge between a and c, caused by the indirect interaction,
is removed from the network.
The first algorithms for TR date from the seventies [1]

and there are several other relevant publications on this
subject [6,7]. In all previous works on TR the networks
were represented as directed graphs without weights
on the edges. However, in the network inference algo-
rithms interaction strengths between genes usually play
an important role. Motivated by this fact, the concept of
TR of weighted graphs was introduced [4,8], where the
weights correspond to interaction strengths. Both these
papers take interaction signs (promoting or inhibiting)
into account.
In [4] several types of TR are described depending

on how individual edge weights are extended to paths
to quantify the indirect interactions. One of the vari-
ants of TR coincides with the definition that we employ
in this paper. However, the interaction strength along
paths, which is actually used in [4], is defined quite differ-
ently from ours. Also, they do not use thresholds in their
definitions.
With regard to the definition of transitive closure for

weighted graphs and the general theoretical background,
the closest to our work is [9]. Their work is also motivated
by a biological application, in particular, the analysis of
protein-protein interaction networks. The authors define

the notion of transitive closure of weighted graphs, but
stop short of introducing TR. Originally, we were inspired
by their ideas about the transitive measure of interaction
along a path in the network.
Unlike the previous work in [4,8], we adopt an approach

that disregards the interaction signs. A benefit of this
decision is that the TR algorithms are of polynomial com-
plexity and amenable to parallelisation. In contrast, the
algorithm in [8] is in the worst case NP-complete, which
means that its runtime grows exponentially with the size
of the networks. Tests with the DREAM challenges [10]
show that the omission of signs does not incur any degra-
dation in overall performance compared to the signed
weighted TR of [8].
We present parallel versions of the TR algorithms for

both unweighted and weighted directed graphs. These
algorithms are developed for general purpose graphics
processing units (GPUs). GPUs have been extensively
used for various applications, including bioinformatics
and systems biology. Since GPUs are standard in mod-
ern computers, parallel algorithms become an attractive
possibility to speed up computations.
The crucial idea of TR on GPUs is to formulate the

algorithm in terms of matrix operations. Since GPUs are
very efficient in implementing the latter, this results in a
remarkable speed-up so that networks consisting of tens
of thousands of nodes can be handled within seconds on a
standard desktop computer.
Parallel algorithms for computing transitive closure of a

graph, which is closely related to TR, have been developed
before e.g., [11,12]. However, the only work that we could
find that deals explicitly with parallel algorithms for TR is
[13]. Their algorithms are restricted to unweighted graphs
and claim efficiency for the special case of sparse graphs.
To the best of our knowledge, there does not exist a previ-
ous implementation of a TR algorithm on GPUs and thus,
our work is novel in that sense, too.

Approach for unweighted graphs
We adopt a graph-theoretic framework to formally repre-
sent biological networks. A directed graph G = (V ,E) is a
pair of sets of nodes V and edges E ⊆ V × V , i.e., an edge
e ∈ E is an ordered pair of nodes (v, v′) ∈ V × V . Without
loss of generality, we identify V with an arbitrary but fixed
order represented by the set of numbers n = {1, 2, . . . , n},
where n is the number of nodes in V. For example, in
genetic networks, we associate the nodes with genes and
the edges with interactions between genes. More formally,
a gene i is connected to a gene j via an edge e = (i, j) if and
only if i influences j. The graph can be equivalently rep-
resented by an adjacency matrix A. For standard graphs
which do not have weights associated with the edges, the
elements Ai,j of the matrix have value 1, if there is an edge
from nodes i to node j or 0, otherwise.



Bošnački et al. BMC Bioinformatics 2012, 13:281 Page 3 of 13
http://www.biomedcentral.com/1471-2105/13/281

A path from node i to node j is a sequence Pij =
(k0, k1, . . . , km), where k0 = i, km = j and (kl−1, kl) ∈ E,
for 0 < l ≤ m. Nodes kl, where 1 ≤ l ≤ m − 1, are
called intermediate nodes. A cycle is a path Pij whose first
and last node coincide, i.e., i = j. A cycle that consists
of one edge is called a self-loop. A graph is acyclic if it
does not contain any cycles. We denote the set of edges of
Pij with Edges(Pij). Let Paths(G) and Paths(i, j) denote the
sets of all paths in the graph G and all paths from i to j,
respectively.

Definition 1 (Unweighted Transitive Closure and
Reduction). The transitive closure of a graph G is the
graph GT = (V ,ET ) with (i, j) ∈ ET if and only if there
exists a path from i to j in G. The transitive reduction
of an acyclic graph G is the unique [1] smallest graph
Gt = (V ,Et), i.e., with the least number of edges, such that
(Gt)T = GT.

Intuitively, this means that the transitive closure is pre-
served by the reduction, i.e., no information about reacha-
bility is lost. For an acyclic graphG it can be shown [1] that
the TR Gt can be obtained by removing each redundant
edge (i, j) ∈ E from the original graph G for which there
is an indirect path, i.e., not including edge (i, j), between i
and j in G. An example of TR for acyclic graphs is given in
Figure 1.
The definition of TR can be extended in a natural way

to graphs with cycles. However, the reduced graphs are
not unique and in general cannot be generated by delet-
ing edges from the graph (see Figure 2). To solve this, Aho,
Garey and Ullman [1] shrink the strongly connected com-
ponents of the graph to single nodes and apply TR on the
resulting acyclic graph. After the reduction, we expand the
components as they were in the original graph, as is done
in [14].

Extension to weighted graphs
We aim at modelling experiments that use node pertur-
bations, e.g., gene knockouts, for the reconstruction of

Figure 1 Transitive reduction of an acyclic graph. The edge (a, c)
is removed because of the indirect path (a, b, c). Similarly, (a, f ) is
removed because of the existence of several indirect paths between
nodes a and f .

interactions between nodes. We already saw in the exam-
ple above that spurious direct interactions are added if
there exist an indirect path between two genes. Hence, the
outcome of the experiments actually produces a transitive
closure of the real (original) network. By applying TR as a
kind of inverse operation of the transitive closure, we try
to cancel these side effects by removing direct interactions
between two nodes, if there is an alternative indirect path
between them. Finding the TR amounts to reconstruction
of the network as by removing those direct interactions we
usually obtain a good approximation of the real network.
However, sometimes both direct and indirect interac-

tions can exist at the same time. Examples of this are the
feed-forward loops that occur in the genetic networks of
many organisms [15]. Unfortunately, in such cases, the TR
as defined above will still remove the direct interaction. To
avoid this anomaly, we use the notion of TR on weighted
graphs where the weights represent interaction uncertain-
ties. Knowing the interaction uncertainty allows to refine
the edge removal criterion: an edge (i, j) is removed from
the original graph only if it is less certain than some indi-
rect interaction between i and j. In other words, if an edge
is at least as certain as all indirect interactions, then it is
kept in the graph.
The interaction uncertainties are represented as weights

of the edges. Formally, we associate to a directed graph
G = (V ,E) a function w : E → R, which maps each
edge to a real number, to obtain a weighted directed graph
G = (V ,E,w). The adjacency matrix A becomes a matrix
of weights where the special value � > maxe∈E {w(e)}
denotes the absence of an edge between two nodes. There
are several plausible ways to choose the weight function
w. In this paper we assume that the weights are p-values
or similar measures, i.e., of the interval [0,1], which are
obtained from the post-processing of the perturbation
experiments. Thus, the smaller the weight w, the less
uncertain is the interaction between two genes.

