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Abstract

these data but lack either speed or accuracy.

llumina.

Background: PCR amplification and high-throughput sequencing theoretically enable the characterization of the
finest-scale diversity in natural microbial and viral populations, but each of these methods introduces random errors
that are difficult to distinguish from genuine biological diversity. Several approaches have been proposed to denoise

Results: We introduce a new denoising algorithm that we call DADA (Divisive Amplicon Denoising Algorithm).
Without training data, DADA infers both the sample genotypes and error parameters that produced a metagenome
data set. We demonstrate performance on control data sequenced on Roche’s 454 platform, and compare the results
to the most accurate denoising software currently available, AmpliconNoise.

Conclusions: DADA is more accurate and over an order of magnitude faster than AmpliconNoise. It eliminates the
need for training data to establish error parameters, fully utilizes sequence-abundance information, and enables
inclusion of context-dependent PCR error rates. It should be readily extensible to other sequencing platforms such as

Background

The potential of high-throughput sequencing as a tool for
exploring biological diversity is great, but so too are the
challenges that arise in its analysis. These technologies
have made possible the characterization of very rare geno-
types in heterogeneous populations of DNA at low cost.
But when applied to a metagenomic sample, the resulting
raw data consist of an unknown mixture of genotypes that
are convolved with errors introduced during amplification
and sequencing.

There are two broad approaches to high-throughput
sequencing of metagenomes: in amplicon sequencing (also
called gene-centric or gene-targeted metagenomics) a pool
of DNA for sequencing is produced by using PCR to
amplify all the variant sequences in a sample that begin
and end with a chosen pair of primers [1-3], frequently
targeting hypervariable regions of the 16S ribosomal RNA
gene [4]; in de novo genome assembly total DNA is
sequenced without amplification and reads are clustered
into “species bins’, each providing the material for genome
assembly by shotgun methods (see Table 1 in [5] for a list
of such studies).
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By trading off a broad survey of gene content for greater
sequencing depth at the sampled loci, amplicon sequenc-
ing has the potential to detect the rarest members of
the sampled community, but errors interfere more pro-
foundly. Unlike genome assembly projects, where one
needs only to determine the consensus base at each locus
or decide whether a SNP is present in a population, the
space of possible distributions for the sample genotypes
and frequencies is effectively infinite. As a result, ambigui-
ties in genome projects can usually be resolved by increas-
ing the amount of data, whereas increasing depth (as
much as 10° in recent studies [6,7]) increases the number
of both real and error-containing sequences and makes
the challenge of distinguishing minority variants from
errors only greater under amplicon sequencing. Greater
depth therefore calls for progressively more sophisticated
methods of analysis.

The analysis of amplicon sequence data typically begins
with the construction of OTUs (operational taxonomic
units), clusters of sequences that are within a cutoff in
Hamming distance from one another. OTUs serve to
collapse the complete set of sequences into a smaller col-
lection of representative sequences — one for each OTU —
and corresponding abundances based on the number of
reads falling within each cluster. OTUs were developed
as a tool for classifying microbial species, but have also
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been repurposed to the task of correcting errors; the
sequences within an OTU are typically interpreted as a
taxonomic grouping without specifying whether the vari-
ation within an OTU represents errors or real diversity on
a finer scale than that chosen to define the OTU. If the
scale of the noise is smaller than that of the clusters, then
the construction of OTUs will appropriately group error-
containing sequences together with their true genotype.
However, as sequencing depth increases, low probability
errors outside the OTU radius will start to appear, and
will be incorrectly assigned to their own OTU. Early stud-
ies using this approach on high-throughput metagenome
data sets reported large numbers of low-abundance, previ-
ously unobserved genotypes that were collectively dubbed
the rare biosphere [8]. Later, analyses of control data
sets indicated that the diversity estimates in such studies
tends to be highly inflated [9] and that results may lack
reproducibility [10]. The dual purpose of OTUs for cor-
recting errors and for taxonomic grouping is appropriate
when the diversity is being sampled at a coarse level, e.g.
the frequency of different phlya. However, when probing
finer-scale diversity, OTU methods have intrinsically high
false positive and false negative rates: they both overes-
timate diversity when there exist errors larger than the
OTU-defining cutoff and cannot resolve real diversity at a
scale finer than that (arbitrary) cutoff.

In response, a variety of approaches to disentangling
errors from actual genetic variation have been proposed
recently [11-14]. These include multiple rounds of OTU
clustering with different hierarchical methods [11], utiliz-
ing sequence abundance information implicitly by starting
new clusters with common sequences [11,12], and replac-
ing OTU clustering with an Expectation-Maximization
(EM) approach [13,14]. Accuracy has steadily improved,
but all methods still fall short of maximizing the informa-
tion acquired from metagenome data sets.

We believe that the way forward is to model the error
process and evaluate the validity of individual sequences
in the context of the full metagenomic data set, crucially
including the abundances (number of reads) correspond-
ing to each sequence. Major progress in this direction
has been made recently by Quince et al [13,14]. In the
specific context of pyrosequencing, often used for metage-
nomics, strings of the same nucleotide (homopolymers)
are problematic, and Quince et al incorporated a model
of the distribution of homopolymer light intensities into
an Expectation-Maximization (EM) algorithm, Pyronoise,
which infers the homopolymer lengths of sequencing
reads [13] (Q09). Later, Quince et al released Amplicon-
Noise, an extension of PyroNoise that includes rates of
single-nucleotide substitution errors obtained from train-
ing data [14] (QI1). These methods were shown to more
accurately infer the underlying sample genotypes than
other approaches, demonstrating the worth of explicitly
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modeling errors. However, the methods of Quince et al.
have several shortcomings that we would like to rectify:
(i) as the size of sequence data sets grows, Amplicon-
Noise becomes too slow to use in many applications;
(ii) estimation of error rates relies on the existence
of training data specific to the PCR and sequencing
chemistries used; (iii) differentiation of fine-scale diversity
is limited because read abundances are not fully utilized
when calculating the distance between sequences and
clusters; (iv) the parameters that determine how conser-
vative the algorithm is in inferring real diversity are ad hoc
and cannot be tuned without experiment-specific training
data.

We build on the error-modeling approach pioneered in
AmpliconNoise by developing a novel algorithm, DADA,
to denoise metagenomic amplicon sequence data that
addresses the concerns raised above [15]. We start with
a parametric statistical model of substitution errors. We
incorporate this error model into a divisive hierarchical
clustering algorithm that groups error-containing reads
into clusters consistent with being derived from a single
sample genotype. Finally we couple this clustering algo-
rithm with the inference of the error parameters from the
clustered data, and perform each step in alternation until
both converge. This method is presented below, and is
shown to outperform previous methods in both speed and
accuracy on several control data sets.

