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generic and specific virulence categories.

categories.

Background: Methods of weakening and attenuating pathogens’ abilities to infect and propagate in a host, thus
allowing the natural immune system to more easily decimate invaders, have gained attention as alternatives to
broad-spectrum targeting approaches. The following work describes a technique to identifying proteins involved in
virulence by relying on latent information computationally gathered across biological repositories, applicable to both

Results: A lightweight method for data integration is used, which links information regarding a protein via a
path-based query graph. A method of weighting is then applied to query graphs that can serve as input to various
statistical classification methods for discrimination, and the combined usage of both data integration and learning
methods are tested against the problem of both generalized and specific virulence function prediction.

Conclusions: This approach improves coverage of functional data over a protein. Moreover, while depending largely
on noisy and potentially non-curated data from public sources, we find it outperforms other techniques to
identification of general virulence factors and baseline remote homology detection methods for specific virulence

Background

Though recent decades have seen a decrease in mortality
related to infectious disease, new dangers have appeared
in the form of emerging and re-emerging pathogens as
well as the continuing threat of weaponized infectious
agents [1,2], thus creating a strong need to find new
methods and targets for treatment. Underscoring the
importance of this issue, the National Institute of Allergy
and Infectious Disease maintains a categorical ranking of
disease-causing microorganisms (NIAID Biodefense Cat-
egories) that could cause significant harm and mortality
[3]. Broadly, infectious disease remains a global con-
cern and a problem whose impact is most felt in poorer
areas of the world. Fortunately, many pathogen genomes
have been sequenced and continue to be sequenced, and
hold the promise of expediting new therapeutics. As a
result, genomic and proteomic sequences are available for
many bacterial and viral causes of disease. The National
Microbial Pathogen Data Resource (NMPDR), a curated
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database of pathogen genomes, lists 801 different species
and strains bacteria and eukarya infectious to mankind
[4]. The availability and dissemination of this data has
allowed many new discoveries in virulence research to
stem at least partly from computational methods. The
challenge is no longer having to work with limited data,
but rather how best to exploit the information available
and prioritize targets of study.

A critical set of potential genes of interest within
a pathogen are those directly involved in pathogene-
sis. These genes, or virulence factors, can have varying
degrees of importance in the initiation and maintenance
of infection, and constitute an attractive group of putative
targets. Concrete determination of a gene’s involvement
in disease is generally left to experimental results, and
many studies rely on knockouts or mutations of puta-
tive virulence genes [5,6]. Resulting attenuation or avir-
ulence would then be strong evidence that the gene is
involved in disease, although the exact function or role
may still remain a mystery. Proper target selection is
important, however, given that laboratory science makes
the identification and verification of virulence factors a
costly endeavor. Faster methods are preferred early on that
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can highlight the most likely targets before experimental
assays are carried out.

Identifying and annotating these virulence factors is an
early and integral part of understanding how a disease
causes damage to a host; improvements in accuracy and
speed for finding proteins involved in virulence have the
potential to increase the analytical throughput of ther-
apeutic research, provide clues towards mechanisms of
infection and provide tempting biomarkers for diagnos-
tic techniques. However, prior computational research in
quickly identifying virulence factors has been limited, and
has only in the last few years become an area of strong
interest for researchers. Several public databases have
recently been released that focus exclusively on pathogen-
esis. Among these include: the Virulence Factor Database
(VEDB), a repository of genomic and proteomic data for
bacterial human pathogens [7,8]; the Argo database, a
collection of virulence factors believed to be involved
with resistance for -lactam and vancomycin families of
antibiotics [9]; and MvirDB, a aggregated data warehouse
of many, smaller virulence-related databases (including
VEDB and Argo) [10]. Many of these repositories support
standard sequence-based searches against their content,
facilitating virulence identification via sequence similarity.