Definition 2 ((Minimal) Transitive Interaction
Uncertainty). Transitive interaction uncertainty along
a path is defined as a function W : Paths(G) → R that
maps each path to a real number. We apply the principle
of the weakest link and define W (P) = maxe∈Edges(P){w(e)}
for a path P. Then, for a given edge (i, j) ∈ E we define the
minimal transitive interaction uncertainty h : E → R as
the strongest weakest link, i.e., the minimal transitive path
uncertainty over all paths between nodes i and j:

h(i, j) = min
P∈Paths(i,j)

{W (P)} = min
P∈Paths(i,j)

{
max

e∈Edges(P)
{w(e)}

}
.

Note that if edge (i, j) ∈ E, then (i, j) ∈ Paths(i, j). This
implies directly that h(i, j) ≤ w(i, j). Recall that the crite-
rion for preserving an edge in the reduced graph is that its



Bošnački et al. BMC Bioinformatics 2012, 13:281 Page 4 of 13
http://www.biomedcentral.com/1471-2105/13/281

Figure 2 Transitive reduction of a cyclic graph. The graphs in (b) and (c) are both transitive reductions of the graph in (a), since all three graphs
have the same transitive closure. One can see that edges that do not exist in the original graph may occur in its transitive reductions, like (a, c) in (b)
and (c, a) in (c).

uncertainty is not greater than the minimal uncertainty of
the indirect paths, i.e., w(i, j) ≤ h(i, j).
By putting the last two inequalities together, we can

refine the edge preservation criterion to w(i, j) = h(i, j)
and obtain the following definition:

Definition 3 (Weighted Transitive Reduction). The
transitive reduction of a weighted graph (TR) G =
(V ,E,w) is the graph Gt = (V ,Et ,wt) with Et = {e ∈ E |
w(e) = h(e)} and wt(e) = w(e) for all e ∈ Et.

Informally, edge (i, j) is kept in Et if and only if its
weight/uncertainty equals the minimal transitive uncer-
tainty of all paths between i and j. The edge weights
remain the same in the reduced graph. It is worth not-
ing that the above definition of TR for weighted graphs
supports the presence of cycles. An example of TR for
weighted graphs is given in Figure 3.
Of course, there are other possible options to define

the path weights based on the edge weights. For instance,
summing up the edge weights to obtain the weight of the
path is in some cases even a more natural choice than the
max-min (weakest link) approach that we use. However, in
the case when p-values (or similar metrics in the interval
[0,1], e.g., correlation) are used, this is not the best option.
Summing up the p-values of all edges in the path can pro-
duce a result which is greater than 1, i.e., something which
is not a probability. Since a trivial path consisting of only

one edge is also a path, it is preferable to have a weight
for non-trivial paths that is of the same nature as the edge
weight.
In general, the refined notion of TR with weights does

not entirely resolve the anomaly of removing a direct
interaction which exists in the network. One way to fur-
ther improve the filtering of the edges is to use thresholds.
We introduce a lower threshold tlow determining that any
edge e with w(e) ≤ tlow is unconditionally kept in Et , i.e.,
regardless of the existence of more certain indirect inter-
actions. In this way we ensure that interactions which are
measured with high certainty are not removed from the
network. Similarly, we use an upper threshold tup such that
any edge e with w(e) ≥ tup is unconditionally removed
from the network. Hence, very uncertain connections are
always removed from the original graph G. This filter-
ing with threshold tup is actually independent of the TR
concept and it can be done as a pre- or post-processing
step.
This can be shown by reasoning towards a contradic-

tion. Assume that thresholding (TH) and TR are depen-
dent, in other words, that the final result depends on
the order in which TH and TR are performed. Say we
have a graph G for which this holds. Then, there must
be at least one edge e from a node v to a node v′ which
is not present in either TH(Gt) or TH(G)t , but it is
in the other. Let it not be present in TH(Gt) (the case
when it is not in TH(G)t is similar). Then, either it was
removed by TR (case 1), or by TH (case 2). Case 1:

b

Figure 3 Transitive reduction of a weighted graph. Edge (a, f ) with weight 0.5 is removed because of the indirect path (a, d, e, f ) with a smaller
transitive interaction uncertainty of 0.4. In contrast to Figure 1, the edge (a, c) is not removed as its weight (0.5) is smaller than the transitive
interaction uncertainty of the path (a, b, c) (0.6).



Bošnački et al. BMC Bioinformatics 2012, 13:281 Page 5 of 13
http://www.biomedcentral.com/1471-2105/13/281

If e was removed by TR, there must exist a path P in
G between v and v′ with W (P) < w(e). The assump-
tion was that e is still present in TH(G)t . Therefore, we
must have w(e) < tup. But then, also W (P) < tup, in
other words, P must exist in TH(G). The existence of P in
TH(G) means that e must be removed from TH(G) when
applying TR, leading to a contradiction. Case 2: If e was
removed by TH, then w(e) >= tup. But then, it would
also be removed when applying TH on G, leading to a
contradiction.
Using a threshold tlow splits the edge weights into two

sets. Within the sets the difference between values does
not play any role. For instance, assuming tlow = 0.5, the dif-
ference between the edge weights 0.8 and 0.7 is the same
as between 0.16 and 0.06. An analogous remark holds also
for tup.
For many graph problems, the unweighted problem is

often a special case of a more general weighted prob-
lem. For example, an algorithm to determine shortest
paths in a weighted graph can be used to find shortest
paths in unweighted graphs by assigning the same posi-
tive weight to every edge. For our problem of (weighted)
TR, a similar analogy does not hold, i.e., we cannot use
the algorithm for weighted cyclic graphs to calculate the
TR of an unweighted cyclic graph. This fact results from
the different natures of our definitions: For the weighted
case, we choose the greatest weight on a path without
considering its length. For the unweighted case, how-
ever, we will be adding up the edges of paths to obtain
their length (cf. next section). The first approach is not
affected by cycles – the transitive interaction uncertainty
of a path with cycles is always greater or equal to the one
for the same path with all cycles removed, thus, cycles
are ignored “automatically” when searching a path with
theminimal transitive interaction uncertainty. In contrast,
for the second approach, cycles must be actively detected
to ensure that only paths in which no node occurs more
than once are considered (the longest simple path prob-
lem is NP-hard). Figure 4 illustrates this with the path
(a, b, a, c) which has a length greater than one but still
there is no indirect alternative path from a to c. For a
similar reason, our algorithm for cyclic weighted graphs
cannot be adapted to cyclic signed weighted graphs.
The problems with cycles in signed graphs are discussed
in [8].

Implementation
After briefly discussing the emergence of many-core pro-
cessors and the resulting need for parallelisation of pro-
grams, this section presents our parallelised algorithms
for transitive reduction: first, for unweighted acyclic
graphs and afterwards the extension to weighted cyclic
graphs. Finally, we discuss the problems with cycles in
unweighted graphs.