Results

Model and algorithm

We introduce a first-order model of the error process by
assuming (1) each sequence read originates from a distinct
DNA molecule in the sample, and therefore that the pres-
ence of errors on different reads are statistically indepen-
dent, and (2) errors on different sites of the same read are
also statistically independent events. The independence of
errors across different reads relies on the independence of
the PCR replication histories of those reads, a condition
that holds when the total number of reads is significantly
smaller than the total number of DNA molecules present
in the initial environmental sample and there are no strong
amplification biases for sequences with errors.

Under these conditions, the numbers of reads (abun-
dances) of the error-containing sequences derived from a
sample genotype follow the multinomial distribution, and
the abundance r of each particular sequence is binomially
distributed (see Methods) with a probability A determined
by the particular combination of errors in that sequence
and a number of trials p given by the total number of reads
of its sample genotype. These facts allow us to establish
two statistics to evaluate the hypothesis that a collection
of sequencing reads derives from a single sample geno-
type. The abundance p-value determines when there are
too many reads of the same sequence to be consistent with
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the error model, and the read p-value determines when
a sequencing read is too far away to be an error from an
inferred sample genotype.

These statistics serve as the basis of a sequence-
clustering algorithm in which (1) reads are assigned to
clusters, (2) a putative sample genotype is inferred for each
cluster, (3) reads are reassigned to the cluster for which
they are most likely to have resulted as errors from the
inferred sample genotype, (4) the two p-value statistics are
computed given the inferred sample genotypes and the
clustering of the sequences (5) additional clusters are cre-
ated if the clustering is statistically inconsistent with the
error model (as suggested by small p-values).

The full algorithm (Figure 1) combines this probabilistic
sequence clustering with the estimation of substitution-
error probabilities that are used to compute the p-values.
The algorithm begins by assuming all reads derive from a
single sample genotype and estimates initial error proba-
bilities given this assumption. It then alternates between
clustering the reads and re-estimating the error probabil-
ities until it converges to a final set of mutually consistent
clusters and error probabilities.

The p-values

We introduce two statistics for deciding that particular
sequences did not arise from errors. The read p-value is
the probability of having observed at least one read of a
sequence that is as improbable as the most improbable
sequence amongst the observed reads. This statistic treats
each read as a separate event (giving rise to its name) and
therefore does not utilize sequence abundance. It results
in a hard cutoff, *, below which reads are decided not to
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be errors by DADA. This cutoff is set by the choice of a sig-
nificance threshold €2,, the probability of having observed
at least one read more unlikely than A*. The abundance
p-value, which is computed for each sequence individu-
ally, is the probability of having observed at least as many
identical reads as we did of each sequence (conditioned
on having observed at least one). The conservativeness
of this measure is set by a significance threshold €2,, the
probability that at least one sequence should have been
as overabundant as the most overabundant sequence. The
abundance p-value gives DADA significantly greater sen-
sitivity than previous methods.

Figure 2 shows simulated and real data from a typical
cluster of sequences that originated from a common geno-
type (from the Artificial data set, introduced below). The
abundance r and probability A of each sequence is plot-
ted, as the ability of the read and abundance p-values to
discriminate between errors and non-errors is easily visu-
alized in this parameter space. The regions where DADA
will declare a sequence to be an error or a real sequence
are delineated by a dashed line for each of our p-value
statistics. The A values have been log-transformed and
scaled by the most common error probability, making
the x-axis interpretable as an effective Hamming distance.
Due to this scaling, it is also useful to interpret this plot
in terms of real Hamming distances, in which case the 2,
line represents a lower bound on DADA’s resolution for
any error at that distance.

For both the real and simulated data, the abundance
p-value does a good job of tracking the form of the abun-
dances of the errors, and the read p-value sits to the right
of all observed data. For the real data, a small number
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Figure 1 DADA schematic. The basic structure of DADA, an algorithm to denoise amplicon sequence data. See Algorithm 1 in the Methods section
for the pseudocode and a more detailed description.
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Figure 2 Discrimination plots for a typical cluster in the Artificial data set with 4691 reads. (a) simulated errors drawn from the error model and
(b) the real errors in the cluster. Sequences (diamonds) are characterized by abundance and the probability A per read of having been produced. On
the x-axis, we plot log A scaled by the most common error probability, Ta_, g, S0 that values can be interpreted as an effective Hamming distance. The
dashed lines delineate the region - the lower left quadrant — where, for significance thresholds 2, and €2, provided by the user, DADA accepts that a
sequence could have arisen via the error model. The vertical dashed lines shows the A below which (or the effective distance above which) the read
p-value rejects sequences as being errors, and the curved dashed line shows the abundances above which the abundance p-value rejects sequences
as being errors for each value of 1. There are several sequences in the real data (red diamonds) that would be rejected by the abundance p-value at
the 4 = .01 significance level; we posit that early round PCR effects are a suitable candidate to explain these departures from the error model.
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of errors sit on or above the abundance discrimination
line. Such errors were individually not expected to be
observed at all, but ended up with a small number of
reads larger than one. This pattern was observed across
many clusters, and we believe that it reveals the presence
of small violations of our assumption of the indepen-
dence between reads. In particular, in a regime where the
ratio of the number of error-free reads to the number of
DNA molecules in the sample that act as the basis for
amplification is of order one or larger, then errors dur-
ing early stages of PCR may be sampled multiple times
in the sequence data. As a result, the distribution for the
number of reads of these errors may fall off much more
slowly than what our model suggests. To deal with this
effect in this paper, we lowered the 2, threshold using an
ad hoc method (discussed below) to prevent excess false
positives. Doing so did not affect DADA’s ability to detect
the genuine diversity in the data analyzed in this paper,
which was typical of the data analyzed in many microbial
metagenomics studies, but the sensitivity that is lost by
using very small values of ©, could be limiting for sam-
ples with even finer-scale diversity. Further analytics that
model PCR as a branching process improve this current
ad hoc threshold (unpublished work).

Treatment of insertions and deletions

DADA does not attempt to explicitly model the indel error
processes, and indels do not contribute to the determi-
nation of whether sequences are related to each other
via errors. Instead, sequences are aligned to each putative
sample genotype, and are assigned to clusters on the basis

of substitutions. During the computation of p-values, we
sum together the reads of sequences within each cluster
that have the same set of substitutions (forming struc-
tures that we call indel families). The number of reads of
each of these indel families, rather than those of the raw
sequences, are the basis of our p-values (see Methods).

Treating indels in this way does not affect the accu-
racy of DADA for the test data sets analyzed here, as the
sample genotypes all differed from each other by at least
one substitution, and these provided enough information
for DADA to distinguish between them. However, DADA
cannot distinguish between sequences that differ only by
indels. In such cases, if the amplicons being denoised
are coding regions, frame information should be used for
making decisions about whether particular indels are real
or errors, but in order to denoise non-coding regions with
pure indel diversity, DADA is not sufficient in its current
form.

