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Effects of protein interaction data integration,
representation and reliability on the use of
network properties for drug target prediction
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Abstract

Background: Previous studies have noted that drug targets appear to be associated with higher-degree or
higher-centrality proteins in interaction networks. These studies explicitly or tacitly make choices of different source
databases, data integration strategies, representation of proteins and complexes, and data reliability assumptions.
Here we examined how the use of different data integration and representation techniques, or different notions of
reliability, may affect the efficacy of degree and centrality as features in drug target prediction.

Results: Fifty percent of drug targets have a degree of less than nine, and ninety-five percent have a degree of less
than ninety. We found that drug targets are over-represented in higher degree bins – this relationship is only seen
for the consolidated interactome and it is not dependent on n-ary interaction data or its representation. Degree
acts as a weak predictive feature for drug-target status and using more reliable subsets of the data does not
increase this performance. However, performance does increase if only cancer-related drug targets are considered.
We also note that a protein’s membership in pathway records can act as a predictive feature that is better than
degree and that high-centrality may be an indicator of a drug that is more likely to be withdrawn.

Conclusions: These results show that protein interaction data integration and cleaning is an important
consideration when incorporating network properties as predictive features for drug-target status. The provided
scripts and data sets offer a starting point for further studies and cross-comparison of methods.
Background
Drug targets (DTs) are defined here as proteins targeted
by drugs. These proteins are not necessarily the products
of disease-linked genes (which we will call Disease Pro-
teins, DPs) but can be any protein whose binding might
lead to a positive effect in the treatment of a disease.
Yildirim et al. have presented a distinction between etio-
logical and palliative drugs (the first targeting the DP or
its neighbourhood, and the second attacking a different
part of the network, probably to counteract symptoms of
the disease-related proteins), and state that most known
drugs are palliative [1]. This diversity of ways of treating
a disease raises an important question: What are drug
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targets and why do they work? And can we predict them
to help drug discovery?
Several studies have attempted to characterize drug

targets from a theoretical point of view as such know-
ledge could be a tool to speed up the drug discovery
process. Bioinformatics methods to characterize and pre-
dict drug targets have included: pathway and tissue en-
richment, domain enrichment, number of exons and
protein degree in an interaction network [2], GO enrich-
ment [3], sequence similarity to known targets [4], side-
effect similarity [5], physicochemical properties of the
sequence of known drug targets [6], entropies of tissue
expression and ratios of non-synonymous to synonym-
ous SNPs [7], methods based on drug similarity, target
similarity and network similarity [8,9], in addition to
traditional text and data mining approaches [10]. These
studies include network-based and non-network-based
prediction methods, supervised and non-supervised,
from those using the protein interaction space to those
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including chemical and pharmacological spaces, from
single metrics to elaborated predictors with multiple fea-
tures. Their predictive power has been evaluated by
metrics such as the sensitivity, specificity or accuracy, and,
specially, the Receiver Operating Characteristic (ROC),
which has been widely used during recent years [6,11-13].
Drug targets can also be characterized in terms of pro-

tein network attributes such as degree and centrality.
The degree of a protein in a protein interaction network
is equivalent to the number of interactions a protein is
involved in, while centrality measures quantify the rela-
tive importance of a protein. Types of centrality mea-
sures include Betweeness Centrality (according to the
number of shortest paths that go through it) and Close-
ness Centrality (the shortest distance between that protein
and all others). A number of studies have investigated
drug targets in terms of such network based metrics
including degree, betweenness centrality [7], bridging
centrality [14] and pathway closeness centrality [15].
These studies reported significant differences between
drug targets and non-drug targets suggesting that these
network-based properties might be useful in predicting
drug targets. For example, Zhu et al. [16] had some
success using an assembly of network metrics (including
degree) to train a support-vector machine to rank poten-
tial drug targets from the human proteome. This study
used only those interactions contained in BioGrid to
generate network metrics for proteins and they reported
that 94 of their 200 top-ranked proteins were drug tar-
gets known to DrugBank.
The initial goal of this paper was to evaluate the pre-

dictive value of two simple graph-theoretical metrics,
degree and centrality, that previously have been observed
to correlate with drug targets [2,7,16-18] - the analysis
could be extended to other network based prediction
metrics. A number of observations have been made from
these studies: drug targets are more likely to interact with
more than 3 partners for FDA-approved drugs than non-
approved [2], drug targets have high degree and central-
ities [17], drug targets have higher degree but far from
the highest [7], drug targets have higher Betweenness
Centrality [7], and more than 40% of drug targets are
involved in 1 pathway [2]. In contrast, Hase et al. [18]
claim that middle to low degree nodes happen to be
advantageous targets.
These studies suggested network-based metrics might

be useful for drug target prediction; however, the dis-
parate conclusions (drug-targets are high-degree, middling
degree or low-degree) was confusing. In trying to repro-
duce some studies, we commonly had difficulties deter-
mining exactly what data sets were used and found that
studies often reported average drug target degree in-
stead of entire degree distributions making it difficult to
compare results between studies. We hypothesized that
the distribution of graph-based metrics might be very
dependent upon the choice of data. So the second goal
of this paper was to use an exploratory data analysis
approach to ask how network-based metric distribu-
tions changed when using various subsets of a well-
defined, consolidated data set called iRefIndex [19].
The iRefIndex is a consolidated non-redundant dataset
of 13 protein interaction databases (BIND [20], BioGrid
[21], CORUM [22], DIP [23], HPRD [24], InnateDB [25],
IntAct [26], MatrixDB [27], MINT [28], MPact [29],
MPIDB [30], MPPI [31] and OPHID [32]), that exam-
ines the sequence of each protein in order to detect
redundancies.
The studies above that have investigated network based

metrics of drug targets rely upon PI data, and explicitly
or tacitly make choices of different source databases,
data integration strategies, representation of proteins and
complexes, and data reliability assumptions. Previous
work from our group [33] has shown the susceptibility of
the graphical properties of a protein interaction network
(PIN) to variables such as the number of included data-
bases, redundant information between databases, canon-
ical representation of proteins, complex representation,
and reliability of included information, which makes this
an important issue when comparing results from differ-
ent drug target prediction studies.
Here, we examined the effect of data integration on the

distribution of drug targets across degree and centrality
measures (and the ability of these measures to predict
drug targets). The above mentioned studies work with
limited data sets: Yildirim et al. [1] use two high-
throughput papers [34,35], which correspond to 8.2% of
all known human interactions present in the consoli-
dated interaction database iRefIndex [19], while both
Sakharkar et al. [2] and Zhu et al. [16] use the BioGrid
database [21], which corresponds to 15.7% of human
interactions in iRefIndex, and Hase et al. [18] use results
from one study [34], which correspond to 3.8%. We
hypothesized that different conclusions might be reached
just by using the complete iRefIndex data set.
Next, we examined the effect of sub-setting interaction

data upon the drug target distribution over proteins of
varying degree and centrality. We hypothesized that
using subsets of interaction data deemed to be more re-
liable might alter this distribution and be useful for the
purpose of predicting drug targets. There are several
methods used to rank protein interactions according to
some specific notion of reliability. Early attempts include
the Expression Profile Reliability (EPR index), which com-
pares protein interaction and RNA expression profiles,
and the Paralogous Verification Method (PVM) that
searches after paralogs of interactors which also interact
(Deane et al. [36]). In this paper, we examined five
methods that have been argued to change the reliability