Classification algorithms have also been applied to the
problem of virulence recognition for cases where homolo-
gies between virulence proteins may be remote. Sachdeva
et al, for example, used neural networks to identify
adhesins related to virulence [11]. Saha used support vec-
tor machines to predict general virulence factors via an
approach similar to one proposed in [12] - mapping com-
binations of the amino acid alphabet to a space such that
the presence of a peptide sequence would constitute a
classifiable feature [13]. However, the resulting top accu-
racy for virulence proteins, 62.86%, was relatively low
in comparison to the other protein roles predicted (e.g.,
cellular and metabolic involvement). Work by Garg and
Gupta improved on this performance by also relying on
polypeptide frequencies in conjunction with PSI-BLAST
data in a cascaded support vector machine (SVM) classi-
fier [14]. This approach yielded a higher accuracy of 81.8%
and an area under the receiver operating characteristic
(ROC) curve of 0.86 for generalized virulence prediction.
Other methods have directed attention at specific types of
virulence proteins; Sato et al. developed a model for pre-
dicting type III (T3) secretory proteins within Salmonella
enterica and generalized to Pseudomonas syringae [15],
and McDermott et al. compare multiple computational
secretory prediction methods to predict T3/4 effectors on
completely novel proteins [16].

The present work expands upon the recent research
in computational virulence prediction relying on noisy,
weakly-related annotation information rather than direct
sequence data, and describes an approach relying on
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readily available public data for predicting microbial pro-
tein relation to virulence. Information from multiple bio-
logic databases are returned wholesale using a retrieval
approach that constructs an interlinked graph of con-
nected information, providing broad functional coverage.

Note that the information retrieved may or may not be
specifically relevant or correct with regards to the pro-
tein of interest; rather than using that information for
direct annotation, the aggregate data are used to build
a weighted graph used as input to statistical methods
trained to recognize virulence proteins. We apply this
approach to both overall and specific virulence, and eval-
uate its performance against competing methods.

Methods

Path-based query retrieval

The methodology we adopt relies on retrieving abundant
information regarding a protein sequence using a net-
worked query graph. The core of this approach relies on
the notion that leveraging multiple sources simultane-
ously will improve functional coverage of any given query
protein.

We describe the basic query and retrieval model here
briefly (refer to [17,18] for further details of the logical
query model): let a query graph G derived from some
schema S be G(S) = (V, E), where V are the nodes and E
the relations between the nodes. For any concrete instance
of a query graph, V refers to the individual records
returned from any protein sequence query, and E the con-
nection between those records (e.g., through external link
reference) or the protein sequence directly (e.g., from a
pair-wise sequence comparison). S constrains v € V to
specific resources (records of information), and the nature
of e € E to specific relations between those resources. In
this definition, we allow the assignment of weights onto
the edges; in the case of pair-wise sequence comparisons,
these weights may represent the quality of the alignment
between the query protein and other proteins within a
resource. Intuitively, a query graph can imagined as a real-
ization of a graph database whose joins are represented
by the edges E: v; x4 vj, where v;,v; € V and d is some
primary key-like attribute (e.g., RefSeq identifier in a gene
record, referencing its product). This concept can be illus-
trated via a simple BLAST search: a query is seeded with
a protein sequence, sp; the results of the query may be n
other sequences, s1, . . ., Sy, for which pairwise alignments
((s0,8;) — v;) are identified.

We extend the notion of a query graph to exploratory
query graphs, or a query graphs expanded to the limit
of connections defined in S such that for any given pro-
tein query, all possible connections between records and
all records are realized. Following the previous exam-
ple, all sequences aligned to sp may themselves be used
as queries against additional databases, generating a
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larger query graph whose contents may span multiple
sources. Exploratory query graphs thus represent a mate-
rialization of the entirety of S for any given protein
sequence query.

Notably, the query and retrieval approach we describe
has been employed widely in life sciences research for
data management and navigation purposes [19-22]. How-
ever, whereas these prior works has focused on the
retrieval, curation, and provenance of biological records,
this present study is less interested in the quality of each
individual datum and instead focuses on the use of the
query graphs as a whole to infer (possibly latent) annota-
tions on the initial seeding query that may not be explicitly
represented in the query graphs.