Preclustering

Prior to our probabilistic sequence clustering we divided
the raw data into coarse 3% single-linkage clusters (with
indels not contributing to distance), subsets for which
each sequence is < 3% from at least one other sequence in
its cluster and > 3% from all sequences in other clusters.
Due to its speed, we employed the ESPRIT algorithm for
this task [16]. Single-linkage’s propensity for chaining was
advantageous in this circumstance, as all error-containing
sequences are very likely to be in the same cluster as their
originating sample genotypes; for a sample genotype and
one of its errors to end up in different clusters, the error
would have to be > 3% from the nearest error clustered
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with that genotype, corresponding to a large gap in the
error cloud, which is unlikely under our error model.

Clustering

Each precluster is partitioned into sets of sequences that
are conjectured to contain all errors arising from differ-
ent sample genotypes. This partition is initialized to a
single cluster containing all sequences. Two procedures
then alternate. First, the indel family most unlikely to
have resulted from errors is split off into a new cluster.
Sequences then move between clusters based on the prob-
ability that they were generated as errors by each one, and
the consensus sequence for each cluster is updated until
there are no remaining reassignments that can improve
the probability of the data. This second step is analogous
to the assignment and update steps of standard k-means
clustering. This alternation stops when the partition of
the sequences fits with the current error model at the
significance levels provided by the user.

Accuracy

We evaluated the accuracy of DADA by denoising three of
the data sets in Q11 used to demonstrate AmpliconNoise’s
accuracy relative to the earlier SLP and DeNoiser algo-
rithms. These data are derived from mixtures of known
clones that were amplified together and sequenced on
the 454 platform, and consisted of different hypervariable
regions of the 16S RNA subunit of bacterial ribosomes
(16S rRNA), which are commonly used as a proxy for phy-
logenetic diversity in metagenomic studies [4]. Two of the
data sets, Divergent and Artificial, with 35,190 and 31,867
reads, were sequenced with the GS-FLX chemistry and
were truncated at 220 nucleotides. They were constructed
by amplifying the V5 region of the 16S rRNA gene from 23
and 90 clones, respectively, isolated from lake water. The
Divergent clones were mixed in equal proportions and
are separated from each other by a minimum nucleotide
divergence of 7%, while the Artificial clones were mixed
in abundances that span several orders of magnitude, with
some of the clones differing by a single SNP. The other
data set, Titanium, with 25,438 reads, was sequenced with
the newer Titanium chemistry and was truncated at 400
nucleotides. It contains V4-5 16S rRNA genes from 89
clones isolated from Arctic soil with varying abundance
and genetic distances, similar to the Artificial set.

All data sets had undergone filtering of reads deemed
to be of low quality prior to application of AmpliconNoise
in Q11, so for purposes of comparison, we denoised the
same set of filtered reads. The presence of a small num-
ber of low-quality reads in 454 data has been previously
demonstrated [17], and as we do not expect these to be
well described by our error model, we encourage the use
of such quality filtering before applying DADA to non-
test data. As SLP and DeNoiser were already demonstrated
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to be less accurate than AmpliconNoise on these data, we
include here DADA’s performance only relative to that of
AmpliconNoise. There were six other data sets presented
in QI1I of V2 regions from a gut microbial community,
but these had such an overwhelming number of chimeric
sequences (reported to be as high as 85% in QI1I), which
neither DADA nor AmpliconNoise attempts to address,
that we opted not to include these data sets in our analysis.

Tuning algorithmic sensitivity

DADA employs two tunable parameters that determine
how conservative or liberal the algorithm is to be in decid-
ing whether particular sequences could have resulted
from errors: 24, and 2,, the significance levels for its
abundance and read p-values. Decisions about singletons,
the sequences represented by a single read, depend on
Q,, whereas decisions about sequences with several reads
depend on €2,. The two values may be tuned indepen-
dently to match the priority being placed on capturing the
rarest and more common diversity.

Due to early-stage PCR effects discussed above, it was
necessary to use , significance levels lower than typical
values. In order to select such values, we first performed
a loose clustering of each data set with larger values of 2,
and Q, and then made histograms of the €2, thresholds
that would be required for each cluster to be reabsorbed
into some other cluster (Figure 3). If there are errors with
moderate statistical deviations from our model, we expect
that these will show up as a tail of increasingly small p-
values that will disappear smoothly as we lower the 2,
threshold. Thus, we looked for the first large gap in these
histograms that would suggest all such model departures
had been captured. Such a gap occurs at 2, = 10~ for
the Divergent data, Q, = 107 for the Artificial data,
and Q, = 10719 for the Titanium data. We used these
values in the analysis that follows, but also clustered all
three data sets with ©, = 10719 and found that the
results were unchanged (see appendix 2). This suggests
that 2, = 10719 js a reasonable default value to use when
clustering diversity at this scale, even though higher res-
olution may be achieved by the method outlined above.
For non-test metagenome data that is more diverse and
less oversampled, we have seen evidence that using much
larger values of €, (such as .01) may be possible with-
out compromised accuracy, but in such cases it is always
advisable to make histograms of the type above to ensure
that there is not an excess of clusters that would vanish if
Q, were lowered slightly.

We did not observe any significant departures in these
data from our model that would affect the read p-values,
and it was therefore possible to maintain the interpre-
tation of €2, as a significance threshold. As a result, for
these data, which contain < 50 preclusters that were clus-
tered separately by DADA, we set 2, = 1072 so that the
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Figure 3 Ad hoc 2, choices for the Divergent (a) and (d), Artificial (b) and (e), and Titanium (c) and (f) data sets. (a)-(c) are histograms of the
Qg threshold at which each cluster derived from a run of DADA with Q4 = €2, = 1073 rejoins some other nearby cluster. Genuine genotype counts
are shown in blue and false positive counts are shown in red. The first gaps in these histograms were used to pick Q4 thresholds for reclustering the
data, and are indicated by vertical dashed lines. (d)-(f) show the Q, discrimination lines for the largest cluster in each data set (with 2294, 5479, and

probability of having a false positive would be < 5% for
each data set.

False negatives and false positives

The purpose of DADA (and AmpliconNoise) is the infer-
ence of the genotypes present in the underlying sample
from a set of noisy (error-containing) sequencing reads.
There are two types of errors that such an algorithm
can make: false positives in which a sample genotype is
inferred that was not present in the sample, and false
negatives in which the algorithm fails to infer a sam-
ple genotype that was present in the sequencing reads.
The tradeoff between false positives and false negatives in
the two algorithms can be controlled by the algorithmic
parameters, depending on which type of error presents
more of a problem to the user.

We present, in Table 1, a comparison of the false
positives and false negatives for DADA and Amplicon-
Noise applied to the control data sets described above.
Note, however, one important detail: these algorithms are
designed to remediate substitution and indel errors, not
all possible errors. In particular, we found that contam-
inants, chimeras, and pathological homopolymer errors

contributed to these sequencing data sets. Using ad hoc
methods, discussed in appendix 1, we accounted for these
additional error sources, and did not penalize either algo-
rithm for them.