Mora and Donaldson BMC Bioinformatics 2012, 13:294 Page 3 of 17
http://www.biomedcentral.com/1471-2105/13/294
profile of data. The first method is a bibiliometric-based
measure called “lpr” [19,33,37,38] which is able to distin-
guish high-throughput and low-throughput experiments.
It has been suggested that low-throughput studies contain
a higher rate of reliable interactions than high-throughput
studies [39] although this conclusion has been contested
[40]. The second and third methods are two annotation-
based scores generated by Intact and by multiple PSIC-
QUIC services [41], which take into account the number
of publications supporting an interaction, number and
type of experimental methods, and interaction types [42].
As a fourth method, we considered the effect of remov-
ing all n-ary derived interactions from our data set. N-ary
(aka complex) interactions are created by a family of
interaction-detection methods that show that a set of
proteins are somehow interacting without specifying the
exact binary interactions involved. N-ary derived interac-
tions include binary interaction records that are actually
spoke or matrix representations of n-ary data and we
have shown that the inclusion of such data can alter
graphical properties of a network [33]. Finally, we consid-
ered the effect of removing all predicted interactions (by
orthologous transfer) from our consolidated data set -
iRefIndex includes the predicted interaction database
OPHID [32]. Each of these five “more reliable” datasets
was examined in terms of their effects on the distribution
of drug targets across bins of proteins of varying degree
and centrality. Further, each distribution was assessed in
terms of its effect on degree and centrality as drug target
predictors.
Further, we addressed the effect of representing all

n-ary data using a spoke-model representation (where
only interactions between each member of the group
and one chosen protein are included) versus a matrix-
representation (where all possible pair-wise interactions
between the group of proteins are included [33,38]). The
representation of n-ary data is not always apparent in a
study, but we know that this choice has consequences
for network properties [33].
Finally, we consider the drug target predictive ability

of pathway data – a data source that is overlapping but
complementary to interaction data. This partial overlap
drew our attention to the usefulness of pathway data to
drug target prediction, and motivated us to consider a
pathway-degree metric for proteins.
In summary, we have chosen degree and centrality as

simple drug target predictor features, in order to study
the validity of the conclusions about them found in the
literature when we work with consolidated protein inter-
action data from iRefIndex and various decisions regard-
ing data integration, representation and reliability. We
have previously shown that network properties can be
altered by these choices and we will show the potential
effect of these factors on drug target prediction.
Results
Our results section is divided into five parts which
examine: 3.1) integration, 3.2) selection, 3.3) representa-
tion, 3.4) pathway data and 3.5) relationship to diseases.
In order to compare the effect of the source of data on
the results, a series of human PINs were generated from
the iRefIndex database [19] using the iRefR package [33],
as specified in the Methods section. R code used to per-
form each analysis and to create each table and figure in
the paper is provided in Additional file 1.

Data integration
Here we test two hypotheses: First, that the high degree
observed in drug targets might be related to the fact that
specific databases or papers were chosen instead of a
consolidated database and, therefore, this correlation
might disappear after data integration, i.e., when using
the iRefIndex. Secondly, that the high degree of some
drug targets could be related to the inclusion of n-ary
data.

Drug targets are correlated to high-degree only in the full
data set
In order to evaluate if drug targets are on average high
degree proteins in a consolidated PIN, we compared the
average degree of all nodes to drug targets in the full
PIN. Table 1 shows that the average degree of just drug
targets (22.5) is higher than that of all nodes in the full
network (14.2), while just non-drug targets are similar to
the full case (13.5). The skewness and kurtosis values
show that the full PIN has a peaked and right-skewed
degree distribution with the drug targets having a more
peaked and skewed distribution than non-drug targets.
The most-highly connected protein of the full network is
itself a drug target with degree 789 (Grb2 protein), and
only 23 of these interactions are with other drug targets.
Given this observation, we examined the sub-graph

consisting only of interactions between drug targets ver-
sus the non-drug target sub-graph. The average degree
of the drug target sub-network is only 1.7 (versus 12.7
for the non-drug target sub-network), indicating that
drug targets are, on average, high degree proteins more
connected to other sites of the full network than among
themselves.
For comparison purposes, the last six rows of Table 1

include the data sets of BioGRID, Rual and Stelzl, and
only Rual, employed in other drug target studies [1,2,18].
It is evident that mean values are much higher for the
full data-set than for any of these specific database or
study subsets. Moreover, in the comparatively small Rual
and Stelzl dataset, drug targets actually have an average
degree that is lower than non-drug targets. In addition,
skewness and kurtosis values indicate these smaller data-
sets are even more skewed than the full network case.



Table 1 Degree of all proteins, drug targets only and non-drug targets only for the full PIN and various subsets

Protein interaction network Nodes examined Mean
degree

Median
degree

Degree
standard
deviation

Degree
skewness

Degree
kurtosis

Max
degree

full PIN -spoke all 14.2 4 28.9 6.6 86.1 789

drug targets in full PIN 22.5 8 44.8 6.8 84.2 789

non-drug targets in full PIN 13.5 4 27.1 6.0 66.5 615

drug target subnetwork -spoke 1.7 1 44.7 3.2 15.8 23

non-drug target subnetwork -spoke 12.7 4 26.3 6.8 90.3 709

BioGRID only –spoke all 7.5 3 13.5 7.9 133.0 395

drug targets in BioGRID only 9.0 3 18.6 5.5 41.3 203

Rual + Stelzl papers only -spoke all 4.3 2 8.8 7.5 81.6 158

drug targets in Rual + Stelzl only 3.7 2 5.5 6.0 54.7 60

Rual paper only –spoke all 3.8 2 8.4 9.4 127.5 158

drug targets in Rual only 2.2 1 2.5 3.5 19.4 15

Statistical descriptors of the degree distribution of 11 different PINs whose protein complexes have all been represented as spoke models (i.e. any N-ary data is
included by a spoke-model representation). Drug targets have a higher degree on average, even though the standard deviations are equally higher. Degree
distribution of drug targets are also more skewed and peaked than non-drug targets. This is different in distributions like the BioGRID database or the Rual and
Stelzl papers, where the numerical values are not only significantly smaller but the conclusions might be even the contrary, such as drug targets having a lower
degree for Rual and Stelzl. The values of the drug target subnetwork show that interactions between drug targets are scarce and, therefore, the average higher
degree of drug targets represent interactions between drug targets and non-drug targets. BioGRID was used by [2], Rual+Stelzl was used by [1] and Rual-only was
used by [18].
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These initial results were consistent with drug targets
having a higher degree on average in the consolidated
dataset; however, the large standard deviation in these
values led us to examine the relationship in greater detail.
The majority of DTs have degrees between 1 and 8 (50th
percentile) and 95% of all DTs have a degree less than 89.
The number of DTs decrease linearly with degree be-
tween 1 and 20 followed by a long tail out to degree 789
(Additional file 2: Figure S1). A frequency plot shows that
DT’s appear to be shifted to higher degrees compared to
non-DTs and that this difference is significant (Wilcoxon
p-value 6.5e-41) (Additional file 2: Figure S2).
In order to examine this overrepresentation in more