Constructing weighted query graphs from sequence data
We exploit the notion that within a path-based model,
the closer a node is to the initial query, the more rele-
vance it likely has to that query, and that those further
from the query itself are theoretically of waning relevance.
Naturally, the contents of exploratory query graphs will
include records that may be quite distant from the initial
query. Prior work by others in the field of biologic data
representation explored various methods of exploiting the
graph structure for inferring the relevance of individual
nodes and paths. Bharat and Henzinger [23], for exam-
ple, describe several algorithms, such as those that use the
in- and out-degree of nodes, for the analogous problem of
determining topical relevance of hyperlinked documents;
Tsuda et al. [24] use a diffusion-based approach to assign
weights within protein networks, a method readily adapt-
able to query graphs; Weston et al. [25] apply a rank
propagation algorithm on sequence similarity graphs gen-
erated from PSI-BLAST hit values; and Detwiler et al. [26]
test a variety of methods, such as Monte Carlo simula-
tions and relevance propagation, to rank nodes in similar
graphs. In contrast, our interest is less in the relevance
of any individual node, and instead in the value of using
the graph globally as a representation of the query for
classification activities.

After seeding an initial query, retrieving records and
fully expanding the query graph, we transform the con-
tents of the graph into a representation more amenable to
classification by weighting nodes in the query graphs and
representing their records as numerical features that can
be used as inputs to statistical classification methods. This
approach bypasses the difficulties in comparing query
graphs directly, and depending on the weighting scheme
used can still leverage the benefits of the graph structure.
Because the query graph is generated by a series of link-
ages across databases, groups of nodes that share edges
most often or have strong sequence-similarity to the query
can be weighed highest. An ideal scheme would heavily
weigh nodes that characterize the query sequence more
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precisely, and lightly weigh nodes that do not, thereby
minimizing noise.

Begin by letting w;(n) be the weight of node # in the
query graph at some iteration ¢, and that 0 < w;(n) < 1,
for all t,n. This represents the grounding that a user’s
posed query is the most confident node within the graph,
and that further confidences emanating from resultant
queries are derivative of this, and propagate outwards. An
illustrative way of representing degradation of confidences
between nodes in an exploratory, query sequence-based
graph would be expect values from BLAST-based align-
ments; let expect(p,n) represent the expect value from
some query p to the result n. Thus, the influence of a
node’s inward-joining neighbors may be represented as a
factor of both those neighbors’ weights (w;_1 (»)) and their
relation to the target node. Define i as some function
that map some value between relations (p,n) € E such
that ¥ (p, n) is within the domain of (0,1). We can then
represent weights of nodes within the query graph by:

wim) «— 11— [ A=wea@v@nm) |, )

(pn)eE

where A —[0,1) is a path degradation rate and serves
a similar purpose as the PageRank damping factor [27],
representing belief that information further from the ini-
tial query is of decreasing relevance. For all experiments
described in the remainder of this work, A = 0.7 was used
and v is set to:

logio (expect(p, n))

300 @

W(pr }’l) =

the above being an empirically determined from [28]. All
nodes were given initial weights of 0, save the query itself,
which is given a weight of 1, and the algorithm iterates
until convergence. Applying weights in this manner takes
into account the notion that some nodes will be more well-
connected than others. Consequently, nodes with more
incoming edges will have a higher weight than nodes with
less, all other things being equal.