DADA is more accurate in its inference of the sam-
ple genotypes than is AmpliconNoise on every data set.
The difference is especially strong among false negatives,
where DADA successfully identifies virtually all sample
genotypes; DADA’s only two false negatives, both in the
Artificial set, result from pathological alignment issues
between sequences that differ only in the last two bases.

The differences in the nature of the false positives and
negatives made by DADA and AmpliconNoise are shown

Table 1 False positives and false negatives

DADA AmpliconNoise
Sample False Pos False Neg False Pos False Neg
Divergent 0 0 2 0
Artificial 1 2 8 7
Titanium (s10) 6 0 8 9
Titanium (s25) 23 4
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in Figure 4. DADA produces one false positive in the
Artificial data: a sequence with 268 reads that is a sin-
gle substitution from a sample genotype with only 210
reads. Due to its vast abundance, this is unlikely to be an
error, and we speculate it may represent a polymorphism
that arose early in the growth of this clone. Amplicon-
Noise produces eight false positives in the Artificial data:
all sequences with 1-4 reads that are (except for one) 1-4
substitutions away from clusters with a few hundreds of
reads. Although these sequences were not atypical errors
as judged by DADA due to their low abundances, Ampli-
conNoise calls them real as a result of setting a narrow
error radius that is needed to prevent additional false neg-
atives. The differences between the errors made by the
two algorithms is less clear in the Titanium data set, but
DADA outperforms AmpliconNoise in both FPs and FNs.
We included AmpliconNoise’s results for the Titanium
data set for both parameter settings included in QI1: the
o = .04 clustering (s25), which produces only four false
negatives, leads to many false positives similar in nature
to those of the Artificial clustering — low abundances and
a small number of substitutions away from large clusters;
the 0 = .1 (s10) clustering produces many fewer false
positives but misses nine sample genotypes.

Speed

We evaluated the speed of DADA applied to the Artifi-
cial data, which was used to profile AmpliconNoise in Q11
(Table 2). ESPRIT was run on a single core of an AMD
Phenom II 3.2GHz running Ubuntu and DADA was run
on a MacBook Pro with an Intel Core 2 Duo 2.4 GHz.
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Table 2 CPU times for clustering artificial community

Function CPU time (seconds)
ESPRIT

kmerdist 74.80
needledist 924.68
Total 1002.68
DADA

N-W alignments 97.81

read p-values 58.84
Total 296.64
ESPRIT+DADA 130 x 103
AmpliconNoise 7.57 x 10*

The CPU times for a few significant subroutines within DADA and ESPRIT as well
as their total CPU times.

DADA is currently written in MATLAB, but sequence
alignments and the construction of indel families were
bottlenecks that we reimplemented as MEX (Matlab exe-
cutable) C programs. The majority of the time to run our
denoising pipeline on the Artificial data set is spent on
ESPRIT’s performance of pairwise alignments during the
single-linkage pre-clustering step (needledist). A newer
version of ESPRIT promises to be released soon that may
dramatically lower this time [18]. If additional speedups
are needed as data sets grow, it should be possible to
replace the global alignments of ESPRIT by banded align-
ments that would be guaranteed to produce the same
clusters if the width of the band is equal to the cluster
radius, and would have have roughly linear (in sequence
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length) rather than quadratic, running time. Nonetheless,
for these data DADA already gives a 60-fold speedup
over AmpliconNoise, making jobs that required a 64-core
cluster to run AmpliconNoise appropriate for a laptop
running DADA.

As read lengths continue to grow, we expect the time
complexity of DADA to be affected in two primary
ways. First, because the complexity of the Needleman-
Waunsch alignment algorithm used by both DADA and
ESPRIT scales with the product of the lengths of the input
sequences [19] there will be a quadratic slowdown with
increasing read length unless heuristics are employed. On
data sets comparable to those analyzed here, alignments
consume the majority of algorithmic time and this scal-
ing will dominate in the near future. Second, our current
implementation for computing read p-values has both
time and space complexity that grows very rapidly with
read length (it is asymptotically O(L!!)). This was not
strongly limiting for these data, but in case it should
become so as reads become longer, we have explored the
use of a continuous approximation for the error probabil-
ities that may alleviate this problem.

PCR substitution probabilities: symmetries and
nearest-neighbor context-dependence

DADA not only infers sample genotypes, it also infers
the substitution error probabilities caused by the ampli-
fication and sequencing processes. The substitution error
probabilities inferred by DADA for all three data sets
exhibit an approximate symmetry under complemen-
tation of the two bases involved. For example, the
A—G probability is close to the T—C probability. This
symmetry is expected if substitution errors predominantly

Page 8 of 16

arise during PCR amplification because substitution
errors during PCR can be the result of either of two
different mis-pairing events (from when the sequence is
being copied to the opposite strand, or from when it
is being copied back), and complementary substitution
errors share causal mis-pairing events (see Figure 5 for a
schematic). As it was not imposed, and the identities of
the original genotypes were not known to the algorithm,
the symmetry is a highly non-trivial check on DADA’s
ability to learn error probabilities without training data.
Additionally, the inferred substitution probabilities were
similar across the data sets, and especially so between
Divergent and Artificial, which were generated with the
same PCR protocols.

We also found that the nearest-neighbor nucleotide
context affects the probability of substitution errors.
We therefore introduced context-dependent substitution
probabilities into DADA, allowing for dependence on the
nucleotides immediately preceding and following the sub-
stituted nucleotide. Such probabilities are expected to
exist in reverse complementary pairs for the same rea-
son given for the context-independent case (again, see
Figure 5); the lir — [jr probability is expected to be similar
to the lir — Ijr probability where /ir denotes the reverse
complement of /ir. The degree of symmetry in the inferred
probabilities, both context-independent and context-
dependent, are shown in Figure 6 for all three data sets.

The magnitude of context-dependence for these data
was moderate (most context-dependent probabilities dif-
fered by < 50% from context-independent ones) as seen
in the spread of points along the diagonal in Figure 6 d,e,f.
As a result, maintaining separate probabilities for differ-
ent contexts did not affect the inferred sample genotypes.
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Figure 5 Two paths to the same error. Different mispaired bases (red) produce the same double stranded product once paired with
complementary bases (green) so that each path leads to an ATG— AGG substitution error on one strand and a CAT— CCT on the other. The
probability of these two errors is therefore expected to be very similar.
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Figure 6 Error probability symmetries for Divergent (a) and (d), Artificial (b) and (e), and Titanium (c) and (f) data sets. (a)-(c):
context-independent substitution error probabilities inferred by DADA with 95% confidence intervals based on binomial sampling error. Note the
approximate symmetry between i — jand i — j probabilities (which show up contiguously along the y-axis), where i denotes the complement of
nucleotide /. (d)-(f): All 96 reverse-complementary pairs of context-dependent error probabilities inferred by DADA for each data set. For each pair,
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Nonetheless, that DADA was robust to significant varia-
tion in its parameters is a strong check on the stability of
its sample inference.