detail, we constructed a rank of protein degrees in the
full network and grouped them into bins of not less than
200 proteins each. Rank position 1 has the maximum
degree of 789 and position 16078 has a degree of 1. We
counted the number of drug targets per bin in the
resulting 30 bins and applied a hyper-geometric test to
each with a significant p-value cut-off of < 0.05. Figure 1
shows that bins where drug targets are over-represented
(red) are mainly higher degree bins (left end of Figure).
Numbers above each bar indicate the actual number of
DTs in that bin; again while the number of DT’s in these
higher-degree bins is quite low, their numbers appear to
be overrepresented.
However, this trend is not seen in either the BioGrid

or Rual and Stelzl sub-sets. In fact, drug targets were not
over-represented at all in these two subsets with the
exception of the highest degree bin in BioGrid. These
observations argue that using degree as a feature for
drug target prediction is significantly affected by choice
of data-set.
The process of sub-setting the network will fragment

it into smaller components containing drug targets that
are disconnected from the main giant component.
The full spoke human PIN contains 140 connected
components, distributed as shown in (Additional file 3:
Table S1), with one giant component including 15754
proteins. The giant connected component contains 1220
drug targets while all the others contain 7 drug targets
altogether. A GO term analysis, using GO [43], revealed
that proteins in these separate, small connected compo-
nents are mainly located in the extracellular region and
in the membrane with few in the cytoplasm or nucleus.
Curiously, the drug targets in these smaller connected
components are mainly cytoplasmic proteins. Consistent
with this, the proteins in these disconnected components
are mainly involved in cell adhesion, while the drug tar-
gets here are mainly involved in signal transduction. This
suggests that they are not really independent functional
modules but data with missing connections to the main
connected component.
The connected component analysis in the different

networks under study will show below how disconnected
the network becomes when selecting reliable interac-
tions. For example, the number of drug targets present
in these smaller, disconnected components can go from
7 in the full PIN to 41 in the PSICQUIC MI-score subset
(Table 2). As a result, sub-setting the data may remove a
limited number of drug targets into disconnected com-
ponents away from the main network.
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Figure 1 Over-representation of drug targets over a degree ranking of proteins. Proteins were grouped into bins according to their
degree. The width of each bin represents the number of proteins in that bin while the height (−log of the p-value of the hypergeometric test)
represents how over-represented drug targets are in that bin. Each bin contains at least 200 proteins. Over-represented bins (p-value < 0.05) are
highlighted in red. The number of drug targets in each bin is indicated at the top of each bar. Drug targets are over-represented in high-degree
bins and some middle-degree bins for the full PIN (a), while over-representation is observed only in the highest degree bin of BioGrid (b) and
not at all in the Rual and Stelzl (c) or Rual-only (d) data sets.
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Drug target degree is not overly influenced by n-ary data
We considered the possibility that the higher-degree
of drug targets might be influenced by the presence
of n-ary data in the full data-set. In a previous work, we
Table 2 Number of drug targets present in isolated
components in the full and reliable subsets

Network # Connected
components

# Proteins in
disconnected
components

# Drug targets
in disconnected
components

Full PIN 140 324 7

B subset 139 354 12

Non-predicted subset 164 376 12

MI score - IntAct 75 207 18

LTP subset 188 428 27

MI score - PSICQUIC 138 372 41

The full PIN contains 7 drug targets that are disconnected from the main
component. This number increases as interactions are removed to generate
subsets of the data that are potentially more reliable; i.e., more drug targets
become disconnected from the largest component of the network.
distinguished between true binary data (B), n-ary also
known as complex data (N) and spoke-represented n-ary
data (S) [33]. The S type of data was defined as data
records that are binary (only two interactors in the
record), but that are in fact a spoke representation of
n-ary data. Both N and S-type data could artificially
inflate the degree of some nodes. Therefore, we separated
these three data-types in the full network into three net-
works called B, N and S (see Methods) and re-examined
the degree distribution of drug targets in each in order
to rule out the possibility that the high-degree of drug
targets is only due to the presence of n-ary type data.
Figure 2 shows that only 57 out of 1225 drug targets

belong to the non-B subset and, therefore, might be sen-
sitive to complex representation. As a result, a network
composed solely of binary interaction data covers almost
the same number of drug targets as the whole network
and a correlation between high degree and drug targets
is not likely to be an artefact of complex representation
but a property of real binary interaction data. Table 3
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Figure 2 Number of drug targets in each interaction-type
subset. Venn diagram with the number of drug targets per
interaction type in the full spoke PIN. B corresponds to binary
interactions, N to n-ary interactions and S to spoke-represented
n-ary interactions. 431 drug targets are found only in the binary
subset while 375 are found in all three subsets.
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shows that all subsets are similarly enriched in drug
targets (from 7.6% to 9%) but the largest share of drug
targets is in the B subset (95%). The higher average
degree of the B subset can be taken as an indicator that
higher-degree proteins are also mainly located in the B
subset while the N subset, the one subject to the complex
representation problem, includes lower-degree proteins.
The localization of both drug targets and high-degree
proteins in the B subset can be taken as an indicator of a
relationship between these variables and rules out the idea
that this is only a protein complex representation issue.
The over-representation plot for drug targets in a

degree rank for the B, N and S data sets confirms this.
Figure 3 shows that the B data set displays drug target
over-representation (red) in high-degree bins (left), in
much the same way as the full PIN. However, such a
trend cannot be seen in the N or S data sets. We con-
clude that n-ary data is not necessary to demonstrate
the over-representation of drug targets in high-degree
nodes.
Table 3 Drug target content and degree properties of the ful

Network % All drug targets
(#drug targets in data set / Total #drug targets) (#drug t