Query subgraphs as features

We were primarily interested in the use of query graphs
generated from sequences for use as a “fingerprint” in
identifying virulent and non-virulent proteins, so once
a graph was weighted it was transformed into a fea-
ture representation. Let v represent a vector of weights
from a single data source (and thus constitute the weights
for a subgraph of an entire query graph). We represent
any query graph as several feature vectors, depending on
the number of sources, and implicitly capture the pre-
sumed relevance of the node under the weighting scheme
described earlier. Transformation of the graph weights to
fit the feature vector space model is straightforward, and
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missing data treated simply. Given a data source D with
subset of known records H (H C D), the feature vector v
for Gon Dis:

vi={(WeH:v, v, 3)
where,
wn) ifne ( HNYV)
n— .
0 otherwise.

In the above, w(n) may take the value of any arbitrary
weighting scheme. If v has known classification, it would
then be possible to use it as a member instance of a label
in classification training.

The query graphs for the evaluation were generated
using the sources and schema shown in Figure 1, and of
the sources incorporated into the schema all except for
EntrezGene, EntrezProtein and UniProt were tested for
classifying abilities. Features upon which classifiers were
developed were uniquely identifiable database records.
For example, features from AmiGO and GenNav were GO
terms across all three ontologies (e.g., ‘GO:0008237’) ; fea-
tures from CDD were conserved domains (e.g., ‘cd07153’);
features from KEGG included pathways (e.g., ‘bme00010’),
etc. While two sources represent GO terms (AmiGO,
GenNav), there was an important distinction between
the two: AmiGO provided only terms directly being ref-
erenced by other sources, whereas GenNav additionally
provided the ancestors of terms. As a result, feature vec-
tors built from GenNav reconstructed portions of the
GO graph within each query instance, allowing us to
later compare the utility of discrimination using reference
terms versus reference terms within their hierarchical
context.

Datasets for general and specific virulence

The above method and implementation provides a means
to query a protein, weight the nodes in the query graph
and transform the results into a feature representation
suitable for training and classification. We evaluated vir-
ulence and non-virulent protein prediction using infor-
mation derived from query graphs using two different
datasets — one for general virulence, and one for specific
virulence subcategories.

General virulence dataset

We identified a curated set of proteins with which to eval-
uate the performance of our approach in the form of the
non-redundant protein set used by Garg and Gupta to test
their own virulence detection system [14], and adopt their
train-test procedure to allow direct comparison. Though
composed of virulence proteins with a variety of func-
tions, Garg and Gupta treated the entire set as ‘general
virulence’ test cases. The positive, virulent number of
examples in the set was 1025, with 820 of these acting
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as training instances for cross-validation and parameter
selection, and the remaining 205 for testing. Likewise,
the non-virulent proteins numbered 1030, with a division
of 206 and 824 for testing and cross-validation, respec-
tively. This constituted an 80%-20% train-test split, with
the larger fraction used to optimize the parameters for
each algorithm and the smaller used for final testing.

Specific virulence dataset

The dataset developed by Garg and Gupta lacked the
annotation granularity needed to determine specific viru-
lence roles a protein may play, since the dataset was purely
binary in classification, and a protein was categorized as
either ‘virulent’” or ‘non-virulent! For a more specific pre-
diction of virulence factors, we relied on a data warehouse
of virulence proteins mentioned earlier, MvirDB. In order
to transform the protein data in MvirDB into a suitable
training and testing set, the first step was curation of the
data into a non-redundant, representative set of proteins.

The original MvirDB dataset consisted of 14544 records.
The few DNA sequences in this set were translated to
protein sequences, beginning at the leading methionine if
present, using the longest open reading frame; otherwise,
the DNA sequence was removed from the set. Databases
whose contents were viral sequences were removed from
the set. These initial filters yielded 5052 remaining pro-
teins.