We have worked with data for which context-
dependence is large and has a strong effect on cluster-
ing. Therefore, we leave use of context-dependence as an
optional feature of DADA, either as a consistency check,
or when justified by the amount and nature of the data.
But a caution is in order: with modest sized data sets,
or if the sequences are too similar, use of the context-
dependent rates could result in over-fitting and calling too
many errors. However if this did occur, the expected com-
plementarity symmetry of the inferred error probabilities
would be unlikely to obtain unless the sequences were
read in both directions.

Discussion

DADA explicitly incorporates read abundance when
deciding whether sequences are genuine or errors; if
there are many identical reads of a sequence, DADA will
be more likely to infer an underlying sample genotype,
even if individually those reads would be consistent with
being an error from a nearby genotype. Furthermore,
DADA implicitly assumes, via the error model, that reads

near highly abundant sequences are far more likely to
be errors. In contrast, previous methods have typically
treated each read independently. AmpliconNoise partially
incorporates abundance by weighting the prior proba-
bility that a read belongs to a cluster by the frequency of
that cluster, but this is weaker than DADA, where depen-
dence on cluster size shows up in a binomial coefficient
(see Methods), especially for high-abundance errors. By
using both sequence identity and abundance in this way,
DADA is able to disentangle real diversity from errors at
finer scales than previous methods, even when tuned to
be very conservative.

However, full incorporation of abundance information
makes DADA sensitive to early-stage PCR effects and
the mis-estimation of error probabilities. The problem
of early-stage effects is particularly pronounced in these
data: when clustered with 2, = €, = 1073, the Artificial
data produces 68 false positives (we would have expected
no false positives if the model assumptions were not vio-
lated). The majority of these sequences have 2-5 reads
and 2-4 errors. Such problems would be typical of moder-
ately oversampled PCR, the regime in which initial sample
molecules are typically sampled multiple times, allowing
a single error during early stages to show up in more than
one read.
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In lieu of an abundance statistic that appropriately com-
pensates for this affect, we deal with this problem by low-
ering the sensitivity of the algorithm by tuning down €.
Further, because the probability given to each sequence
scales as the error probabilities to the power of the num-
ber of reads (see Methods), if certain error parameters
are larger than estimated in certain contexts, then the
statistical significance of an error with many reads can
be substantially overestimated. This problem gets pro-
gressively worse for deeper data sets, as all one-away
errors begin to take on many reads. In anticipation of this
problem, we have introduced nearest-neighbor context-
dependence of error rates (see Methods). These had no
impact on the final clustering for the test data presented,
but in other data sets with larger context-dependent
effects, we found a reduction in diversity estimates when
context-dependence was included (data not shown).

DADA is a divisive hierarchical clustering algorithm:
all sequences are assigned to a single cluster that is
subdivided until the clustering fits an error model.
Previous methods, including AmpliconNoise and simple
OTU-clustering, have predominantly taken the opposite,
agglomerative approach, which starts with too many clus-
ters and merges them until some condition is met. This
gives DADA a practical advantage, as the computational
and space requirements (especially the number of align-
ments to perform and store) scale with the square of the
initial number of clusters [20]. The typical problem of divi-
sive methods — that the number of possible splittings is
too large — is handled in DADA by seeding new clusters
with sequences that are identified as not being errors and
allowing other sequences, e.g. errors associated with the
new clusters, to relocate if they become more probable by
doing so.

Finally, DADA uses unsupervised learning to acquire
error probabilities from the data that it is given. As
PCR protocols vary in their choice of polymerase and
number of rounds, these parameters vary by data set,
perhaps greatly. This makes the universality of DADA’s
approach especially attractive, and will be important
as new sequencing methods come into use such as
longer read-length and paired-end Illumina that com-
monly make substitution as well as indel errors [21]. While
it now relies on training data to establish error parameters,
AmpliconNoise could be embedded in the same proce-
dure of estimating error probabilities after each successive
round of clustering, but this would multiply the compu-
tation requirements by a factor of the number of rounds
of re-estimation, compounding the problem of its slower
speed.

Conclusions
OTUs serve as a rough analogue for microbes of the more
clearly defined taxonomic groups of higher organisms.
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However, the repurposing of the OTU concept to the
problem of inferring sample genotypes from error-prone
metagenomic sequence data has serious and inherent
shortcomings. The absence of an error model causes esti-
mates of diversity, especially species richness, to depend
strongly on experimental variables such as the size of
the data set, the length of the region sequenced, and the
details of the PCR/sequencing chemistry. These short-
comings are not amenable to simple fixes; it is not pos-
sible to separate real diversity from errors using an OTU
approach when the diversity and the errors exist at sim-
ilar scales (as measured by Hamming distance), as is the
case in many metagenomic studies. PyroNoise and Ampli-
conNoise have demonstrated the usefulness of denois-
ing sequence data with statistical, physically-based error
models. These methods are based on the classical sta-
tistical technique of expectation-maximization. We have
presented an alternate approach, DADA, which is more
targeted to the particular task of producing conservative
estimates of diversity from noisy sequence data. It is much
faster and more capable of resolving fine-scale diversity
while maintaining a lower false positive rate.

We did not achieve our goal of complete freedom from
ad hoc parameters in this work. Even though €, our
input parameter, has a simple probabilistic meaning that
is data set independent, there are corrections to our PCR
model, and as a result €2, takes on an ad hoc quality in
this analysis. Nonetheless, €2, can be coarsely tuned from
the data itself in the way shown. Alternatively, for con-
servative diversity estimates, 2, may be set to very small
values (such as 1071%0), and the resolution of the algo-
rithm may be directly quantified. DADA not only guesses
what is there, but knows what would have been missed if
it were present, making €2, ad hoc but not arbitrary.

Much work remains to be done, and it is not yet clear
how the algorithms will fare with extremely rich fine-scale
diversity as occurs for the antibody repertoire of B-cells
and T-cells of the human immune system [22,23]. DADA
must be equipped with statistics that correctly describe
the abundance distribution of sequencing errors when a
realistic model of PCR is used in which some reads are
the result of shared lineages. More sophisticated meth-
ods for chimera detection that explicitly parameterize the
chimera formation process analogously to the substitu-
tion and indel processes are also needed. Finally, these
methods must be fully adapted and tested on sequencing
platforms other than Roche’s 454.