B subset 95.19

N subset 45.39

S subset 50.94

Full PIN 100

Most drug targets are present in the binary (B) subset, while the n-ary (N) and spok
simply be due to the size of each subset, given that the ratio of drug targets to pro
comparison to the values for the N and S subsets, suggesting that the B subset ma
protein degree.
Drug target association with higher centrality is dependent
on n-ary data
We repeated the above analyses using betweenness cen-
trality instead of degree (Table 4). Drug targets are, on
average, proteins with high centrality values. Again this is
dependent upon data-integration since the same is not
apparent in either the BioGrid or Rual and Stelzl subsets.
The average centrality of all nodes in the N subset of the
data (records with 3 or more interactors) is higher than
the full network since n-ary data was represented in a
graph using a spoke model where one protein in each
record is chosen as a hub to which all other members of
the record are adjacent. The centrality measure for the
n-ary data is very similar to that of just the drug targets
in the full network (Table 4: compare line 2 with 5
and 6). This led us to believe that centralities in the full
network might be more susceptible to inflation by the
N and S subsets than in the case of the degree analysis.
We examined the distribution of drug target central-

ities (Additional file 2: Figure S3) and found that drug
targets were indeed over-represented in higher centrality
bins. However, and in contrast to the degree analysis,
this trend was diminished in the absence of the N and S
subsets. In contrast, these trends were largely absent
from the N or S subsets themselves (i.e., binary data is
required to see the drug target centrality trend) and
from the two smaller subsets.
In summary, DT’s appear to be overrepresented in

higher-degree and centrality bins. However this is most
apparent using a consolidated data set and is somewhat
dependent on the presence of n-ary data in the case of
centrality. Most drug targets seem to be located in true
binary interaction data and their degree distributions are
therefore not likely to be affected by complex represen-
tation artefacts.

Data selection analysis
We wished to quantify the predictive power of high
degree and centrality for drug targets and assessed this
using the Receiver Operating Characteristic (ROC) on the
full-network. We then compared this performance over
l network versus interaction type subsets

% Drug targets in data set
argets in data set / #proteins in data set)

Average
degree

of data set

Maximum
degree

8.11 10.44 534

8.98 7.37 282

8.78 7.57 169

7.63 14.16 789

e-represented n-ary data (S) subsets have around half of them. This might
teins per subset is similar. The average degree of the B subset is higher in
y be a candidate to display a correlation between drug targets and high
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Figure 3 Over-representation of drug targets along a degree rank for Binary (B), N-ary (N) and Spoke-represented (S) interaction types.
Proteins were grouped into bins according to their degree. The width of each bin represents the number of proteins in that bin while the
height (−log of the p-value of the hypergeometric test) represents how over-represented drug targets are in that bin. Over-represented bins
(p-value < 0.05) are highlighted in red. The number of drug targets in each bin is indicated at the top of each bar. Each bin contains at least
200 proteins. Drug targets are over-represented in high-degree bins and some middle-degree bins for the B subset (a), while this trend is largely
lost in the N (b) and S (c) data sets.

Table 4 Betweenness Centrality properties for different
human PINs

Protein interaction
network

Nodes
examined

Average BC
(per protein)

Maximum
BC

full PIN -spoke all 21663.7 6930614.5

Drug targets
only

47319.8 6930614.5

Non-drug
targets only

19545.3 5195198.1

B nodes only 23985.2 6930614.5

N nodes only 46165.3 6930614.5

S nodes only 43327.2 6930614.5

BioGRID subnetwork all 13704.3 4436940.8

Rual+Stelzl subnetwork all 5960.5 506957.4

BC behaves similar to degree in the sense that drug targets have higher
centralities than non-drug targets, and in the sense that BioGRID and
Rual-Stelzl display smaller values in comparison with the consolidated data set.
However, a difference appears regarding interaction type, where nodes
belonging to n-ary interactions (N and S nodes) are more central than nodes
belonging to binary interactions.
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five different subsets of the data that could reasonably
have an effect on reliability and on network properties
with respect to the full network. Our rationale here was
that removing unreliable data might decrease the degree
for some non-drug targets that had been artificially
inflated and thereby increase performance by removing
false-positives.
The “more-reliable” data sets included binary data

only (B), data excluding predicted interactions (NP), low-
throughput data only with an lpr < 22 (LTP), just edges
with an MI score (IntAct) > 0.6 (I) and just edges with an
MI score (PSICQUIC) of > 0.7 (P). The construction of
each subset is described in the Methods section. Figure 4
shows that these subsets are not completely independ-
ent and that the different reliability measures may be
detecting similar types of interactions: the subset of
MI-PSICQUIC interactions is a subset of the LTP inter-
actions, which in turn is a subset of the non-predicted
interactions.



LTP Non−Pred

MI−psicquic 0

0

42166

0

0

0

45182

666

Figure 4 Venn diagram of interactions found in three of the
reliable subsets. The Venn diagram shows that all MI-PSICQUIC
interactions (MI-PSICQUIC score > 0.8) are contained in the LTP data
set (lpr < 22), which in turn is contained in the non-predicted data
set (data set excluding the OPHID database).
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Degree as a drug target predictor
An over-representation plot of the five different data sets
(Figure 5) shows that the B and LTP data sets still dis-
play over-representation of drug targets in high-degree
bins while these trends are less clear for the non-
predicted data set (NP). The low number of nodes in the
high-scoring data (P and I data sets) leads to lower-
degree distributions and does not allow for a conclusion
or direct comparison.
In order to quantify the predictive power of the degree

for these data sets, we plotted the ROC curve (Methods)
shown in Figure 6. Here, the perfect predictor would
have an area under the curve (AUC) of 1, while the ran-
dom case would be close to 0.5. The values of the AUC
for the full PIN and the reliable subsets are shown in
Table 5. Degree in the full network is indeed a predictor
of drug targets, even though a modest one. The full net-
work provides the best performance with one exception:
the IntAct high reliability subset (I) scores slightly
higher. However, this subset recovers only a small subset
of drug targets. Due to this, we concluded that the effect
of removing less-reliable interactions is not positive and
prediction might work better with all interactions with a
variety of degrees. In support of this, arbitrary subsets,
like BioGRID or the Rual plus Stelzl papers, have a very
poor performance, close to randomness.

Centrality Analysis
Over-representation of drug targets along a centrality
rank for the full PIN and each of the subsets behave
similarly to degree. We assessed Betweenness Centrality
performance using AUC as described above and found
results similar to the degree performance (Table 5). The
full data set gave the best performance (AUC 0.63). A
second measure of centrality (Closeness Centrality: CC)
yielded only slightly poorer performance in the same
tests. None of the subsets gave better performance
than the consolidated data set with either centrality
measure – in fact, the MI IntAct reliable data set per-
formed close to random as did the BioGrid and Rual
and Stelzl subsets.