Figure 4 Transitive reduction of cyclic unweighted graphs needs
cycle detection.

NVIDIA CUDA GPUs
Although Moore’s Law [16], stating that the number of
transistors per chip doubles roughly every 18 months,
still holds, the clock frequency of the processors does not
increase exponentially anymore. Thus, to keep improving
the processor performance, the manufacturers turned to
processors with multiple cores. In particular, General Pur-
pose Graphics Processing Units (GPUs) are an example
of massively parallel many-core systems available in desk-
top computers for an affordable price. However, to benefit
from these many cores, programs have to be redesigned
for the new architectures.
The Compute Unified Device Architecture (CUDA) [17]

is NVIDIA’s C-based approach to program GPUs. Sequen-
tial parts, including input and output operations, are
executed “as usual” on the host CPU while parallel parts
are executed on the GPU device by calling a special kind
of functions, called kernels. The body of a kernel is exe-
cuted by a configurable number of threads, each having
its own ID. The ID determines the data, e.g., part of a
matrix in memory, which is processed by the thread. As
the GPU device has no access to the host’s main memory,
the required data needs to be copied explicitly between
them.

Algorithm for unweighted acyclic graphs
For obtaining the TR of an unweighted acyclic graph G,
typically its transitive closureGT would be calculated first.
Then, in a second step, all edges e = (i, j) ∈ E would be
removed if there exists a node k, k 	= i and k 	= j, such
that (i, k) ∈ ET and (k, j) ∈ ET , i.e., there exists an alter-
native path (i, . . . , k, . . . j) from i to j in G and, since the
graph is acyclic, not using e. Consequently, e is redundant
because of the alternative path. The second step is nec-
essary since the transitive closure adds new shortcuts but
does not identify shortcuts already existing in G. Instead
of just calculating the transitive closure, we determine
the length of the longest path connecting every pair of



Bošnački et al. BMC Bioinformatics 2012, 13:281 Page 6 of 13
http://www.biomedcentral.com/1471-2105/13/281

nodes (i, j), i 	= j. This can be done efficiently using a
variant of the Floyd-Warshall algorithm [18-20] since the
graph is acyclic. Afterwards, we delete all direct edges
(i, j) ∈ E for which a path from i to j of length at least two
exists. Obviously, for this condition the considered lengths
can be bounded to two as it does not matter whether the
alternative path is exactly of length two or longer.
Algorithm 1 gives a pseudo-code description of our

approach. First, the integer-valued adjacency matrix A is
loaded on the host and copied to the GPU; this copy is
called B (lines 1–2). Afterwards, in the nested for-loops
in lines 3–6, the length of the longest path for all pairs
of nodes is calculated by a parallel version of the Floyd-
Warshall algorithm. Whenever there is a path of length at
least one from i to k, i.e., Bi,k ≥ 1, and one from k to j, i.e.,
Bk,j ≥ 1, this gives a path from i to j of length at least two.
Since we are interested only in the existence of an indirect
path and not in its actual length, we limit the length of the
longest paths to two. Therefore, Bi,j is set to two, denot-
ing that there exists an indirect path between i and j. The
last parallel for-loop deletes all edges (i, j) ∈ V × V for
which such a detour exists, i.e., Bi,j = 2, by setting Bi,j := 0
(lines 7–9). Finally, the transitively reduced matrix B is
copied from the GPU to A on the host which stores it to a
file.

Algorithm 1. Pseudo-code description of paral-
lelised transitive reduction of unweighted acyclic
graphs
REQUIRES: Adjacency matrix A

1: read A from input file
2: copy A from host to B on GPU
3: for k = 1, . . . , n do sequentially
4: for (i, j) ∈ n × n do in parallel
5: if Bi,k ≥ 1 and Bk,j ≥ 1 then
6: Bi,j := 2
7: for (i; j) ∈ n × n do in parallel
8: if Bi,j = 2 then
9: Bi,j := 0
10: copy B from GPU to A on host
11: write A to output file

In the CUDA implementation, the parallel do-loop over
(i, j) ∈ n × n is realized by starting n2 threads of a
kernel containing the loop’s body. Thus, according to
its thread ID, each thread executes the loop’s body for
one particular (i, j) ∈ n × n. In contrast, the sequen-
tial do-loop is performed “as usual” by the main program
on the CPU.

Complexity
The algorithm iterates n + 1 times over the n2 elements
of the matrix: n times in lines 3–6 and finally once in lines
7–9. However, different steps of the same iteration can
run in parallel on different processors. Thus, the overall
time complexity depending on the number of processors

p is: O
(
(n + 1) ∗

⌈
n2
p

⌉)
. The PRAM model assumes an

arbitrary large number of available processors – in par-
ticular we can assume p ≥ n2. In this model, the time
complexity becomes O (n) linear in the number of nodes.
For the sequential case, i.e., p = 1, we have time complex-
ity O

(
n3

)
as for the Floyd-Warshall algorithm. Similarly,

the space (memory) complexity is O
(
n2

)
.

Correctness
We claim that the output matrix is the TR of the input and
prove this for the sequential version, i.e., with sequential
execution of the parallel loops, first, before considering
the specifics of parallelisation. Thereby we can rely on
two things: The correctness of the Floyd-Warshall algo-
rithm (cf. [18]) and the fact that the TR of an unweighted
acyclic directed graph can be constructed by successively
removing redundant edges from the graph in any arbitrary
order ([1], p. 133). It remains to show that our algorithm
deletes exactly these redundant edges. An edge (i, j) is
deleted if Bi,j = 2 holds before lines 7–9, i.e., there exists
a path from i to j of length at least two. Since the graph is
acyclic, this means that an indirect path from i to jwithout
the direct edge (i, j) exists. Thus, the edge (i, j) is redun-
dant and can be deleted. On the other hand, if an edge
(i, j) is redundant, an indirect path from i to j without
the edge (i, j) exists. This path must have length at least
two. Consequently, we have Bi,j = 2 and the edge will be
deleted.
For the correctness of the parallelised algorithm, we

have to show that the steps performed in parallel are inde-
pendent and do not interfere. For the parallel do-loop in
lines 7–9 this is obvious as each iteration reads from and
writes to its individual memory location. Analogously, all
iterations of the inner loop of the Floyd-Warshall algo-
rithm in lines 4–6 write to different memory locations.
Furthermore, it cannot happen that for a fixed k0 the ele-
ments Bi0,k0 and Bk0,j0 read in the iteration for (i0, j0) were
already changed by the iterations for (i0, k0) and (k0, j0),
respectively, since both check Bk0,k0 ≥ 1 which is never
true since the graph is acyclic. The outer loop cannot be
parallelised as it is crucial for the correctness of the Floyd-
Warshall algorithm that all calculations of the kth iteration
are completed before the (k + 1)th iteration starts.