For negative training and test instances, 3000 proteins
were randomly drawn from GenBank [37] and filtered for
proteins highly likely to be involved in virulence based
on regular expression searches on the protein names
and annotations. For example, proteins whose names
contained ‘drug’ or ‘toxin’ were removed. Proteins from
known pathogen organisms were otherwise left undis-
turbed in the negative set under the notion that not all
proteins within an infectious organism are involved in vir-
ulence. At the same time, hypothetical proteins whose
functions were unknown were also removed from the neg-
ative set. Finally, CD-HIT [38] was used to generate non-
redundant protein clusters for the positive and negative
sets combined, at 40% sequence identity. This last non-
redundancy step ensured that proteins used for the evalu-
ation would be dissimilar overall, and permit validation of
discrimination in cases of remote homology [39,40]. The
final sequence dataset consisted of 3700 proteins, 1703
of which constituted the negative (non-virulent) set and
1997 of which formed the positive (virulent) classes (see
Additional files 1 and 2).

Once the datasets were curated for non-redundancy,
and possible virulence factors in the case of negative
set, the positive set proteins were labeled with specific
virulence functions. Labeling was done based on the infor-
mation regarding the protein readily available from the
originating virulence data sources; many of the databases
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Figure 1 Integration schema. Schema used for virulence identification. The records whose weights were converted into features for classification
were derived from PDB structures [29], GO terms (from both AmiGO and GenNav) [30,31], InterPro domains and families [32], TIGRFAM families [33],
BioCyc pathways [34], KEGG terms and pathways [35], and CDD domains [36]. Note that GenNav is a recursive source - that is, it may re-query itself

to recreate the GO hierarchy within the query graph.

that MvirDB integrated used a native classification sys-
tem. Virulence proteins were annotated manually, based
on the original classifications and literature references of
the native databases.

To illustrate the need for manual annotation over the
positive dataset, many databases whose focus is on a spe-
cific type or family of proteins, such as in the case of
Argo and antibiotic resistance proteins, simply annotate
all proteins as a single type. As a result, a small number
of categories have very many instances. In other cases,
annotations appeared idiosyncratic at the deepest level,
but may have been subsumed by higher-level annotations.

In this regard, the problem faced is similar to that encoun-
tered by the curators of the Unified Medical Language Sys-
tem (UMLS), the Foundational Model of Anatomy (FMA)
and GO [41-43] and similarly a solution based on man-
ual comparisons of the various databases’ classifications
schemes is used here. This manual annotation process is
outlined stepwise in Table 1.

Manual annotation of the virulence proteins was an
iterative process that continued until no further label
changes were made to the dataset (either added, changed
or deleted). As a result of the manual annotation, 11 top-
level virulence-related labels were derived (see Table 2).
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Table 1 Procedure for manual curation of virulence factors
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Procedure for manual curation of virulence factors

1. Examine the source or database of each protein annotation for possible classifications, using the annotation set across

all databases as a starting point. Record annotations according to information from the source or database; each protein

may have more than one annotation. If a protein is directly involved in a virulence process or is a regulator of that process,

record it as such. In this way, proteins may have more than one annotation.

2. Examine any publications which are linked from the source. Record annotations according to information from the

publication regarding the protein.

3. If an annotation was unclear or unknown, conduct a keyword publication search of the virulence factor to obtain resolution.

4. Repeat steps (1-3) across all proteins (i.e. re-annotate) until no further changes were made from the previous annotation.

Iterative method used to manually align and annotate the virulence classifications for virulent proteins in the training and testing dataset.

General virulence prediction evaluation procedure

Query graphs were generated for all 2055 proteins in the
generalized virulence data set with the schema in Figure 2
using the path-based query approach described earlier.
Analysis of the data focused on evaluation of performance
via area under the receiver operating characteristic curve,
or AUC. Three learning algorithms were tested to evalu-
ate whether an integrated query approach can be robustly
applied to different classifiers: k nearest-neighbor (k\NN),
ridge regression and SVMs [44-46]. The above are dis-
criminative methods that have been successfully applied
to noisy biological datasets in the past for classification
problems, and we refer the reader to the above citations
for the mathematical details of each approach. Briefly, a
kNN model makes few assumptions regarding the struc-
ture of the data, and the class for an unknown instance is
learned directly from the training examples via some dis-
tance metric, such that y; = % jeN® ¥j, where members

of Nl.(k> are dictated by some distance function (e.g., in the
case of (5), this distance function returned an e-value).

