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Abstract

Background: Illumina paired-end reads are used to analyse microbial communities by targeting amplicons of the
16S rRNA gene. Publicly available tools are needed to assemble overlapping paired-end reads while correcting
mismatches and uncalled bases; many errors could be corrected to obtain higher sequence yields using quality
information.

Results: PANDAseq assembles paired-end reads rapidly and with the correction of most errors. Uncertain error
corrections come from reads with many low-quality bases identified by upstream processing. Benchmarks were
done using real error masks on simulated data, a pure source template, and a pooled template of genomic DNA
from known organisms. PANDAseq assembled reads more rapidly and with reduced error incorporation compared
to alternative methods.

Conclusions: PANDAseq rapidly assembles sequences and scales to billions of paired-end reads. Assembly of
control libraries showed a 4-50% increase in the number of assembled sequences over naïve assembly with
negligible loss of “good” sequence.

Background
Single-gene sequencing has become the benchmark for
studying microbial taxonomic composition of environ-
mental samples, by amplification of hypervariable
regions of the 16S rRNA gene. Next-generation sequen-
cing platforms, such as Illumina, are now adapted for
the generation of multi-million-member sequence
libraries for sample comparisons [1-4]. The PCR ampli-
cons used for sequencing typically encompass one or
more 16S rRNA gene hypervariable regions and ampli-
con lengths typically extend beyond the sequencing
limit of the Illumina single-read method, which is typi-
cally less than 150 bases. Because the Illumina platform
can generate amplicon sequences in a paired-end for-
mat, based on each template’s position on the flow cell,
paired reads can be directly matched and assembled.
The prefiltering step of the genome assembly software
PHRAP can be used to assemble reads [3]. Although the
Needleman-Wunsch algorithm [5] embedded in Merger
(http://emboss.sourceforge.net/apps/release/6.2/emboss/
apps/merger.html) has been used to assemble Illumina

paired-end reads [6], PANDAseq makes use of Illumina-
specific properties, including the low probability of gap-
inclusion.
Assembly of the Illumina paired-end sequences can be

done naïvely requiring perfect match in the region of
overlap, to produce large numbers of correct sequences,
as in the first iteration of our assembly software [1].
However, approximately 40% of the sequences were dis-
carded due to uncalled or miscalled bases. The propor-
tion of discarded paired-end reads, due to bases uncalled
or miscalled, will increase as read lengths increase,
decreasing naïve assembly effectiveness. We suggest a
more sophisticated method that corrects errors probabil-
istically with the overlap data from the paired-end reads.
When the overlap between the forward and reverse reads
is substantial, many uncalled or miscalled bases can be
corrected using the complementary sequence. Our soft-
ware, PANDAseq, uses paired-end Illumina reads, deter-
mines the proper amount of overlap and reconstructs the
entire sequence by correcting errors in the overlapping
region (Figure 1). Assembly is extremely fast and millions
of paired-end reads can be rapidly assembled on a desk-
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Implementation
PANDAseq aligns each set of paired-end sequence reads
in a three-step process. First, it determines the locations
of the amplification primers, if they are specified and
were sequenced. Then, it identifies the optimal overlap.
Finally, it reconstructs the complete sequence, correct-
ing any errors, and checks for various constraints, such
as length and quality.
To score alignments, we calculate the probability that

the true nucleotides, X̂ and Ŷ , are the same, given the
observed nucleotides, X and Y. We estimate this with
the included quality information found in the Illumina
reads. For each base, CASAVA provides an encoded
quality score, which is the probability of the base being
miscalled. This probability (�) is approximated by

10
−
A0 − 64

10 = 10
−
A1 − 33

10
where A0 is the ASCII qual-

ity value in the Illumina analysis pipeline versions before
CASAVA 1.8 and A1 is the ASCII value used in
CASAVA 1.8. [7]
Assuming all nucleotides are equally likely (i.e., the

prior probability that the true bases match is
1
4
), and

that sequencing errors are independent and result in
equiprobable choices over the other three nucleotides,
the probability that the true bases match, given that the
sequenced bases match, is:

Pr[X̂ = Ŷ|X = Y] = (1 − εX)(1 − εY) +
εXεY

3

and the probability that the true bases match, given
the sequenced bases mismatch, is:

Pr[X̂ = Ŷ|X �= Y] =
1
3
(1 − εX)εY

+
1
3
(1 − εY)εX

+
2
9

εXεY

If one of the bases is an uncalled base, N, then the
probability that the bases match is:

Pr[X̂ = Ŷ|Y = N] =
1
4

Using these probabilities, PANDAseq begins the
assembly process by determining the positions of for-
ward and reverse primers, if supplied. To accomplish
this, the program finds the first offset, x, where the pri-
mer aligns. For a primer P and a sequence S, the pro-
gram calculates

|P|−1∏

i=0

Pr[Ŝi+x = Pi]

Figure 1 Schematic of paired-end assembly. Typical scenario: forward and reverse reads are overlapped and the primer regions are removed
to reconstruct the sequences. Highly overlapping scenario: for short templates, the overlapping region may include the primer regions.
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while assuming that εPi = 1 − 10−4.1, which is the
highest value score assigned by Illumina [8] and, intui-
tively, assuming that P̂ is P.
The program then finds the best overlap greater than a

specified threshold for the forward and reverse sequences,
F and R, respectively. If no suitable overlap is found, then
the read pair is discarded. This is done for the entire read,
even if there are primers to be removed, as it is possible
for the overlap to be sufficiently long to be in the primer
region. A schematic is shown in Figure 1.
The value of c Î [1, min(|F|, |R|)) is chosen which

maximises this formula:

Pr[F,R|c] =
∏

i=1...f

Pr[Fi]

·
∏

i=1...c

Pr[F̂i+f = R̂i]

·
∏

i=1...r

Pr[Ri+c]

where Pr[Fi] =
1
4

and Pr[Ri] =
1
4
and the remainder is

as above with e fixed at a value determined empirically
to be the average error rate. This value of � was calcu-
lated by counting the mismatch rate in known index
tags in a defined community data set (described below).
This parameter need not be retuned as it is only an esti-
mate of the error. Because the index read is short and
sequenced earlier in the process, it likely has fewer
errors and, therefore, its error rate should underestimate
the true error rate. Regardless, the error rate specified
for this step should not negatively affect the ability of
PANDAseq to identify the best overlap for the forward
and reverse reads.
Once the overlap is selected, the output sequence is

constructed and an overall quality score is calculated.
During this process, the primer regions are disregarded
if primers were specified. The unpaired regions are cop-
ied from the available strands and the quality score for
these regions is the product of the probability of those
bases being correct. For the overlapping region, the
decision-making process is more complex. If the bases
agree, the base is included and the quality of this base is
assumed to be Pr[X̂ = Ŷ|X = Y] . If the bases disagree,
the base with the higher quality score is chosen and the

quality of this base is assumed to be Pr[X̂ = Ŷ|X �= Y] . If
either or both bases are uncalled, they are considered to
always match, noting that unassigned bases are always
associated with the lowest quality score by CASAVA [8].
In certain cases, the CASAVA pipeline masks the

quality score at the end of the read, replacing all quality
scores with the lowest quality score [8]. In this case,

special quality scoring is used by PANDAseq. If one
base is masked, the probability of the other base is used

if the bases match or uniformly random,
1
4
, is used if

they do not match. If both are in the masked region, the

quality is assumed to be uniformly random,
1
4
.

The constructed sequence can then be validated
against user-specified criteria. The quality score assigned
to the assembled sequence is the geometric mean of the
quality scores calculated above, which compensates for
the variable lengths of the final sequences. PANDAseq
enables users to reject sequences based on low quality
score, lengths that are too short or too long, or the pre-
sence of uncalled bases. A module system is also avail-
able within PANDAseq to allow more sophisticated
validation of user sequences, such as verification of
known secondary structure or conserved regions. Note
that there is a detailed manual included with the soft-
ware that describes example usage scenarios.

Results and discussion
To validate PANDAseq, we used three experimental
tests: (1) a test using simulated data to verify algorithmic
correctness, (2) a test using sequence data from a single-
template PCR amplicon to verify the quality of
assembled reads, and (3) a test with experimental data
obtained from a defined mixture of genomic DNA frag-
ments to compare PANDAseq assembly yields with
naïve assembly.
Simulated data was useful in determining how real