Algorithm for weighted (cyclic) graphs
In order to obtain the TR of a weighted graph, accord-
ing to the definition in Section “Background”, all edges
(i, j) ∈ E for which an alternative path from i to j with
a better transitive interaction uncertainty, i.e., h(i, j) <

w(i, j), exists have to be removed. Consequently, the core
of our algorithm is the calculation of the minimal transi-
tive interaction uncertainties h(i, j) for every pair of nodes
(i, j) ∈ V 2. Again, we use a variant of the Floyd-Warshall
algorithmwhose pseudo-code description can be found in



Bošnački et al. BMC Bioinformatics 2012, 13:281 Page 7 of 13
http://www.biomedcentral.com/1471-2105/13/281

lines 3–7 of Algorithm 2. The matrix B is initialised with
the original adjacency matrix (lines 1–2), i.e., Bi,j = w(i, j),
if (i, j) ∈ E, otherwise Bi,j = �. Then, for increasing
k = 1, . . . , n all paths between each pair of nodes are suc-
cessively considered that use only 1, . . . , k as intermediate
nodes. The idea behind this is as follows: Let Bi,j, Bi,k , and
Bk,j contain the minimal transitive interaction uncertainty
of all paths that go from i to j, from i to k, and from k to
j, respectively, and that use only intermediate nodes up to
k−1. Then, the minimal transitive interaction uncertainty
of all paths from i to j that use intermediate nodes up to
and including k is the maximum of the minimal transi-
tive interaction uncertainties of the path segment from i
to k and from k to j (line 5). If this value is smaller than
the minimal transitive interaction uncertainty calculated
so far, Bi,j is updated to it (lines 6–7). Figure 5 illustrates
this principle. In the last step of the Floyd-Warshall algo-
rithm, all paths with intermediate nodes up to n, which
are in fact all paths, are considered. After this, the edges

(i, j) ∈ E fulfilling the removal condition can be deleted by
setting Bi,j := � (lines 8–10) and the reduced matrix can
be copied to and stored by the host (lines 11–12).

Algorithm 2. Pseudo-code description of paral-
lelised transitive reduction of weighted, potentially
cyclic, graphs
REQUIRES: Adjacency matrix A, thresholds tlow and tup

1: read A from input file
2: copy A from host to B on GPU
3: for k = 1, . . . , n do sequentially
4: for (i, j) ∈ n × n do in parallel
5: viaK := max

(∣∣Bi,k
∣∣ , ∣∣Bk,j

∣∣)
6: if (Bi,j < 0 or Bi,j > tlow) and

viaK <
∣∣Bi,j

∣∣ then
7: Bi,j := −viaK
8: for (i, j) ∈ n × n do in parallel
9: if is Negative(Bi,j) or Bi,j ≥ tup then
10: Bi,j := T
11: copy B from GPU to A on host
12: write A to output file

Figure 5 An example how the Floyd-Warshall algorithm calculates the minimal transitive interaction uncertainties. Consider order I of the
nodes (b): In the first iteration (k = 1 = a) nothing changes since no path via 1 exists as 1 has no incoming edge. In the next iteration (k = 2 = b)

the path 1
0.1−→ 2

0.3−→ 3 with transitive interaction uncertainty, i.e., its maximal weight, 0.3 is found and this fact is memorised by adding 1
0.3−→ 3.

Furthermore, the path 1
0.1−→ 2

0.8−→ 4 is considered, but as its transitive interaction uncertainty (0.8) is greater than the interaction uncertainty of the

direct edge 1
0.5−→ 4, nothing changes. During the third iteration (k = 3 = c) the paths 2

0.3−→ 3
0.2−→ 4 and 1

0.3−→ 3
0.2−→ 4 (which corresponds to

the path a
0.1−→ b

0.3−→ c
0.2−→ d in the original graph) are found and since they have smaller (transitive) interaction uncertainties than the direct

edges, these are changed to 2
0.3−→ 4 and 1

0.3−→ 4, respectively. In the last iteration (k = 4 = d), nothing changes since 4 has no outgoing edge and
thus no path via 4 exists. Finally, all edges that were added or changed by the Floyd-Warshall algorithm, i.e., those for which an alternative path with
a smaller transitive interaction uncertainty were found, are removed to obtain the weighted transitive reduction of the original graph as depicted in
(d). For order II of the nodes (c), the algorithm works similar. Note that the correctness of the algorithm does not depend on the concrete order of
the outer iteration (k) over the nodes, e.g., order I as well as order II produce finally the same result.



Bošnački et al. BMC Bioinformatics 2012, 13:281 Page 8 of 13
http://www.biomedcentral.com/1471-2105/13/281

However, two things are slightly more involved in the
presented pseudo-code: First, to save memory, we use just
one matrix B on the GPU for the whole computation. The
problem is that if a path from i to jwith a smaller transitive
interaction uncertainty than the interaction uncertainty of
the direct edge (i, j) is found, the original value in Bi,j is
overwritten. Thus, some necessary information to check
the removal condition h(i, j) < w(i, j) is lost on the GPU.
Yet, if this situation arises we already know that the edge
(i, j) is to be deleted andwe use the sign bit to indicate that.
Consequently, instead of checking the original removal
condition, we check for negative values in B and delete the
corresponding edges in the post processing step (lines 8–
10). Note that it is not possible to remove such edges
(i, j) directly during the Floyd-Warshall algorithm since
the absolute values for Bi,j might be needed for later itera-
tions. If, for example, in the second iteration (k = 2 = c) in
Figure 5, case (c), the edge 3 0.8−→ 4 was directly removed
and not replaced by 3 0.3−→ 4, the algorithm could not find
in the next iteration (k = 3 = b) that 1 0.1−→ 3 0.3−→ 4 has
a better (transitive) interaction uncertainty, namely 0.3,
than the direct edge 1 0.5−→ 4.
The second aspect in the pseudo-code is the incorpo-

ration of thresholding. The upper threshold tup is applied
in line 9 (Bi,j ≥ tup), ensuring that all edges with this or
a bigger weight are always deleted. Due to the one-matrix
representation, the lower threshold tlow cannot be applied
in this post processing fashion. Instead, every edge with
this or a lower weight is skipped in line 6 (Bi,j > tlow) so
that its original weight is preserved in Bi,j.

Time complexity
The same as for Algorithm 1.

Correctness
We claim that the output of our algorithm is the thresh-
olded weighted TR of the provided input, i.e., that in the
end Bi,j = w(i, j), for (i, j) ∈ Et , and otherwise Bi,j = �
holds. Again, we prove the correctness of the sequential
algorithm first, before we argue about the issues that come
up with its parallelisation. Furthermore, we rely on the
correctness of the Floyd-Warshall algorithm, i.e., that it
correctly determines for each pair of nodes the minimum
of the maximal weights of all paths between them.
First, we show that all edges which are not in Et are

deleted from B (“B ⊆ Et”). Initially, every matrix element
Bi,j is non-negative. If a matrix element Bi,j is changed for
the first time by the Floyd-Warshall algorithm, then a neg-
ative value (−viaK) is written to it. This can happen only
in two cases: i) For the edge (i, j) ∈ E that is not forced to
be kept by the lower threshold, i.e.,w(i, j) > tlow, a path via
some node k with a smaller transitive interaction uncer-
tainty is found. Thus, this edge is to be deleted to obtain