Methods

General notation

From a sequencing data set S = {sy, 7y}, where r, is the
number of individual reads of each distinct sequence s,
we would like to construct an estimate G = {G,} of the
set of genotypes in the sample that gave rise to S. With
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this aim, we construct a partition B of the sequences {s,}
where each B, € B is a collection of sequences hypoth-
esized to have originated from a common G, and notate
the number of reads assigned to G, by p, = lesxeBa Tx.
Because each s, can reside in only one By, and it is assumed
that G, is the source of all s, in B, this framework does
not allow for multiple G, to contribute reads to the same
sx. Allowing the latter is likely to affect G only in special
cases and adds complications.

Treatment of insertions and deletions: the construction of
indel families

In addition to substitution errors, reads acquire insertions
and deletions (indels) during amplification and sequenc-
ing. Both substitutions and indels could be used to param-
eterize an error model, but here we focus on substitutions
and do not attempt to characterize the statistics of indels.
Instead, we collapse together all the reads of sequences
within each B, that differ from each other only by the
location of indels in their alignments to G, forming sub-
sets of each B, that we call indel families. We call the indel
families 7 (S, B, G) = {sy,ry}, where each s, refers either
to a subset of some B, or the sequence identical with G,
except for the substitution errors of its constituents, and
ry is the number of reads in the family. The r, of each
indel family will be used to test whether B agrees with an
error model, i.e. whether the substitution errors observed
on the families in each B, was not too improbable under
an error model of substitution errors.

Alignments between sequences and each G, in this
paper took place with a scoring matrix of 5 4 log T (to
make them comparable with NCBI BLAST’s NUC.4.4
matrix [24]), where T, introduced below, is a matrix
of substitution error probabilities. We used a gap
penalty of —4 and a hompolymer gap penalty of —1.
The gap penalty had to be less than half the smallest mis-
match score or alignments would favor a pair of indels to
that mismatch. The worst mismatch score tended to be
about —6, and so —4 was chosen as a gap penalty to allow
as many gaps as possible without making any mismatches
prohibited within alignments.

The independence between substitution errors on
different reads implies a binomial distribution for the
number of reads of each family

If the occurrence of substitution errors on different
reads are independent events, then each read of geno-
type G, has an ii.d. one-trial multinomial distribution
with parameters A = {A)y}, which we call the geno-
type error probabilities, to belong to each indel family
sy. A also parameterizes the probability distribution for
Ry, the number of reads of family y: if s, C By, then
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because Ry is the sum of p, Bernoulli random variables
each with success probability 1,4, it follows the binomial
distribution, Ry ~ Bin(Ayqy; o). The assumption of inde-
pendence between reads does not hold if early round PCR
errors may be sampled multiple times in the final sequence
data. Then, if we condition on having observed a particu-
lar error on some other read, the probability to observe it
additional times is increased.

A may be constructed from simple nucleotide transition
matrices

If the occurrence of substitution errors on different sites of
the same read are independent events that do not depend
upon the absolute position of the sites, then we can write
each Ay, in terms of a homogeneous Markov chain T,
whose elements we call nucleotide error probabilities. The
simplest useful model of this sort is the 4 x 4 transition
matrix Tj; = P(j|i) with, for example P(C|2) the probabil-
ity for taking nucleotide A in the sample to C in the data
(5,7 will always index nucleotides), and this is the model
used by AmpliconNoise. These probabilities generate the
genotype error probabilities A via

)\y‘x = 1_[ Tanyn (1)
n

where «;, and y, denote the n'" nucleotides of G, and Sy
(also let Ay = Ay for all x|s; € sy, used in Algorithm 1).

If the nucleotide error probabilities at each site can
depend upon the nearest-neighbor flanking nucleotides,
we can keep track of a transition matrix TR for
each possible (L,R) pair of flanking nucleotides such that
TLSL’R) = P(IjR|LiR), with P(ATC|AGC) the error proba-
bility for taking AGC to ATC. This generalization, which
we call context-dependence, increases the number of free
parameters from 12 to 192: there are 16 possible pairs
of flanking nucleotides each with a 12 free parameter
stochastic matrix. DADA may be run with or without
context-dependence, but due to the risk of overfitting and
because we saw no substantial effect on the outcome of
clustering when it was used, context-dependence was not
used to produce the results presented in this paper.

Assessing fit with an error model via tail probabilities

In order to assess whether G and B fit the error model A,
we introduce two statistics, py and gq: py is the probability
of having seen at least r, reads of s, given that we saw at
least one and ¢, is the probability of having seen at least
one read with a genotype error probability at least as small
as the smallest genotype error probability of an observed
indel family in By, A}, = miny|s, g, Aya-
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py: the abundance p-value
Call R;,“ the number of reads of s, given that we observed
at least one:

PR} =r) =P(Ry, =r|r > 0)
PRy =)

_ . BinGya, po)
- 1-P(R,=0)

1—(1— )™

Given the definition of p, above,

oo
py=PRf >1) =Y PR =r)

r=ry

_ Zfiry (pﬁ))‘;”/a (1 - }‘ya)pa_r
N 1—(1—2ya)™

We refer to this as the abundance p-value because it eval-
uates the probability of having observed more extreme
abundances under the null hypothesis that each r, was
generated by the error model. Because one abundance
p-value is generated for each indel family, we use a
Bonferroni correction and compare each py, with Q,/|F],
where 2, is a joint significance threshold that is provided
to DADA by the user.

If we had not conditioned on having observed at least
one read of each family, then the unobserved families
would not have born any significance (they would all have
py = 1), but before looking at the data these families could
have been significant. This would create a difficulty in
choosing an appropriate multiple hypothesis correction; a
naive Bonferroni correction of [, 4« with L, the length
of Gy, which treats all possible families as tested hypothe-
ses, would deprive the p-value of any statistical power.
Conditioning on Ry > 0 and evaluating only the observed
sequences avoids this complication. However, any family
with r, = 1 obtains p, = 1 regardless of the smallness of
Aya, which necessitates our second statistic, g, .

qo: the read p-value

For each cluster B,, we compute the probability g,, which
we call the read p-value, that there is at least one read with
a genotype error probability at least as small as A%. Let
ly be a random variable representing the smallest geno-
type error probability when p, reads of G, are generated
according to A. Then

Pa

D e

elhea > A%

Go =Py < hy) =1~

where e iterates over all 4/ sequences, and A, are the
genotype error probabilities of these sequences. Evalu-
ating the sum in this form would be computationally
wasteful; instead we iterate over sets of sequences that
share the same types of substitution errors. We index
these sets by 4 x 4 off-diagonal matrices y whose elements
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Viz specify the number of i’s on a genotype that appear
as j’s on the sequence. The genotype error probability for
sequences of type y away from genotype Gy is Lo X Ay
with Aoy = []; T;‘” the probability of having no errors
(where ny; is the number of nucleotides of type i on G)
and A, = I ij (;Z)y’], which is independent of «. We also
need the number of distinct sequences of type y for each
Gq, which we call the degeneracy m,, («) of y on G. This
is computed by taking a product over multinomial coeffi-
cients: m, (@) = []; (narZ}j%)!l_[,' yit* Rewritten as a sum
over y, o becomes

Pa

my () Ay

qoz:l_ Ao Z

YIAy >A% /Aow

Vectors of A, and m, (@) can be computed starting with
y representing the more common errors and extended
to more rare errors as needed to compute p-values for
smaller AY. Finally, rather than maintaining vectors of
m, (o) for each o, we keep one for each of a small num-
ber of possible base compositions and interpolate between
the g, that would result from each of these in order to
approximate the g, that would result from the exact base
composition of G,. Because one ¢, is generated for each
By, the gy are then compared with ,/|B|, where Q, is
another joint significance threshold provided to DADA by
the user, in order to determine whether any A% are too
small to be the result of errors.