Analysis of reliable subsets of the full PIN
The fact that the full network has proven to be the best
data source for drug target prediction over all other sub-
sets (except the small MI-IntAct > 0.6 for degree) seemed
counter-intuitive since we expected that some of these
would contain more reliable data. We had reasoned that
removing “unreliable” interactions might decrease the
degree (connectivity) for some non-drug targets that had
been artificially inflated and therefore reduce noise in the
predictor due to false positives.
To test this reasoning, we evaluated the average change

in the degree of a protein when losing edges from the full
PIN to a “reliable” subset. Table 6 shows that drug targets
in the NP data set have lost 5.2 edges on average com-
pared to their degree in the full PIN, while non-drug
targets only lose 2.7, which is a significant change
(Wilcoxon p-value < 0.05). The same occurs when going
from the full PIN to the B subset, indicating that drug
targets lose more edges than non-drug targets, which is
the opposite to what we expected if degree were a pre-
dictor of drug target status and our methods were actu-
ally able to extract more reliable data. Therefore, we
reason that at least one of these two hypotheses is incor-
rect (see Discussion).

Data Representation Analysis
Up to this point, a spoke-model has been used to repre-
sent n-ary data in the full network. We considered the
effect of using a matrix-model instead to represent the
same data. In this case, the average degree of the full
human PIN is higher (42.86 for matrix versus 14.16 for
spoke) (see Additional file 3: Table S2). Nevertheless,
drug targets alone still have an average degree that is
higher than other nodes in this network (61.69 for just
drug targets). The relationship between drug targets and
high-degree and high-centrality bins is still valid as well.
However, the trend towards drug targets in higher de-
gree bins is disrupted by a central spike and is far less
clear (see Additional file 2: Figure S5). Table 7 shows
that the degree distribution from the matrix representa-
tion of the PIN is (marginally) worse than from the
spoke representation, probably due to the introduction
of a high number of false positives in the matrix case.
The three predictors maintain their order of effective-
ness: BC followed closely by degree and then CC.
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Figure 5 Over-representation of drug targets along a degree rank for the Binary (B), non-predicted interactions, lpr < 22,
MI-IntAct > 0.6 and MI-PSICQUIC > 0.8 data sets. Proteins were grouped into bins according to their degree. The width of each bin
represents the number of proteins in that bin while the height (−log of the p-value of the hypergeometric test) represents how over-represented
drug targets are in that bin. Each bin contains at least 200 proteins. Over-represented bins (p-value < 0.05) are highlighted in red. The number of
drug targets in each bin is indicated at the top of each bar. Drug targets are over-represented in high-degree bins and some middle-degree
bins for the binary-only (B) subset (a), the non-predicted subset (b) and the LTP (lpr < 22) data set (c), while there is no over-representation for
the MI-IntAct (MI-IntAct score > 0.6) (d) and the MI-PSICQUIC (MI-PSICQUIC score > 0.8) (e) data sets.
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Observations on the integration of interaction and
pathway data
Pathways have been traditionally used in drug discovery
in the context of studying proteins upstream and down-
stream of a target in a pathway. Several studies [44] have
emphasized the importance of enriching pathway data
with interaction data due to the small overlap between
these two data sources: There are, on average, 10 pro-
teins with no interaction data per pathway in the KEGG
database [45] and 15% of the proteins in pathways have
no interaction data, including remarkable cases such as
“olfactory transduction”, which, to this date, contains
349 proteins without interaction information. Besides
that, drug target counts suggest that pathway data might
be a good predictive feature alternative to interaction
data. For example, there are only 225 drug targets that
have no corresponding pathway in KEGG. Only 18
KEGG pathways contain no drug targets, and 81 out of
229 KEGG pathways are significantly enriched in drug
targets (hypergeometric score < 0.05). For example, the
TCA cycle contains 23 drug targets out of 30 proteins,
and the average percentage of drug targets in a KEGG
pathway for the human PIN is 23.8%.
One could imagine employing a simple network

analysis using pathways; the number of pathways that a
protein is involved in could be counted as a “pathway-
centrality” and assessed for its relationship with drug
target status. However, pathways from multiple databases
are not easily consolidated making it difficult to deter-
mine how many distinct pathways a protein is involved
in. Pathway databases are highly inconsistent both in
terms of the biological entities and reactions [46-48]
described for the same pathway. The boundaries of a
pathway can be subjective such that different start and
end points may be chosen and reactions may be divided
into separate pathways [47]. Further, pathway databases
may differ in the number of intermediate steps [48] and
some databases combine pathway variants in one pathway



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R
 (

re
ca

ll)

ROC −full PIN
ROC −non−predicted interactions
ROC −LTP interactions
ROC − MI−IntAct
ROC − MI−psicquic
ROC −B interactions

Figure 6 ROC curve for protein degree as a drug target predictor. Plot of False Positive Rate versus True Positive Rate for a degree rank of
the full PIN and five subsets considered as containing higher-confidence interactions: non-predicted interactions include all interactions except
those coming from orthologous transfer; LTP includes interactions with an lpr score < 22; MI-IntAct includes interactions with MI-IntAct scores >
0.6; MI-PSICQUIC includes interactions with MI-PSICQUIC scores > 0.7; and B includes the true binary interactions (i.e., potential spoke-represented
n-ary data is removed). Theoretically perfect and random classifiers are shown in grey for reference (AUC = 1 and 0.5 respectively).

Mora and Donaldson BMC Bioinformatics 2012, 13:294 Page 10 of 17
http://www.biomedcentral.com/1471-2105/13/294
while others generate separate pathway records for each
variant [49]. Finally, pathway definitions or ontologies
may differ or be completely absent [46]. The BioCyc
database [50] defines a metabolic pathway, as part of a
single biological process in a single organism, regulated
as a unit, and that is evolutionary conserved with bound-
aries defined as stable substrates (not intermediates) with
high-degree, typically branching points [46]. It has been
reported that, as a consequence of a different ontology,
KEGG pathways may be on average 4.2 times larger than
BioCyc pathways [46]. It has also been reported that
Table 5 Drug target predictive power of degree and centralit

Network Number of proteins
in network

Full PIN, spoke 16078

B subset 14408

Non-predicted interactions 14928

LTP subset 10591

BioGRID only 8642

MI score, IntAct > 0.6 219

MI score, PSICQUIC > 0.7 747

Rual+Stelzl only 3575

The AUC was evaluated for degree and centrality ranks of the full PIN, five reliable
performance is achieved by the MI-IntAct score greater than 0.6; however, this subs
best performance is achieved by the full PIN and the B subset. Other reliable subse
BioGRID and Rual+Stelzl perform close to randomness.
The best centrality performance is achieved by the full PIN, followed by three reliab
sets perform close to randomness.
reasons for this inconsistency must be comparison or
data integration problems such as different identifiers for
the same entity, which should be resolved before an inte-
gration effort [47].
As a consequence we are unable to perform our ana-

lysis on a consolidated data set (analogous to the above
analysis on a consolidated interaction data set). Instead,
we had to resort to three separate pathway-centrality
analyses on each of three different databases keeping in
mind that results might not be comparable between
databases. Pathway records between databases may be
ies for different reliable subsets