Table 2 Virulence categories

No. Virulence category Instance count
1 Adherence 360
2 Surface factor 66
3 Invasion 249
4 Transport and uptake 225
5 Toxin 319
6 Catalysis 84
7 Secretion 483
8 Motility 181
9 Antibiotic resistance 239
10 Defense 488
11 Other 214

The 11 main virulence categories derived manually from the virulent protein
data sources with the number of training and testing records, after 40% identity
pruning.

Classifiers based on ridge regression techniques attempt
linear separability of the data by obtaining the w that
minimizes the function ), (y; — wl'x;)2 + A||w||2. In this
formulation, w defines the class-discriminating bound-
ary. In the SVM the function to minimize is (||w||?/2) +
CY,tist (y; — wlx;)) > 1 — ¢, where C represents
a cost parameter for the “slack” variable ¢. While ridge
regression and SVM appear similar, the regularizing func-
tions of ridge regression (square loss) and the SVM differ
(hinge loss) differ. Moreover, in the SVM ¢ permits the
presence of an optimal boundary that may not separate
two classes. Both methods, however, can be formulated in
an optimizable dual form, and all three can take advan-
tage of a kernelization function, where the data points
are transformed to a space that allows linear separability
for otherwise non-linear data. We rely on the kernelized
(non-linear) implementations provided in a open source
machine learning package [47], for all experiments; appro-
priate free parameters were optimized for each method
using grid searches.

For the general virulence dataset, we compared the
above classifiers, trained on inputs generated using
integrated query graphs, against the bi-layer cascaded
SVM approach originally employed by Garg and Gupta
(VirulentPred, [14]). VirulentPred relied on amino acid
frequencies, sliding window peptide n-grams and a fea-
ture set derived from position-specific scoring matrices
generated from PSI-BLAST searches against NBCI’s non-
redundant database. Likewise, we included for compari-
son baseline approaches against which VirulentPred was
evaluated; namely, single SVMs trained against amino acid
frequencies. In this case, 1-, 2- and 3-mer frequencies of
proteins were used as the feature to an SVM classifier,
resulting in trainable feature spaces of size 20, 202 and 203,
respectively.

Specific virulence prediction evaluation procedure

Unlike the prediction of generalized virulence in the
previous section, the problem of specific virulence is
multiclass. Each protein was permitted to have multiple
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Figure 2 Optimized ROCs. ROC curves for data-integrated sources using optimized parameters.
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virulence labels attached to it, and thus for each classifi-
cation method and source 11 different SVMs were tested
in a one-versus-rest fashion. That is, each virulence cate-
gory was set as the positive set of interest, and all other
proteins (non-virulent proteins and virulent proteins of a
differing classification) were treated as the negative set.
Two primary experiments were conducted on the specific
virulence set.

First, similarly to how evaluation was conducted for
generalized virulence, the dataset for specific virulence
was split into training and testing components; 80% of
the dataset was used for training the various parame-
ters for the classifiers and 20% retained for final testing.
For the integrated query graphs, data was generated as
in the generalized virulence experiment, with the same
data sources and identical schema. As the SVM performed
the best overall in the generalized virulence experiment
(see Results), this kernel was chosen for the specific vir-
ulence classification experiment. Optimal parameters for
the integrated query graph were determined via a grid
search using the same procedure as generalized virulence.
The parameters selected for each source and for each
virulence class were those that provided the best AUC
performance.