Maximum likelihood estimate (mle) of error probabilities
After forming a partition 3 of S that fits the error model
generated by T, DADA updates T to its maximum like-
lihood estimate given this partition. The likelihood of T
given S and B is

cais.m =11 T1 172

o x|sy€By N

where o, and y, denote the nth aligned nucleotides of
Gq and s,. For the case without context-dependence, the
likelihood may be rewritten as

Ni;
crs. B =TT(TT5" | [1- 2T
i \J# Ji

where Nj; is the total number of js in S that result from is
in G according to 3. The maximum likelihood equations
for the off-diagonal elements of 7, L égjs) ({fmle,ij}) =0,
are solved by maximum likelihood estim]ate

. N;;
Tmle,i # = N
i
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where N; = Z/ Nj; (the diagonal Tyjesi = 1 — Z/# Tonle,ij
are set by normalization). Analogously, for the context-
dependent case, the mle estimate is

~LRr _ NLjR
mleij — Niig

where i # j, L,R are any pair of left and right flanking
nucleotides, Nz is the total number of LjR codons in
S that result from LiR codons in G according to B, and
NLir = 3 NLijR.

Algorithm for inferring the sample genotypes and error
probabilities

The p-values py and g, are the basis for an algorithm that
alternatively updates B and the nucleotide error proba-
bilities 7, which may be specified by the user as either
context-independent or dependent, denoting their values
after ¢ iterations by B! and T%, in order to improve the
likelihood of the data. This is similar to the kard-EM algo-
rithm except that the partition B at each step is the result
of a model-based divisive hierarchical clustering approach
and does not maximize the probability of S given T*. The
algorithm requires two user inputs, Q, and €2,, which are
the joint significance thresholds for the abundance and
read p-values.

Algorithm 1
DADA Sequence clustering algorithm [15]

T° = T (Bo), where By is the trivial partition
containing the entire S.
t<1
repeat
Bt <~ B()
repeat
if B! # By
start a new cluster within B¢
containing the most statistically
inconsistent family.
repeat
update {Ga}
Po <— lesxeBa Ty
Aya = 1_[,,, Ty,x, (or Tcgt%c;hanﬂ) if
context-dependence is on)
each s, joins B, where
o = arg maxXy (O Aye’)
until B¢ is unchanged
update {py} and {g4}
until minp, > Q,/|F| and ming, > Q,/|B|
T = j\—'mle(Bt)
t<—t+1
until T has converged
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There are three levels of nesting, each beginning with a
repeat statement in Algorithm 1. From outer to inner, we
give a qualitative description of their purpose:

1. Starting with 79, the maximum likelihood nucleotide
error probabilities given the trivial partition By of all
sequences into a single cluster, the outermost loop
iteratively updates B and T until T converges. We
have observed cases where T does not completely
settle down but fluctuates within a small basin of
attraction. To deal with such cases, DADA
terminates if T ever returns to a previously held
value or ||T* — T*71|| < ¢, where the tolerance
€ = le — 9 is used as a default and may be altered by
the user. If convergence has not been reached in ten
rounds, DADA terminates with a warning message.

2. For each T?, the next loop begins with the trivial
partition, B¢ = By, and adds blocks to B’ until the
{py} and {gy} do not allow rejection of the error
model at joint significance levels ©, and Q;. New B,
are seeded by the sequences in families with the
smallest p-values. If statistically significant families
exist under both p-values, then those significant
under the abundance p-value take priority for
starting new clusters. This approach avoids the need
to put an explicit penalty on the number of blocks of
B, instead aiming for the smallest 3 under which the
current error model cannot be rejected.

3. After adding a new block B, to B, the innermost
loop raises the probability of the data by reassigning
each sequence to the block that would produce
(under the error model) the largest expected number
of reads of that sequence. The putative genotype of a
cluster, Gy, is also updated if a cluster By has a new
consensus sequence. This continues until sequences
cease changing clusters.

Appendix 1: chimeras, contaminants, and missing or
incorrect Sanger sequences

There are disagreements between the Sanger sequences
of the clonal isolates used to construct the data sets
and the denoised sequences of DADA and Amplicon-
Noise that are due to sources other than PCR substitutions
and pyrosequencing errors. These include contamination,
chimeric sequences that result from the co-amplification
of genomes with regions over which they exactly match,
Sanger errors, the absence of any reads of two sam-
ple genotypes, and disagreements between the Sanger
sequences and majority of the 454 reads about the lengths
of several homopolymers (for example, not a single 454
read matched four of the Sanger sequences while many
were identical except for the presence of a single deletion
on a G homopolymer). In order to evaluate the relative
performance of DADA and AmpliconNoise as denoising
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algorithms, it was necessary to identify which disagree-
ments between Sanger and denoised sequences were due
to these sources and which, falling outside these cate-
gories, were due to algorithmic shortcomings. We chose
criteria for classifying errors of these types and applied
them to the sequences denoised by DADA and Amplicon-
Noise (Table 3).

We began by correcting possible errors in the Sanger
sequences. In the Divergent and Artificial data sets
there were disagreements between very high abun-
dance denoised sequences and their nearest neighbor
Sanger sequences (12/23 Divergent Sanger sequences
and 63/90 Artificial Sanger sequences). The denoised
sequences were a consensus of thousands of pyrosequenc-
ing reads and did not differ from the Sanger sequences
near homopolymers; rather, all disagreements were non-
homopolymer related deletions near the starts of the
reads. It was confirmed (Chris Quince, personal commu-
nication) that all bases of Sanger sequences aligning to
sites within 13 nucleotides (nts) of the forward primer
of the pyrosequencing reads had been removed in Q11,
and so were likewise removed in all our analysis. In the
Titanium data, the denoised sequences closest to eight
of the Sanger sequences had over 100 reads but differed
from them by one or two homopolymer deletions at sev-
eral long homopolymers. DADA and AmpliconNoise (s10
and s25) agreed on the presence of the deletions in all of
these sample genotypes, and there were more copies of
the error-containing sequences than the Sanger sequences
in the raw data (Table 4), suggesting either an error
probability greater than 50% for the combined amplifica-
tion/pyrosequencing process or problems with the Sanger
sequences. Therefore, we did not consider these disagree-
ments to be false positives or false negatives for either
algorithm.