AUC – Degree AUC - BC AUC - CC

0.6139 0.6294 0.5795

0.6114 0.6171 0.5764

0.5916 0.6128 0.5647

0.5794 0.6066 0.5482

0.5082 0.5467 0.4874

0.6353 0.5347 0.4382

0.5719 0.5725 0.5414

0.5004 0.5045 0.5011

subsets and two small subsets used in the literature. The best degree
et contains 219 proteins only, making it of limited applicability. The second
ts (non-predicted, PSICQUIC, LTP) have a slightly inferior performance, while

le subsets (B, non-predicted and LTP). Both MI-scores and both limited data



Table 6 Average change in degree for drug targets and
non-drug targets after removing lower-confidence
interactions

Data sets Avg degree change
(drug targets)

Avg degree change
(non-drug targets)

Wilcoxon
p-value

Full to non-
predicted

−5.2 −2.7 3.7e-34

Full to B −6.2 −4.9 9.3e-13

Full to LTP −10.3 −9.7 0.5

After generating the true-binary (B) network, drug targets lose 6.2 edges on
average compared to their degree in the full PIN. At the same time, non-drug
targets lose 4.9 edges. This difference is statistically significant (p-value =
9.3e-13) for the two first cases, therefore we conclude that removal of lower-
confidence data preferentially decreases the degree of drug targets rather
than non-drug targets.
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redundant and overlapping making results difficult to
interpret.
We first compared the distribution of drug targets and

non-drug targets in three different pathway databases:
PID, Reactome and KEGG. Table 8 shows that KEGG
contains the greatest number of drug targets (72% of all
UniProt drug targets), followed by Reactome and PID.
Proteins from UniProt that have pathway data are
enriched for drug targets. Proteins in UniProt that do
not have pathways are not enriched for drug targets.
If we hypothesize that proteins present in many path-

ways might be important for the cell and, therefore, dis-
ease and treatment processes, then counting the number
of pathways per protein (“pathway centrality”) might be a
useful feature for drug-target status prediction. This
method can be understood as a kind of knowledge-based
betweenness centrality, where shortest paths are replaced
by actual information on known pathways. The distribu-
tion of the number of pathways per protein is, however,
different for the different databases. Table 9 shows that
drug targets have a higher average number of pathways
per protein than non-drug targets, and PID has the high-
est averages followed by KEGG. This, as we said, might
be related to the definition of a pathway.
Drug targets are over-represented in all pathway cen-

trality bins for all three databases under analysis (see
Additional file 2: Figure S7). In order to compute the
predictive power of the number of pathways per drug
target, the ROC curves were generated. Table 9 sum-
marizes the AUC of pathways per protein for the three
Table 7 Drug target predictive power of degree and
centralities for spoke and matrix representation of
protein complexes

Network AUC - Degree AUC – BC AUC – CC

Full PIN, spoke 0.6139 0.6294 0.5795

Full PIN, matrix 0.5965 0.6264 0.5740

A matrix model of the full PIN has a slightly inferior performance to its spoke
counterpart for all predictors under consideration.
databases using two different UniProt data subsets. The
fifth column shows the AUC when only the proteins
reported in that database are used (i.e., proteins involved
in at least one pathway). We observe that KEGG is the
best dataset while Reactome performs close to random-
ness. The sixth column shows the result of including all
UniProt proteins in the analysis, i.e., all UniProt proteins
with no pathway will have a value of zero. In this case,
two databases are good drug target predictors, especially
KEGG with 0.83. This simple pathway metric outper-
forms degree and centrality of interaction networks
under any studied reliability and representation condi-
tion. However, this increase in performance is due to the
fact that the majority of proteins in UniProt do not have
pathway information.

Disease Analysis
The previous results motivated us to perform three add-
itional analyses examining the relationship between drug
targets and disease.
First, we surveyed the distance between drug targets

and known disease proteins (Methods). Table 10 shows
the distribution of shortest path lengths between the
drug targets and the nearest disease protein. The full
PIN contains 2062 disease proteins and 1227 drug tar-
gets. The full PIN contains only 436 drug targets which,
at the same time, are disease proteins, validating the idea
that drug targets are not necessarily disease proteins.
For 619 different drug targets, the shortest path to a dis-
ease protein is 1, meaning that they interact. The short-
est path is not necessarily the path that the drug follows
to treat the disease, but we argue here that order-zero
and order-one drugs give a rough idea of the number of
“etiological” drugs while the rest might be considered as
“palliative”. Five drug targets are disconnected from any
disease target, which might indicate missing interaction
information.
Smaller subsets in Table 10 show that, in general, drug

targets do not get further from disease proteins after
data sub-setting, and, as a rule of thumb, there will
always be a disease protein at least 4 steps away from a
drug target. However, the proportion of drug targets dis-
connected from disease proteins is higher for subsets
than it is for the full PIN.
Second, we hypothesized that degree might actually

constitute a better predictor when applied to a subset of
diseases. For example, high degree has already been
noted as a feature of drug targets related to cancer [18].
We performed over-representation analysis of GADB
disease categories in the consolidated PIN (see Methods)
[51,52] and found that terms related to cancer and aging
were over-represented for the highest-degree proteins
while terms for most other diseases were not present (see
Additional file 3: Table S3). Therefore, we reassessed



Table 8 Drug target distribution in different pathway databases

Database #drug target
in database

#Non-drug
target in
database

% of proteins
in database that
are drug targets

% of all drug
targets with
pathway info

% of all non-drug
targets with
pathway info

UniProt (all prots) 1953 113741 1.69 83.97 8.33

PID 394 1261 23.81 20.17 1.11

Reactome 1262 4215 23.04 64.62 3.71

KEGG 1414 7473 15.91 72.40 6.57

84% of all drug-targets under study have pathway information. KEGG includes the highest number of drug targets (72%), followed by Reactome (65%). The
number of non-drug targets in each database is small compared to all non-drug targets in UniProt, suggesting that pathways might be enriched for drug targets.
Only 1.69% of UniProt proteins are drug targets while they constitute 15.9%-23.8% of pathway databases. This observation is confirmed by comparing the
percentages of drug targets and non-drug targets in UniProt to those per database: KEGG, for example, contains 72.4% of all drug targets but only 6.6% of all
non-drug targets found in UniProt.
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degree as a predictor for drug targets related to cancer
alone versus non-cancer related drug targets. ROC ana-
lysis of degree and centrality as predictors of only cancer
drug targets (303 cancer drug targets out of 1227 drug
targets), revealed that both performed better than when
used to predict all drug targets in general. For example,
Table 11 shows that the BC metric has an AUC of 0.6617
when applied solely to prediction of cancer drug targets
which confirms that degree and centrality are better pre-
dictors for cancer drug targets only. Degree and BC have
a more modest performance for non-cancer drug targets.
This confirms that cancer proteins have a distinct behav-
iour with respect to drug target prediction and could be
treated separately. We speculate that, in general, disease
type may be an important feature that could be used in
combination with degree and centrality as predictors of
drug targets. Further study is warranted.
Third and finally, we hypothesized that highly central

proteins could lead to more side-effects and, therefore,
their drugs would be withdrawn from the market. In-
deed, we found that the average BC of the subset of drug
targets for withdrawn drugs is 54084.4 with a maximum
of 1501217, which indicates that withdrawn drug targets
have, on average, higher centralities than all drug targets
and, of course, than the average of centralities in the full
PIN (Wilcoxon p-value = 9.5e-6). In contrast, non-
withdrawn drug targets have an average BC of 21411.7
and a maximum of 6930614, which is similar to the
Table 9 Differences in number of pathways and AUC of pathw