One step utilized in specific virulence that was not done
in general virulence was feature selection on the inte-
grated query graphs for the train-test split experiment,
in the form of F- scores. This metric, calculated prior to
SVM training and testing, provides a rough estimate of
the predictive value of a feature, independent of the other
features, for any given class. The calculation used here fol-
lows the formulation outlined in [48]. Let i correspond to
the i feature in a data source. Then:

2, N\2
(57 =) +(5 %)
[x(H)| x|

1 +) _ =) 1 =) _=(=)

P -1 Z("k,i % )‘HXHH Z(xk,i % )
k=1 k=1

(4)

where, respectively, x™) and x(7) are the positive and neg-

ative datasets, x*), (), x; are the averages of the positive,

negative and complete sets of the ith feature, and x,(:), x,(:i)

E(i)=

)

are the values of the i feature of the k* instance of the
positive and negative sets. Features whose F-scores were
in the top 25%, 50% and 75% were tested, per source in
the training set. As with the SVM parameters, the features
that yielded the best AUC in training were the features
then used for the final test results.

The second experiment involved running six five-fold
cross-validations for each class and method with the
intention of obtaining measures of variance and devi-
ation for each classifier. For each cross-validation run,
the five-fold splits were the same across all classifiers
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to accommodate direct, paired comparison. In the case
of SVM-based baseline methods and sources, Gaussian
kernels were used, as they seemed to have the most con-
sistent performance in generalized virulence prediction
(see Results); parameters for the kernel and SVM were
default and non-optimized, per libSVM [49]. Because 30
individual values are reported for each classifier per vir-
ulence class, paired two-tailed ¢-tests were used to mea-
sure the significance of any mean differences between the
sources, and between the sources and baseline methods;
p-values were adjusted for multiple pair-wise comparisons
via Bonferroni correction.

To compare the performance of our methods against
the problem of specific virulence, we used several classi-
fiers to establish baselines. The first baseline approach was
carried over from the methods used for comparing gener-
alized virulence, and was simply a 3-mer sliding window
of amino acid frequency counts. The second baseline clas-
sifier was a nearest-neighbor sequence-similarity-based
approach, where a BLAST database of the specific vir-
ulence dataset was created, and classification decisions
were based on mutual BLAST results of the dataset pro-
teins against each other. Each individual protein i was
queried against the created BLAST database, and its affin-
ity p to any given class C was determined by:

> en® 1n()

, 5)
k
IND|

PielL =

where the set Ni(k) denotes the neighborhood of k-nearest
proteins to i (as determined by highest results from
BLAST), and 1,(L) is the indicator function, which is
equal to 1 if n € L and O otherwise; thus, p is the fraction
of the k-nearest neighbors of i that have membership in L.
This approach was used since each protein in the dataset
could take on multiple classes at once and the formulation
in (5) permits the measurement of membership strength
for any arbitrary class, given some protein; for present
purposes, the cluster size was chosen to be kK = 3. The
motivation behind this very simple approach is to measure
annotation based on data from a single source, and in such
a way as to emulate how an annotator may scan the best-
scoring BLAST hits of a sequence to determine function
[50].

The third and final baseline classifier used was also
based on BLAST, but relies on using SVMs trained on
pair-wise hits (with a high e-value threshold) against a
BLAST database of the training set. To generate features
for this third baseline classifier, each test sequence was
queried against the trained BLAST database, resulting in
a vector representation of a sequence’s negative log trans-
formed e-value score to the other sequences within the
database. This method is referred to as BLAST+SVM
and has been used in prior experiments by others, where
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SVMs based on pair-wise BLAST queries outperformed
or were comparable to other methods such as SVM-
Fisher, SAM, PSI-BLAST, Smith-Waterman and motifs
with SVMs in detecting sequences that were remotely
homologous [51,52].

Results and discussion

General virulence

Comparison of data sources for predicting virulence

Table 3 shows the results of using different data sources
extracted from the query graph for predicting virulence.
One emergent pattern from the results was that the more
coverage a data source provided, the better it performed.
The notable exception is the difference between AmiGO
and GenNav - both sources use GO terms linked from
other sources, and have the same coverage. However, Gen-
Nav links to the parents of the GO terms, and the parents
of those GO terms and so on, up to the top-level of the GO
hierarchy. Despite the similarity in coverage, GenNav out-
performs AmiGO by as much as 0.05. GenNav generates
more data than AmiGO via self-reference, and the perfor-
mance difference suggests that leveraging the ancestry of
a GO term may be more useful for predictive purposes
than just the immediate GO term by itself. Overall, results
imply that the sources oriented around GO terms were the
best performing, while TIGRFAM and BioCyc were the
least predictive.