the TR. ii) A path from i to j via some node k was found
and (i, j) 	∈ E, i.e., no direct edge exists in the input graph.
Of course, this edge must not be in the TR. Although the
absolute value might change in later iterations if an even
better path is found, once Bi,j becomes negative it stays
negative. Consequently, in both cases, these edges will
be removed in line 10. Note that for non-existing edges
(i, j) 	∈ E for which no path from i to j could be found the
value of Bi,j stays � during the whole algorithm. Finally,
the post processing removes all of the remaining edges
(i, j) ∈ E that are excluded from the TR by the upper
threshold, i.e., w(vi, vj) ≥ tup, as for them the condition
Bi,j ≥ tup holds.
One might wonder whether the protection of edges by

the lower threshold affects the correctness of the Floyd-
Warshall algorithm. Consider, for example, the situation
depicted in Figure 6 and assume tlow = 0.5: The edge
b 0.5−→ c is preserved although the better path b 0.2−→
a 0.3−→ c exists. Consequently, for the direct edge d → c
the best alternative path P = d 0.1−→ b 0.2−→ a 0.3−→ c with
W (P) = 0.3 is not found but only P′ = d 0.1−→ b 0.5−→ c
with W (P′) = 0.5. Nevertheless, that still leads to a cor-
rect final result: If w(d, c) ≤ tlow, e.g., 0.4, this edge is not
removed even though the better alternative path P exists,
since it is protected by the lower threshold. In contrast,
if w(d, c) > tlow, e.g., 0.6, this edge is not protected by
the lower threshold and should be removed. This indeed
happens since the path found (P′) is better.
It remains to show, that the edges that are in Et and

their weights are preserved in B (“B ⊇ Et”): As rea-
soned above, the matrix entry Bi,j for an edge (i, j) ∈ E is
changed only if a better path can be found and the edge is
not protected by the lower threshold. Conversely, it stays
unchanged and thus still holds the values w(i, j) for all

Figure 6 Protecting edges by lower threshold tlow= 0.5 does not
affect correctness.



Bošnački et al. BMC Bioinformatics 2012, 13:281 Page 9 of 13
http://www.biomedcentral.com/1471-2105/13/281

edges (i, j) ∈ E for which no better path exists or that are
protected by the lower threshold.
Finally, we have to argue that the parallelisation of the

algorithm does not break its correctness. For the post
processing in lines 8–10 this is definitely the case since
every iteration reads only from and writes only to its indi-
vidual memory location Bi,j. As already discussed for the
algorithm for unweighted acyclic graphs, it is crucial that
the outer loop (line 6) of the Floyd-Warshall algorithm
over k is executed sequentially. The inner loop (lines 7–
8) however can be parallelised since for a fixed k0 of the
outer loop every iteration (i0, j0) writes only to its own
memory location Bi0,j0 and reads only the values from
Bi0,k0 and Bk0,j0 which are not changed throughout the
whole k0th outer iteration. The values of Bi0,k0 and Bk0,j0
would be changed only if max

(∣∣Bi0,k0
∣∣ , ∣∣Bk0,k0

∣∣) <
∣∣Bi0,k0

∣∣
or max

(∣∣Bk0,k0
∣∣ , ∣∣Bk0,j0

∣∣) <
∣∣Bi0,k0

∣∣, respectively, holds.
However, max(. . . , r, . . .) < r never holds for any r ∈ R.

Results and discussion
We implemented our unweighted and weighted transi-
tive reduction (TR) algorithms in the tools CUTTER-U and
CUTTER-W, respectively.We performed two sets of exper-
iments with these tools which were aimed at showing their
scalability as well as their competitiveness and quality with
regard to similar techniques.

Scalability experiments with SYNTREN generated graphs
In this set of experiments we used networks of var-
ious sizes (1,000, 2,500, and 10,000 nodes), with and
without weights, as inputs for the TR algorithms. The
unweighted networks were generated using the Directed
Scale Free Graph algorithm [21] and the Erdős-Rényi algo-
rithm [22]. To obtain the weighted graphs from them, the
networks were simulated using the tool SYNTREN [23]a.
Using moderated t-test, the p-values for the interactions
between each node pair were generated and used as edge
weights.
The goal of this set of experiments was to test the scal-

ability of CUTTER-W and CUTTER-U. We were interested

in the speed-ups achieved by the parallel versions of our
TR algorithms with regard to various sequential coun-
terparts. All these experiments have been performed on
(one core of) a personal computer with a 2.67 GHz Intel
Core i7 CPU 920, and 12 GB RAM, running UBUNTU
10.10. For the parallel executions, we used CUDA 4.0 and
NVIDIA driver version 4.0 with anNVIDIA GEFORCE GTX
480 graphics card with 1.5 GB VRAM and 480 streaming
multi-processor cores, each running at 1.4 GHz.
For each graph size, we considered both acyclic

unweighted and cyclic weighted graphs. We tested
five implementations of TR algorithms. On acyclic
unweighted graphs we appliedWagner’s algorithm [5], the
sequential and the parallel implementations of CUTTER-U.
For the weighted cyclic graphs we compared the sequen-
tial and parallel implementations of CUTTER-W.
The results of the algorithms are summarized in

Tables 1 and 2. For the graphs of size 1,000 and 2,500
we considered five different graphs, whereas for the size
10,000 we used one scale-free graphb. For each graph the
absolute runtimes were measured five times. The results
for all runs on all graphs of the same size and type were
very similar (with a spread less than 5%) and the aver-
ages are shown in Tables 1 and 2. In each table, the first
three rows correspond toWagner’s algorithm, the sequen-
tial CUTTER-U, and the parallel CUTTER-U, respectively.
The last three rows give the relative speed-ups. One can
see that the speed-ups increase with the graph size. For
instance, for a weighted scale-free graph of 10,000 nodes,
the parallel implementation is 92 times faster than the
sequential one, whichmakes a difference between one and
a half hours versus two minutes of reconstruction time.
It is important to note that the structure and the density

of an input graph has no significant effect on the perfor-
mance of the TR algorithms. This can be concluded when
comparing the results in Tables 1 and 2. Additional exper-
iments that we performed with dense Erdős-Rényi graphs
further confirm thisc. In the case of dense Erdős-Rényi
graphs the average runtimes for the weighted graphs of
size 1000 and 2500 nodes are 2.50 and 7.36, which are

Table 1 Scalability results for Wagner’s algorithm, sequential CUTTER, and parallel CUTTER on scale-free graphs

Unweighted Weighted

size 1,000 2,500 10,000 1,000 2,500 10,000

W [sec] 2.14 34.33 2137.18 NA NA NA

STR [sec] 1.18 18.42 1186.39 7.52 120.21 10524.08

PTR [sec] 1.77 1.84 3.27 2.58 6.69 114.00

STR vs. W 1.82 1.86 1.80 NA NA NA

PTR vs. W 1.21 18.67 653.05 NA NA NA

PTR vs. STR 0.67 10.02 362.92 2.92 17.97 92.32

W=Wagner’s algorithm, STR = Sequential CUTTER, PTR = Parallel CUTTER, NA = not applicable (Wagner’s algorithm is restricted to unweighted graphs). The first block
shows the absolute runtimes and the second gives the relative speed-ups.