quality scores affect sequence assembly. We used a pre-
viously published Illumina sequencing run of V3 hyper-
variable regions from a defined library (described below)
[1] and replaced the sequence with the corresponding
region from Sinorhizobium meliloti (135 bases, region
amplified by 341f and 518r excluding primers [9]), up to
the length of the original reads. Although this V3
sequence was taken from the published genome, it cor-
responds to the region being sequenced in the experi-
mental data such that any sequencing quality problems
due to secondary structure are preserved. This provides
simulated error-free reads with experimental quality
scores. Though the assembly was then performed with-
out a quality filter, all 1 350 602 synthesized paired-end
sequences assembled with quality scores greater than
0.9 (Figure 2). This value establishes an upper limit on
the quality score independent of sequencing errors; that
is, setting the quality threshold higher than 0.9 would
demand that reads have fewer errors than data known
to be perfectly correct and is, in effect, demanding the
underlying read quality be better than is necessary to
reconstruct the sequence.
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Further analysis was performed on a library con-
structed from a Methylococcus capsulatus (ATCC
33009) full length 16S rRNA gene amplification pro-
ducts cloned into the TOPO vector using the TOPO
TA cloning kit (Invitrogen). The resulting construct was
used as template for 16S rRNA gene amplification and
sequencing on an Illumina GAIIx as previously
described [1], with the exception of the PCR product gel
excision and purification step, which used the Wizard
SV Gel and PCR Clean-Up System (Promega). Sequen-
cing produced 673 845 paired-end 108-base reads, avail-
able at http://neufeldserver.uwaterloo.ca/~apmasell/
pandaseq_sampledata.tar. Of these, 598 775 sequences

were assembled with an assembly quality score greater
than or equal to 0.9. We assembled the same single-
template data with a quality threshold of 0.6 and this
increased the number of sequences assembled by 9%,
yielding 652 249 sequences. The errors in the original,
individual reads and the reconstructed sequences were
counted and error information is shown in Table 1.
Only two reads contained uncalled bases and were
excluded. PANDAseq improved the correctness of the
reconstructed sequence relative to the original reads or
preserved the correctness of good reads. Depending on
the quality threshold, only about 0.02-0.08% of output
read contained errors introduced by the PANDAseq

Assembly quality threshold
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Figure 2 Quality scores of assembled masked data. A perfect 16S rRNA sequence from Sinorhizobium meliloti was masked using real Illumina
quality scores and the resulting paired-end sequences were assembled with PANDAseq. A histogram of quality scores for the assembled
sequences is shown.
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assembly process, as calculated from the results in Table
1; these introduced errors were substantially less than
the 5-8% of sequences with errors corrected by PAN-
DAseq. Given an assembly threshold of 0.9 as an upper
limit, we then attempted to determine the lower limit
for the quality threshold by looking at a comparable
quality score of the unassembled reads. We determined
the geometric mean of the read qualities of the
sequences which assembled to be no lower than 0.7.
Only 0.04% of reads had a quality score between 0.6 and
0.7. Therefore, if a sequence assembles, it is probably
correct, given the quality of the underlying read, regard-
less of quality score.
We compared the quality of PANDAseq assembly

against the existing assemblers: SHERA [10], iTags (using
PHRAP) [3], and BIPES (using Merger) [6]. For this M.
capsulatus library assembly, reads used still contained
primers; primer removal was not a preprocessing step. If
assembling sequences where the overlap region is large,
it is possible that the end of one read would overlap the
primer region of the other (see the highlyoverlapping sce-
nario shown in Figure 1). PANDAseq assembled all
sequences within 2 minutes 25 seconds, which is much
faster than the second fastest method tested, SHERA, at
73 minutes. The other two programs were at least 100
times slower than PANDAseq. We were unable to use
Merger on our test environment, a Macintosh Pro with 2
quad-core Intel Xeon 2.93 GHz processors, and so the
BIPES assembler was run on a Linux machine with a
quad-core Intel i5 3.2 GHz processor. Shown in Figure 3
is a scatter plot of accuracy versus coverage for the four
different methods we considered. PANDAseq assembles
the fewest reads in the dataset, but was, by far, the most
accurate. iTags/PHRAP was inferior in coverage and
accuracy to BIPES/Merger and to SHERA (Figure 3).
Comparing average errors in the output sequence, PAN-
DAseq performed the best with 0.38 nucleotide errors
per sequence as compared to a minimum of 1.08 errors

per sequence for SHERA and BIPES. However, as men-
tioned previously, PANDAseq assembled the fewest
sequences at 95.5% of the dataset. SHERA assembled all
sequences in the dataset, but it is worth noting that,
upon inspection, many of the products assembled exclu-
sively by SHERA were incorrect as an erroneous overlap
region had been selected (data not shown). The number
of error-free sequences in the overlap region is shown in
Table 2. While SHERA has a larger number of sequences
with correct overlaps, these represent a smaller fraction
of the output compared to PANDAseq. Many of these
sequences produced by SHERA with correct overlaps
were rejected by PANDAseq due to low quality scores.
Finally, we used a composite of previously published