Database Avg # pathways
per drug target

Avg # pathways
per non-drug

target

Max # pathways
per drug target

PID 4.13 2.32 44

Reactome 1.85 1.71 17

KEGG 3.99 2.74 51

Drug targets are, on average, crossed by more pathways than non-drug targets. Ho
KEGG allows the best performance for pathway centrality when using only the data
UniProt proteins not present in each database as part of the analysis, leads to an in
sources, and the pathway centrality as predictor, can be considered as the best pre
average and maximum values of the full PIN (Wilcoxon
p-value = 0.8). These observations argue that high cen-
trality should not be used as a predictor and may, in fact,
be indicative of drugs that are more likely to be
withdrawn.
Discussion
Using the full PIN (iRefIndex consolidated data set) gives
better prediction results than using presumably more
reliable subsets such as the true binary interactions, low
lpr score, non-predicted interactions, high IntAct MI
score and high PSICQUIC MI score, and significantly
better than using arbitrary subsets such as one given
database or study. This could be taken as an argument in
favour of the importance of interaction data integration
in drug target prediction studies.
The poor performance of more reliable data sets

compared to the full PIN might be due to one of two
reasons. Either the subsets we are calling “reliable” are
not as reliable as we think they are (and better definitions
of reliability are needed) or, if we assume that our data is
truly reliable, it is possible that the correlation of drug
targets with degree and centralities is partially due to the
inclusion of unreliable interactions. Both hypotheses de-
mand further study. We would argue that our results also
point out the need for more reliable interaction data
and/or methods to filter for such data.
ay centrality in three different pathway databases

Max # pathways
per non-drug

target

AUC – Number of
pathways for proteins

in one pathway
or more

AUC – Number of
pathways for proteins

in zero pathways
or more

30 0.59 0.60

23 0.53 0.81

51 0.62 0.83

wever, these values are relative to each pathway database.
in its database, while Reactome performs poorly. However, including the
crease in the performance, and having both KEGG and Reactome as data
diction platform investigated here.



Table 10 Distribution of shortest path lengths from drug targets to the nearest disease protein

Distance Description Full PIN BioGRID Rual-Stelzl Rual-only

0 Drug targets = DPs 436 319 71 25

1 Drug targets interact with DPs 619 246 47 10

2 Drug targets and DPs have a common interactor 154 163 77 25

3 3-step paths 12 16 20 11

4 4-step paths 1 1 1 2

5 5-step paths - 1 - -

Inf Drug targets disconnected from DPs 5 5 5 1

The full PIN contains only 436 drug targets which, at the same time, are DPs. 619 different drug targets have a shortest path of “1” to the nearest DP (they
interact), while 154 have a shortest path of “2” and 5 drug targets are disconnected from any disease target, probably due to missing interaction information.
Smaller subsets show that, in general, drug targets do not get farther from disease proteins after data sub-setting, and, as a rule of thumb, there will always be a
disease protein at least 4 steps away from any drug target. However, the proportion of drug targets in disconnected components is higher for subsets than it is
for the full PIN.
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Representation issues seem to be less important for
drug target prediction. Spoke models perform slightly
better than matrix models, although the difference is not
high. This might be due to the fact that most drug tar-
gets are present in binary interactions and not affected
by complex representation.
Pathways are enriched in drug targets, only partially

overlap with interaction data and the number of path-
ways that crosses a given protein seems to be a good drug
target predictor. This could be interpreted as a need to
integrate pathway data to the drug target prediction
analysis, but also can be the reflection of the fact that
the drug discovery process has been mainly pathway-
oriented. However, as a consequence of the high incon-
sistency between pathway databases, an integration effort
is required for pathways, similar to the iRefIndex for
interaction data. There are integration efforts such as
ConsensusPathDB [53], which highlights similar reac-
tions and leaves to the user the decision of considering if
they are identical or not. We believe that distributing
pathways into pairwise interactions (such as pioneered
by Reactome) and consolidating these interactions using
a methodology such as iRefIndex's ssh keys (ROGs) [19],
might be a better procedure to allow pathway integration
and integration to PINs.
Our analysis can be improved in several ways. First,

we are aware that degree and centralities might not be
the best drug target prediction metrics and the analysis
could be enriched by using better metrics and using an
ensemble of features [14,15]. However, for the three
tested metrics, all the conclusions regarding importance
of data integration, negative effect of selecting reliable
subsets and neutral effect of data representation, were
Table 11 Predictive power of degree and centralities for canc

Drug targets # Proteins A

Cancer drug targets 303

Non-cancer drug targets 924
consistent among the three metrics, making us expect a
similar behaviour from more sophisticated prediction
metrics. Second, as stated above, degree and centralities
seem to be better predictors for cancer, therefore studies
related to each type of disease would be recommended.
And third, the fact that centralities are better predictors
of withdrawn drugs also deserves a deeper analysis.
Even though our purpose was not to examine the pre-

dictive power of degrees and centralities compared to
other metrics, but only their variation due to a different
data source, our analysis has given us an important insight
on how these metrics work and their limitations. Data type
distinction, over-representation analysis and ROC curves
have given us a deeper understanding of the reasons for
and against using degree and centralities as drug target
features and can be a methodology to use in the assess-
ment of new prediction metrics.

Conclusions
These initial results suggest that data integration is an
important consideration when examining potential fea-
tures for drug target prediction. Using more reliable data
sets as defined here has little effect although other mea-
sures of confidence may have different results. The rep-
resentation issues under analysis (n-ary data, matrix
representation) do not have a significant effect on the
predictive power of degree and centralities. This work
will be of use to future studies that incorporate network
data as a feature of drug target predictors.

Methods
All analyses were performed using R and some of its
packages: «iRefR» for manipulation of the protein
er and non-cancer drug targets

UC - Degree AUC - BC AUC – CC

0.6482 0.6617 0.6193

0.5976 0.6133 0.5627
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interaction database iRefIndex; «igraph» for network ana-
lysis; «moments» for computation of statistical moments;
«limma» for generating Venn diagrams; “plotrix” for
multiple histograms; and «org.Hs.eg.db» for conversion
between gene IDs and GO and pathway information.
R code to generate all networks, tables and plots is pro-
vided as Additional file 1.
Construction of Networks
Networks were constructed and analyzed using the iRefR
package [33].
Construction of the full PIN
The iRefIndex human MITAB file v.8.0 contains 355104
unique records, of which 309726 correspond to human-
human interactions. Using a canonical representation of
the proteins and including data with all levels of confi-
dence, two protein interaction networks can be obtained:
Using a spoke model to represent complexes, the PIN
(full PIN, spoke) contains 16078 nodes and 113834
edges. Using a matrix model to represent complexes, the
PIN (full PIN, matrix) contains 16078 nodes and 344576
edges. Even though drug targets may be dependent on
post-translational modifications and cellular micro-
environments [54], we have focused on the canonical
representations of proteins, as described in the iRefIn-
dex [33,38].