Bošnački et al. BMC Bioinformatics 2012, 13:281 Page 10 of 13
http://www.biomedcentral.com/1471-2105/13/281

Table 2 Scalability results for Wagner’s algorithm,
sequential CUTTER, and parallel CUTTER on Erdős-Rényi
graphs

Unweighted Weighted

size 1,000 2,500 1,000 2,500

W [sec] 2.46 38.93 NA NA

STR [sec] 1.20 18.55 5.86 91.12

PTR [sec] 1.74 1.82 2.44 6.37

STR vs. W 2.05 2.10 NA NA

PTR vs. W 1.41 21.37 NA NA

PTR vs. STR 0.69 10.18 2.40 14.31

W=Wagner’s algorithm, STR = Sequential CUTTER, PTR = Parallel CUTTER, NA =
not applicable (Wagner’s algorithm is restricted to unweighted graphs). The first
block shows the absolute runtimes and the second gives the relative speed-ups.

comparable with their counterparts in Table 2. For the
weighted graphs, this is not surprising, since each pair
of nodes has a p-value assigned to it (e.g., recall from
the Background section that “no edge” is represented by
�.). This means that for, e.g., a graph G with 10,000
nodes, the TR algorithms have to process 100,000,000 p-
values, no matter what the edge density of G is. Thus, one
can conclude that CUTTER-W never requires significantly
more than two minutes to reduce a graph of that size
(Table 1).

Quality experiments with the DREAM 4 benchmark
In recent years, the Dialogue of Reverse Engineering
Assessments and Methods (DREAM) [10] challenge on
in silico generated networks reconstruction has become
an important benchmark. We tested CUTTER-W, which
implements our TR algorithm for weighted graphs, using
the fourth challenge (DREAM 4). The first goal of this set
of experiments was to test the performance of CUTTER-
W compared to other state-of-the-art tools which had
participated in the DREAM 4 competition. Therefore, we
compare CUTTER-W with CUTTER-U as well as with
TRANSWESD [8], a tool which is also based on tran-
sitive reduction of weighted graphs. Since, besides the
parallelisation, the main difference between CUTTER-W
and TRANSWESD is that the latter takes interaction signs
into account, it was important to see how disregarding
them affects the quality of the reduction in our approach.
Our second goal was to investigate to which extent using
interaction signs and the weights contributes to the reduc-
tion quality.
In our evaluation with the DREAM suite we repeated

the tests which were applied to TRANSWESD in [8]. In
this way we wanted to ensure maximally fair compari-
son between the tools. Thus, we tested CUTTER-W for the
data set of the InSilico Size 100 subchallenge which can
be downloaded from [24]. The data set consists of five

networks of 100 nodes which are parts of real networks
from E.coli and yeast. Noisy measurements represent-
ing steady state mRNA expression levels are generated
in silico using GENNET WEAVER [25]. We used only
the data from the simulated knockout and knockdown
experiments, ignoring the time series data. The original
networks (gold standards) are known. (In the real compe-
tition they were provided, of course, later.) This makes the
evaluation of the results much more objective than in the
case of real networks, for which usually there is no consen-
sus among the experts. To simulate the conditions of the
real competition we tuned the parameters for CUTTER-
W (the thresholds) based on the results obtained with the
DREAM 3 challenge – in the same way like this was done
for TRANSWESD in [8].
The network reconstruction was done in two steps,

described in more detail in [8]. In the first step, the
so-called perturbation graph is produced. In the second
step, a (weighted) TR is applied on the graph to remove
spurious edges. For all three reduction tools, CUTTER-
U , TRANSWESD , and CUTTER-W we used as input the
perturbation graphs produced by the first step of TRAN-
SWESD. The edge weights were generated as conditional
correlations from the knockout and knockdown data as
in [8]. To generate those graphs we used the MATLAB
programs which were kindly provided by the authors of
TRANSWESD. In the case of CUTTER-U we simply disre-
garded both the weights and the signs in the perturbation
graphs. Besides that, before applying CUTTER-U , the pos-
sibly cyclic perturbation graph was transformed into an
acyclic graph, whose nodes are strongly connected com-
ponents, as described in Section “Background”.
The output files representing the reconstructed graphs

were evaluated using the corresponding Matlab scripts
provided by the DREAM 4 challenge. The output files
were formed by dividing the edges in three classes. The
first class contains the accepted edges, the second, the
edges accepted by the first step, but rejected in the second
(TR) step, and the third one, the edges rejected already
in the first step, i.e., already in the production of the
perturbation graph. Each class is sorted based on the
weights.
In the TRANSWESD tests in [8] the output files were

composed by using only two classes of edges. The
accepted edges after the second step were followed by the
rejected ones. The edges within the same class were sorted
in descending order according to their weights, like in our
output files described above.
The results of our experiments are given in Table 3. For

each of the five networks we give the results 1) without
TR for the generated raw perturbation graphs, 2) with
CUTTER-U, 3) with TR using TRANSWESD and 4) with
CUTTER-W. The results with TRANSWESD are slightly
different from the ones in [8]. This is due to a minor



Bošnački et al. BMC Bioinformatics 2012, 13:281 Page 11 of 13
http://www.biomedcentral.com/1471-2105/13/281

Table 3 Results with the networks of size 100 nodes from the DREAM4 benchmark

Network + reconstruction method TP TN FP FN AUROC AUPR

Network 1 (176 edges)

-perturbation graph 114 9467 257 62 0.8851 0.5138

-perturbation graph + CUTTER-U 107 9532 192 69 0.8848 0.5082

-perturbation graph + TRANSWESD 108 9547 177 68 0.8854 0.5366

-perturbation graph + CUTTER-W 109 9582 142 67 0.8857 0.5475

Network 2 (249 edges)

-perturbation graph 106 9389 262 143 0.7877 0.3577

-perturbation graph + CUTTER-U 98 9411 240 151 0.7871 0.3455

-perturbation graph + TRANSWESD 92 9473 178 157 0.7874 0.3636

-perturbation graph + CUTTER-W 85 9516 135 164 0.7874 0.3604

Network 3 (195 edges)

-perturbation graph 93 9446 259 102 0.8490 0.3353

-perturbation graph + CUTTER-U 91 9451 254 104 0.8488 0.3313

-perturbation graph + TRANSWESD 90 9543 162 105 0.8495 0.3574

-perturbation graph + CUTTER-W 89 9563 142 106 0.8496 0.3673

Network 4 (211 edges)

-perturbation graph 112 9403 286 99 0.8474 0.3932

-perturbation graph + CUTTER-U 111 9418 271 100 0.8474 0.3938

-perturbation graph + TRANSWESD 101 9510 179 110 0.8478 0.4214

-perturbation graph + CUTTER-W 96 9538 151 115 0.8477 0.4201

Network 5 (193 edges)

-perturbation graph 66 9230 477 127 0.7667 0.1580

-perturbation graph + CUTTER-U 66 9230 477 127 0.7667 0.1580

-perturbation graph + TRANSWESD 56 9409 298 137 0.7665 0.1653

-perturbation graph + CUTTER-W 52 9495 212 141 0.7666 0.1661

TP = true positives, TN = true negatives, FP = false positives, FN = false negatives. AUROC = area under the receiver-operator characteristics curve and AUPR = area
under the precision-recall curve are computed by the DREAM 4 evaluation scripts.