Next we identified chimeras: sequences consisting of
two sections with one section a close match to one sample
genotype and the other a close match to a second sample
genotype. These can be produced in substantial quanti-
ties by PCR [25]. Analogously to Q11, for each denoised
sequence we computed the Hamming distance to the
nearest Sanger sequence and to the nearest exact chimera

Table 3 Additional sources of noise and false positives
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Table 4 Titanium genotypes with more error-containing
than Sanger sequence matching reads

Reads of nearby Reads of sanger Errors
pyrosequence sequence
5 0 G8—G7 (301),
G5—G4 (354)
70 0 G6—G5 (133)
75 1 C7—C6(313)
21 18 G6—G5 (133)
14 0 G6—G5 (133)
80 0 G6—G5 (133)
77 3 G6—G5 (133)
80 1 G6—G5 (133)

The difference between the Sanger and 454 sequences and their locations are
given. For example, G6— G5 (133) means that a homopolymer beginning at the
133/ base with 6 Gs in a Sanger sequence showed up as 5 Gs in most of the
pyrosequence reads. All disagreements consist of deletions in the 454 reads on
long G/C homopolymers relative to the Sanger sequences, and the majority of
the disagreements occurred on one locus, site 133.

by considering all possible breakpoints between all pairs
of sequences of higher abundance (a chimera will have
fewer reads than its parents unless it acquires substantial
PCR bias). For a denoised sequence to be classified as a
chimera, we required that it be at least 3 nts closer to the
nearest exact chimera than the nearest sample genotype
and within 5 nts of the optimal chimera (also analogous to
the procedure used in Q11). We waived the 3 nt improve-
ment criteria for denoised sequences that were identical
to exact chimeras, which occurred for some particularly
highly abundant chimeras between closely related sample
genotypes. All data sets had a large number of chimeras
amongst their denoised reads, with Titanium having more
chimeras than sample genotypes (both algorithms), high-
lighting how essential accurate chimera identification is in
tandem with the correction of PCR and sequencing errors.

Finally, we found several sequences too far from any
sample genotypes or exact chimeras to be explained by
being errors away from either. Some of these sequences
were similar to previously observed sequences found on
GenBank (Table 5). We classified as a contaminant any

DADA AmpliconNoise
Sample Denoised Clone Chim Contam Other Denoised Clone Chim Contam Other
Divergent 43 23 18 2 0 51 23 23 3 2
Artificial 65 50 14 0 1 73 44 21 0 8
Titanium (s10) 274 80 185 3 6 163 71 82 2 8
Titanium (s25) 304 76 203 2 23

For each data set and both algorithms: the total number of denoised sequences, the number that matched one of the Sanger sequenced clones, the number classified

as chimeras, the number classified as contaminants, and all other false positives.
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Table 5 Contaminants

Accession Reads/Frequency Dgs Dsample
Divergent

FR697039 14/4 x 1074 0 1 10
EU633742 1/3 x 1072 1 9 9
JF515955 1/3x 1072 1 8 8
Titanium

FJ004768 77/3 x 1073 2 39 27
JF190756 1/4 % 107° 1 40 27
JQ462329 2/8 x 107 0 7 5

Dchim
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Source Type DADA AN
Lake Water Bacterium Y Y
Showerhead Methylobacter

Soil Nitrosomonadaceae N Y
Soil Bacterium Y Y
Human Skin Bacterium Y Y
Human Mouth Bacterium Y N

D, Dsample and Depim are the Hamming distances to the given GenBank entry, the nearest sample genotype, and the optimal chimera for each putative contaminant
denoised sequence. No entries are given for the Artificial data set because no likely contaminants were found in the denoised sequences of either algorithm. The last
two columns show which contaminants were present in the denoised sequences of each algorithm (“Y” if found and “N” if not found).

Table 6 Detectable genotypes

Sample Genotypes Present and distinct
Divergent 23 23
Artificial 90 50
Titanium 91 80

The number of genotypes used to construct the sample and the number that
were present and distinct and so could detected by a denoising algorithm.

sequence within 2 nts of a GenBank sequence and at
least 5 nts closer to a GenBank sequence than any sample
genotype or chimera. We found a mixture of contami-
nants likely to come from the original sample (lake water
bacteria), and contaminants that may have entered the
sample during processing and sequencing (bacteria previ-
ously observed in human skin, a human mouth, and soil
samples). These contaminants were not previously men-
tioned in QII but were straightforward to detect when
looking at DADA’s denoised sequences, in part because
having a smaller pool of algorithmic false positives makes
identifying contaminants much easier.

In classifying false negatives, we sought to evaluate the
ability of the algorithms to detect the presence of gen-
uine diversity in the pyrosequencing reads. However, not
all clones used to construct the samples in Q11 had exact
matches amongst the pyrosequencing reads: one Sanger
sequence in the Artificial data set (#69 in Q11) was 29 nts
away from the nearest 454 read and one Sanger sequence
in the Titanium data set (#66 in Q11) was 61 nts away from

the nearest 454 read. We assumed that these were missing
from the 454 data, and they do not contribute to the false
negatives of either algorithm. Further, a number of clones
were identical to each other up to the point of truncation
of the pyrosequencing reads. Finally, a number of the Tita-
nium clones differed from each other only by the presence
of Ns, bases that Sanger was unable to resolve. In such
cases, we collapsed clones together and assumed the non-
N containing Sanger sequence was correct. Table 6 gives
the number of distinct (up to Ns) clones that are present
in the data, and how many had been used to construct the
sample.

Several aspects of this post-processing pipeline — espe-
cially contaminant identification— utilize knowledge of the
sample genotypes and do not constitute useful methods
for non-test data. Our approach to chimera identifica-
tion does not utilize sample genotype information, but
requires more development to be applied to non-test data:
it does not search for higher-order chimeras that are com-
binations of three or more parental sequences, the criteria
for being labelled as a chimera do not scale with error
rates and read lengths, and no attempt has been made
to realistically model the chimera formation process. Our
goal has been only the isolation of errors due to PCR and
sequencing error.

Appendix 2: 2,4 robustness
To assess whether DADA’s performance in this paper was
the result of the fine-tuning of 2,, we evaluated each data

Table 7 False positives and false negatives for each data set with 2, = {10-1%,107%%,10~"%°} and 2, = 1073

Divergent Artificial Titanium
Qq False Pos False Neg False Pos False Neg False Pos False Neg
1071° 0 0 10 2 7 0
10740 0 0 1 2 6 0
107100 0 0 1 2 6 0
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set under all three €2, values. The results are given in
Table 7 and demonstrate that the same results would have
been achieved by using 2, = 1071% for all three data sets.
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