Construction of the Drug target List
There are several drug target databases, such as
DrugBank [55], SuperTarget [56], TTD [57], PharmGKB
[58] and others. For the purposes of this paper, we have
chosen DrugBank, but the reader can use the included
R code (Additional file 1) in order to reproduce these
analyses with any other drug target database.
A MITAB representation of the DrugBank database

was retrieved, where the drug is described in the first
field of the interaction and the drug target in the second
field. The DrugBank MITAB table from September 2011
contained 40274 records, 19500 of which correspond to
proteins. 14851 of those protein records were found in
iRefIndex and only 12632 of these are human proteins.
DrugBank includes an “experimental” category of drugs,

defined as “Drug has been shown experimentally to bind
specific proteins in mammals, bacteria, viruses, fungi, or
parasites. An experimental drug is not necessarily being
formally investigated” [59]. Some studies remove this
type of drug from the analysis due to the fact that they
haven't proven efficacy against diseases. We follow the
same line of thought and found 7032 records containing
experimental drugs, from which 5011 correspond to
human drug targets, and 7819 records containing non-
experimental drugs, from which 7621 correspond to
human proteins. As a result, 7621 records out of 40274
are useful for the purposes of this study.
These 7621 DrugBank records contain 1266 distinct

protein drug targets. 1227 out of these 1266 drug targets
belong to human-human protein interactions; therefore,
this is the final number of drug targets that was studied.
It is important to highlight that the subset of non-

iRefIndex drug targets contains 1592 proteins, which
means that interaction data is missing (drug targets don't
have a single known protein interaction in iRefIndex's
databases) for more than half of the DrugBank human
drug targets.

Construction of drug target and non-drug target
subnetworks
Drug target and non-drug target subnetworks were
constructed using the “igraph” R package [60] and the
spoke version of the full PIN. The drug target subnetwork
contains 1227 nodes and 1038 edges (drug target-drug
target interactions). The non-drug target subnetwork
contains 14851 nodes and 94026 edges (interactions
between non-drug-targets).

Generating interaction-type sub-networks
The iRefIndex classifies interaction data according to
three interaction types: Binary interaction records, n-ary
interaction records (N) and polymers (not studied here).
The S subset (spoke-represented n-ary data) corresponds
to data that is represented as binary but is possibly just a
representation of n-ary data. The S subset was detected
using a simple algorithm: binary interaction records anno-
tated by the same database from the same paper which
were generated according to an experimental method that
is known to generate n-ary data were grouped together
into one S-type record [33]. Graphs containing just binary,
n-ary or S-type data, were generated using the iRefR pack-
age [33]; their sizes are summarized in (Additional file 3:
Table S4).

Generating high-confidence subnetworks
Using the iRefR package [33], four main reliability criteria
were considered: excluding predicted interactions from
the interaction network, excluding interactions from
high-throughput studies by using an lpr score smaller
than 22, including only interactions with a highMI score –
IntAct (> 0.6) or a highMI score – PSICQUIC (> 0.7).
The MI score tables were generated using a python

script that submits iRefIndex interaction records, one at
the time, to the scoring servers [41] and receives and
consolidates these scores in an iRefIndex MITAB format.
The algorithm to compute the scores is explained in
[42]. The difference between both methods is that the
first one includes information from IntAct only while
the PSICQUIC version includes interaction data from all
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PSICQUIC servers (APID, ChEMBL, BioGrid, IntAct,
DIP, InnateDB, MPIDB, iRefIndex, MatrixDB, MINT,
Interoporc, Reactome, Reactome –FIs, STRING, BIND,
DrugBank, I2D, I2D –IMEx, InnateDB –IMEx, and
MolCon).
In order to select the cut-off values for each score

type, 9 networks were generated for each score and the
ROC test was applied to each of them. Values of 0.6 (for
MI score - Intact) and 0.7 (for the MI score - PSICQUIC)
had the highest AUC values and were chosen as cut-offs
in this study. Additional file 3: Tables S5 and S6 show the
sizes of all these networks.

Prediction methods
Degree: Number of edges for a node or number of inter-
actions for a protein. For computations, the igraph R
package was used [60].
Centrality: Node centrality is a measure of the relative

importance of a node within a graph. In our case, the
relative importance of a protein inside a PIN. There are
various ways to calculate centrality; in this study we used
the most common measures called “betweenness” and
“closeness” centralities. The Betweenness Centrality is a
measure of the number of shortest paths that cross a
given node. A node that is found in many shortest paths
will have a higher betweenness centrality than a node
that is not. The Closeness Centrality is a measure of the
mean shortest distance between one node (protein) and
all the others that it can reach, which is a measure of
how long it will take information to spread from that
node to the rest of network. For computations, the
“igraph” R package [60] was used. igraph includes func-
tions to calculate both centrality measures plus other less
common types of centrality.
GO enrichment: When examining disconnected com-

ponents, we considered “enriched” as the most common
GO terms associated with a given subset of proteins.
The “org.Hs.eg.db” R package [61] was used to convert
gene IDs to GO terms. A routine to count the number
of GO terms is included in the supplementary R code.
Pathway Centrality: We defined pathway centrality of a

protein as the number of known biological pathways
that cross that protein. For computations, the «org.Hs.
eg.db» R package [61] was used to map gene IDs to
pathways.

Estimation of predictive power
The Receiver Operating Characteristic (ROC) or ROC
curve is a plot of the True Positive Rate (TPR) versus
the False Positive Rate (FPR), calculated as follows:

FPR ¼ FP= FP þ TNð Þ ð½eq:1�Þ
TPR ¼ TP= TP þ FNð Þ ð½eq:2�Þ
where FP = False Positives, TN = True Negatives,
TP = True Positives, and FN = False Negatives.
The area under this curve (AUC) is interpreted as the

probability that the classifier can rank a positive example
better than a negative one, and here is calculated using a
simple trapezoidal rule. We note that alternatives to the
ROC method could be considered [62,63] as measures
of performance.
DAVID disease over-representation analysis
Proteins were grouped in bins of 700 proteins, from
higher to lower degree, where bin 1 contained proteins
with the highest degree. Each bin was submitted to
DAVID [51,52] and results of over-represented GADB
disease categories were summarized in the (Additional
file 3: Table S3).
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