improvement in TRANSWESD as well as to the above men-
tioned different manner for producing the output files
which were evaluated by the DREAM 4 challenge.
AUPR (area under the precision-recall curve) and

AUROC (area under the receiver-operator curve) are
quite standard scoring metrics for binary classifiers, com-
puted using the TP (true positives), TN (true negatives),
FP (false positives), and FN (false negatives). For the defi-
nitions and amore detailed discussion on the scoringmet-
rics for the DREAM challenges see [10]. In all cases there is
a clear gain from the weighted TR compared to the input
perturbation graph. TR removes a significant number of
false positives at the price of just a few false negatives.
CUTTER-W has on average 6% better AUPR than the per-
turbation graph. Also there is a clear improvement in the
results with the weighted graphs compared to CUTTER-U.
Besides the significantly smaller number of false positives,
CUTTER-W has on average 7% better AUPR than CUTTER-
U with AUROCs being almost the same. The results of

CUTTER-W and TRANSWESD are quite similar. CUTTER-
W consistently generates significantly smaller number of
false positives, which is compensated by TRANSWESD
with more true positives, except for Network 1.
The overall DREAM 4 score is calculated as

log10
√
P1 × P2, where P1 and P2 are the overall pAUPR

and pAUROC values, respectively. The latter are obtained
as geometric means of the individual pAUPR and
pAUROC values of each of the five networks. Intuitively,
the pAUPR and pAUROC are p-values that indicate how
much our results, and in particular AUPR and AUROC,
are better than randomly chosen networks. Some of these
intermediate parameters were not included in the table,
since they are summarized in the overall score. For the
definitions of all of the above mentioned parameters see
[10]. The overall DREAM 4 score for CUTTER-W is 70.93,
for TRANSWESD it is 70.59 and for the unreduced per-
turbation graphs, however, it is only 68.27. With that we
would have been ranked third behind the two best teams



Bošnački et al. BMC Bioinformatics 2012, 13:281 Page 12 of 13
http://www.biomedcentral.com/1471-2105/13/281

who had participated in the DREAM 4 challenge at the
time, with the scores 71.59 and 71.30, respectively. Con-
sidering that CUTTER-W uses only part of the available
data, i.e., only knockout and knockdown expression lev-
els, this is quite an encouraging result. The improvement
with regard to TRANSWESD is marginal. However, our
intention was to show that disregarding the interaction
signs, as we do in CUTTER-W in practice does not result
in loss of quality compared to TRANSWESD.
The results with CUTTER-W can be even further

improved by combining the methods of [8,14]. When gen-
erating the perturbation graph we use both knockout and
knockdown data and the same parameters as for TRAN-
SWESD. However, in the statistics we use instead of the
wild type the average expression, like in [14]. For the tran-
sitive reduction step we generate the weights as before
with TRANSWESD. As a result, we achieve the overall
DREAM 4 score 73.33, which is better than the above
mentioned winning performance.
At first sight, the fact that by omitting the signs there

is virtually no loss of quality of reconstruction can be
paradoxical. However, in many cases the relative loss of
information by the omission of the edge signs is com-
pensated by the lower threshold tlow in the TR algorithm.
We illustrate this with the following example. Consider
a subnetwork of three nodes a, b, and c. Let there be
a direct positive edge between a and b and an indi-
rect negative influence path consisting of a negative edge
between a and c and a positive edge between c and b.
Being of opposite sign, the indirect influence via c does not
explain (a,b). Nevertheless, an unsigned algorithm with-
out a lower threshold will still remove edge (a,b). However,
one can assume that the direct influence between a and b
will result in a strong original weight (small uncertainty)
on the edge (a,b). This will prevent an unsigned algorithm
with a lower threshold to remove the edge.

Conclusions
We presented parallel versions of algorithms for transitive
reduction (TR) to reconstruct perturbation networks. The
main improvement of our algorithms compared to the
existing methods is the speed-up and scalability without
loss of reconstruction quality. Moreover, our algorithms
are applicable to both weighted and unweighted networks.
The gain of the TR is significant since it mostly removes
spurious direct interactions, which are overlooked by the
first filtering step that produces the so-called perturbation
graph.
We implemented our algorithms in the tool CUT-

TER. Compared to similar approaches, like TRANSWESD,
CUTTER provides the same reconstruction quality, as
measured by the DREAM challenge benchmark. This is
achieved despite the fact that we do not use signs of net-
work interactions (note that this applies only to the TR

phase; after reconstruction, the signs can be restored).
The gain of this simplification is that our method can
be efficiently parallelised, hence reconstruction is much
faster and scalable. The algorithm in TRANSWESD is
NP-complete, whereas our algorithms have a polyno-
mial time complexity O(n3), where n is the number
of nodes. This will be of utmost importance in the
future when reconstruction methods will have to deal
with whole genome knockouts or “hybrid” networks of
genes, proteins and signaling molecules, i.e., with net-
works containing tens or even hundreds of thousands of
nodes.
Since the TR algorithms depend on the threshold, fine

tuning of this parameter might require several exper-
iments. The advantage of obtaining the results within
seconds or in the worst caseminutes, instead of hours, can
be very significant. Currently, it takes less than a couple
of minutes to process with CUTTER-W weighted graphs of
10,000 nodes and potentially 100 million edges.
Our weighted TR algorithm is independent of the nature

of weights. Therefore, instead of correlations which were
used for the TRANSWESD perturbation graphs, one can
use p-values or other statistical estimates of the interac-
tion strengths. Also, it might be interesting to explore
alternative definitions of path weights. For example, the
max operator, which was crucial in the definition of the
path weight, can be replaced by any associative operator,
like addition or multiplication.
Finally, although our approach is already quite effective

despite its simplicity, it is worth considering combining it
with other reconstruction methods.

Availability and requirements
• Project name: CUTTER
• Project home page: http://www.win.tue.nl/emcmc/

cutter
• Operating system(s): Linux, Mac OS, Windows
• Programming language: C, CUDA
• Other requirements: CUDA
• License: none
• Any restrictions to use by non-academics: none

Endnotes
aA special version of SYNTREN , kindly provided by its
authors, was used that allows simulation of single gene
perturbation experiments. For more information see [26].
bThe reason for this is that, unfortunately, generating
graphs of size 10,000 with SYNTREN is very time and
resource consuming.
cThese additional experimental results can be obtained at
[26].

Competing interests
The authors declare that they have no competing interests.

http://www.win.tue.nl/emcmc/cutter
http://www.win.tue.nl/emcmc/cutter


Bošnački et al. BMC Bioinformatics 2012, 13:281 Page 13 of 13
http://www.biomedcentral.com/1471-2105/13/281

Authors’ contributions
DB, WL, and PH conceived the project. DB came up with the idea to use GPUs
for TR. All authors contributed to the theoretical part of the paper. DB, MO, and
AW drafted the manuscript. MO and AW implemented the TR algorithms,
performed the experiments and evaluated them. WL, AW, MO and DB
implemented part of the support programs. All authors read and approved
the final manuscript.