duplicate control library [1], made from mixed pure bac-
terial cultures (NCBI SRA accession SRA024100), to
compare naïve assembly and PANDAseq. In this compo-
site library, the most abundant sequences are from the
added pure cultures, but there are other contaminant
sequences, likely from the growth media used [1]. We
performed the naïve assembly with the software used
previously [1] and the PANDAseq assembler, discarding
any sequences with uncalled bases. The assembled
sequences were clustered at 97% identity using CD-HIT
[11] and abundance curves were generated from the
resulting clustered operational taxonomic units (OTUs;
Figure 4). At a threshold of 0.9, the number of sequences
increased 3.9% in total over naıve assembly, yielding an
average increase of 2.1% in the most abundant clusters.
There were 83 OTUs in which PANDAseq had fewer
sequences than naïve assembly: 71 of them were OTUs
for which the naïve assembly found a single sequence,
while the PANDAseq assembly found zero. Relaxing the
quality threshold increased sequence recoveries substan-
tially. When the quality threshold was reduced to 0.6, the
total number of sequences increased by 50% and the
number of sequences in the most abundant clusters
increased by 85%. Even if the quality threshold was low-
ered below 0.6, no new OTU sequences were assembled
by PANDAseq. New, low-abundance OTUs were formed
from some of the additional sequences, which, although
they do not match the pure-culture organisms, classify
taxonomically using the RDP classifier [12,13] (data not
shown).
Assembling 1350 602 reads took just 364 seconds on a

Macintosh Pro with 2 quad-core Intel Xeon 2.93 GHz
processors. Profiling indicated that cache faults are the
limiting factor in performance (data not shown), and the
current design minimises cache faults during analysis of
each sequence pair.
There is a concern that, when making a choice between

two disagreeing bases, the reconstructed sequence does
not reflect the true sequence. For the control library, the
disagreeing bases were dominated by mismatches in the

Table 1 Read error correction frequencies

Quality (Geometric Mean) 0.9 - 1.0 0.6 - 0.9

Error-free Input and Output 544 669 21 095

All Errors Retained 4 023 4 675

Input Errors Reduced 50 082 27 668

Errors Introduced 0 37

Total 598 774 53 475

Summary of error frequencies in assembled Illumina paired-end reads
generated from sequenced V3-region amplicons of Methylococcus capsulatus
strain Bath.

All error data were analyzed solely within the region of overlap, which was
relevant to PANDAseq assembly. Low-abundance “contamination” was
observed in the dataset (data not shown), possibly due to reagents used for
PCR. These will contribute to the counts of sequences that had errors that
were retained. This category will also contain sequences in which both reads
contain low-quality bases with quality scores masked by CASAVA.
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quality-masked region of the reads, where both bases
were of low quality and the decision would be arbitrary
because there is no reasonable way to discern which base
is better. In those cases, the entire reads are of low qual-
ity and likely to be discarded due to the quality threshold.
However, mismatches generally occur between a base
with a high quality score and a base with a low quality
score, simplifying the choice of which base is correct. In
control library data, only 20% of mismatched bases both
had quality scores masked by CASAVA. Since the quality
masked region must be quite long for this to occur, only
few sequences suffer strongly from these mismatched

quality-masked bases. This is due to the overlap region
typically being longer than the quality-masked regions.

Conclusions
PANDAseq produces additional high-quality assemblies
from Illumina paired-end reads than naïve assembly for
minimal computational cost and provided more rapid
and higher quality results compared to existing assem-
blers. Error correction, particularly of uncalled bases,
increases the number of assembled sequences. Although
it is possible for PANDAseq to produce incorrect
assemblies, most assemblies are correct because incor-
rect assemblies have low quality scores, as these mis-
matches occur in quality-masked regions of both reads,
and are discarded. This software provides a versatile and
powerful way to assemble paired-end Illumina reads
without otherwise discarding high-quality sequence data.

Availability and Requirements
Project name: PANDAseq
Project home page: https://github.com/neufeld/

pandaseq
Operating system(s): POSIX-compliant (Windows,

Linux, and MacOS)
Programming language: C
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Figure 3 Comparison of output of various assemblers. A scatter plot of the percentage of paired-end sequence assemblies from sequenced
V3-region amplicons of Methylococcus capsulatus strain Bath against the average number of mismatching nucleotides between the assembled
sequence and the reference sequence. The comparison was done between PANDAseq and three alternative assemblers (see text).

Table 2 Number of sequences with correct overlap
regions

Assember Correct Assemblies Percentage of Output

PANDAseq 628 131 96.30

BIPES (Merger) 621 357 94.63

SHERA 637 646 92.35

iTags (PHRAP) 3 578 0.55

Summary of the number of correct overlap sequences in assembled output
from sequenced V3-region ampli-cons of Methylococcus capsulatus strain Bath.

The percentage of sequences with error-free overlap regions is shown as a
fraction of the total output for each assembler.
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Other requirements: None
License: GNU GPL
Any restrictions to use by non-academics:
None
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