Acknowledgements
We would like to thank Perry Moerland, Barbera van Schaik, Piet Molenaar, and
Mark van den Brand for the inspiring discussions, Steffen Klamt for the
feedback on TRANSWESD, and Damian Sulewski and Stefan Edelkamp for the
technical support with the GPUs.
Partially supported by the project Efficient Multi-Core Model Checking (pr. nr.
612.063.816) funded by the Netherlands Organisation for Scientific Research
(NWO) and by the BioRange program of The Netherlands Bioinformatics
Centre (NBIC).

Received: 7 February 2012 Accepted: 19 September 2012
Published: 30 October 2012

References
1. Aho AV, Garey MR, Ullman JD: The transitive reduction of a directed

graph. SIAM J Comput 1972, 1(2):131–137.
2. Hu Z, Killion P, Iyer V: Genetic reconstruction of a functional

transcriptional regulatory network. Nat Genet 2007, 39(5):683–687.
3. Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera R,

Califano A: ARACNE: An algorithm for the reconstruction of gene
regulatory networks in a mammalian cellular context. BMC
Bioinformatics 2006, 7(Suppl 1):S7.

4. Tresch A, Beissbarth T, Sültmann H, Kuner R, Poustka A, Buness A:
Discrimination of direct and indirect interactions in a network of
regulatory effects. J Comput Biol 2007, 14(9):1217–1228.

5. Wagner A: How to reconstruct a large genetic network from n gene
perturbations in fewer than n2 easy steps. Bioinformatics 2001,
17(12):1183–1197.

6. Gries D, Martin AJ, van de Snepscheut JL, Udding JT: An algorithm for
transitive reduction of an acyclic graph. Sci Comp Progr 1989,
12(2):151–155.

7. Goralčı́ková A, Koubek V: A reduct-and-closure algorithm for graphs.
InMathematical Foundations of Computer Science 1979, Volume 74 of
Lecture Notes in Computer Science. Edited by Becvár J. Berlin/Heidelberg:
Springer; 1979:301–307.

8. Klamt S, Flassig RJ, Sundmacher K: TRANSWESD: inferring cellular
networks with transitive reduction. Bioinformatics 2010, 26:2160–2168.

9. Ding C, He X, Xiong H, Peng H, Holbrook SR: Transitive closure and
metric inequality of weighted graphs – detecting protein interaction
modules using cliques. Int J Data Min Bioinformatics 2006, 1(2):162–177.

10. Stolovitzky G, Prill RJ, Califano A: Lessons from the DREAM2 Challenges.
Ann New York Acad Sci 2009, 1158:159–195. [http://dx.doi.org/10.1111/j.
1749-6632.2009.04497.x]

11. Hirschberg DS: Parallel algorithms for the transitive closure and the
connected component problems. In Proceedings of the eighth annual
ACM symposium on Theory of computing, STOC ’76. New York: ACM;
1976:55–57. [http://doi.acm.org/10.1145/800113.803631]

12. Wang BF, Chen GH: Constant time algorithms for the transitive
closure and some related graph problems on processor arrays with
reconfigurable bus systems. IEEE Trans Parallel Distrib Syst 1990,
1(4):500–507. [http://dx.doi.org/10.1109/71.80177]

13. Chang P, Henschen L: Parallel transitive closure and transitive
reduction algorithms. In Int Conference on Databases, Parallel
Architectures and Their Applications, PARBASE-90. Washington D.C.: IEEE
Computer Society Press; 1990:152–154.

14. Pinna A, Soranzo N, de la Fuente A: From knockouts to networks:
establishing direct cause-effect relationships through graph
analysis. PLoS ONE 2010, 5(10):e12912.

15. Mangan S, Alon U: Structure and function of the feed-forward loop
network motif. PNAS 2003, 100:11980–11985.

16. Moore G: Crammingmore components onto integrated circuits.
Electronics 1965, 38(10):114–117.

17. Parallel Programming and Computing Platform—CUDA—NVIDIA.
[http://www.nvidia.com/object/cuda home new.html]

18. Warshall S: A theorem on boolean matrices. J ACM 1962, 9:11–12.
19. Floyd RW: Algorithm 97: Shortest path. CommunACM 1962, 5(6):345.
20. Micikevicius P: GPU computing for protein structure prediction. In

GPU Gems 2: Programming Techniques for High-Performance Graphics and
General-Purpose Computation. Edited by Pharr M, Fernando R. London:
Addison-Wesley; 2005:695–702. [http://www.the-dream-project.org]

21. Bollobás B, Borgs C, Chayes J, Riordan O: Directed scale-free graphs. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’03. Philadelphia: Society for Industrial and Applied
Mathematics; 2003:132–139.

22. Erdős P, Rényi A: On the evolution of random graphs. Publications of
the Math Ins Hungarian Acad Sci 1960, 5:17–61.

23. Van den Bulcke T, Van Leemput K, Naudts B, van Remortel P, Ma H,
Verschoren A, De Moor B, Marchal K: SYNTREN: a generator of synthetic
gene expression data for design and analysis of structure learning
algorithms. BMC Bioinformatics 2006, 7:43. [http://www.biomedcentral.
com/1471-2105/7/43]

24. The DREAM project. [http://wiki.c2b2.columbia.edu/dream/index.php/
The DREAM Project]

25. Marbach D, Schaffter T, Mattiussi C, Floreano D: Generating realistic in
silico gene networks for performance assessment of Reverse
engineering methods. J Comput Biol 2009, 16(2):229–239.

26. CUTTER - CUDA Technology based TransitivE Reduction of
Networks. [http://www.win.tue.nl/emcmc/cutter]

doi:10.1186/1471-2105-13-281
Cite this article as: Bošnački et al.: Efficient reconstruction of biological
networks via transitive reduction on general purpose graphics processors.
BMC Bioinformatics 2012 13:281.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://dx.doi.org/10.1111/j.1749-6632.2009.04497.x
http://dx.doi.org/10.1111/j.1749-6632.2009.04497.x
http://doi.acm.org/10.1145/800113.803631
http://dx.doi.org/10.1109/71.80177
http://www.nvidia.com/object/cuda_home_new.html
http://www.the-dream-project.org
http://www.biomedcentral.com/1471-2105/7/43
http://www.biomedcentral.com/1471-2105/7/43
http://wiki.c2b2.columbia.edu/dream/index.php/The_DREAM_Project
http://wiki.c2b2.columbia.edu/dream/index.php/The_DREAM_Project
http://www.win.tue.nl/emcmc/cutter

	Abstract
	Background
	Results
	Conclusions

	Background
	Approach for unweighted graphs
	Extension to weighted graphs

	Implementation
	Nvidia Cuda GPUs
	Algorithm for unweighted acyclic graphs
	Complexity
	Correctness

	Algorithm for weighted (cyclic) graphs
	Time complexity
	Correctness


	Results and discussion
	Scalability experiments with SynTReN generated graphs
	Quality experiments with the Dream 4 benchmark

	Conclusions
	Availability and requirements
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	References