To determine if the pattern carried over when empty
query graphs (i.e., cases where no information for a pro-
tein was retrieved) were excluded, the same train-test
process was re-ran as before, omitting any query graph
from training or testing that did not yield any query
results. As the SVM approach seemed to do the best on
average, that statistical learning approach was used for

Table 3 Comparison of generalized classification across
sources

Data source Classification method
SVM rer) Ridge regr. kNN

AmiGO 0.894 0.907 0.867
BioCyc 0.698 0.687 0.679
CcbD 0.729 0.760 0.755
GenNav 0.940 0.935 0.878
InterPro 0.846 0.804 0.832
Kegg 0.733 0.778 0.779
Kegg (pathways) 0.740 0.739 0717
Pdb 0.740 0.737 0.710
TigrFam 0.688 0.702 0.704

Results by source and method for predicting virulent and non-virulent bacterial
proteins given AUC. The best performer, GenNav was run with a Gaussian kernel
whose o = 1.0 and regularization cost C = 1.0. For each method, the best
performing classification approach is bolded.
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this follow-up experiment, and the appropriate parame-
ters were optimized for this subset of the training-testing
data. Omitting empty graphs reduced the number of train-
ing and testing instances for each source, in some cases
by more than 50%. However, the result was a rough sense
of the predictive ability of each source, given records
existed for that source in the query graph (see Table 4).
Though AmiGO and GenNav maintained essentially the
same scores, the rest of the sources experienced noticeable
increases. Despite this overall improvement, the relative
ranking of the sources remained the same, again with
AmiGO and GenNav outperforming other sources.

Comparison with competing methods for predicting virulence
Comparing the AUCs and accuracies of using weighted
and integrated queries with the cascaded SVM approach,
there is a marked improvement in performance. Using
the best-scoring single source (GenNav), the three learn-
ing approaches were compared the amino acid frequency
baseline and VirulentPred (see Table 5). Regardless of
the statistical learning method used, GenNav integrated
queries resulted in AUCs of 0.07-0.08 higher than the
cascaded SVM approach, and approximately 0.15 greater
than the sequence baseline. Accuracies are less one-sided,
and in fact the KNN approach did only 0.053 better
than the sequence baseline, suggestive of the significant
amount of noise present in the retrieved data.

Specific virulence

Source-against-source performance

Across all specific virulence categories the AUCs of the
GenNav and AmiGO data sources, whose records were
indirectly queried from the seeding protein, outperformed
all other methods and data sources, in some cases by very
large margins (see Table 6 for the feature spaces for each
source). Comparisons of the GO-based results to the other

Table 4 SVM classification using different data sources

Data source AUC

AmiGO 0.886
BioCyc 0.807
CcbD 0.876
GenNav 0.940
InterPro 0.883
Kegg 0.795
Kegg (pathways) 0.815
Pdb 0.875
TigrFam 0.872

Above are results by source, when empty graphs (query graphs with no
returned results) are excluded from training and testing; the scores are thus
those of each source given data from that source was available.
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Table 5 Learned query graph performance using the
VirulentPred test set

Data src. Class. method AUC Accuracy
1-mer SVM (e 0.786 0.710
- VirulentPred 0.860 0.818
GenNav SVM (rep) 0.940 0.868
GenNav Ridge regression 0.935 0.863
GenNav KNN 0.935 0.763

Comparison of the top-performing integrated predictor against a sequence
baseline and VirulentPred; all methods outlined in the table used the same
set of proteins.

sources are further indicative that a learner based on inte-
grated queries provides a better classifier. Notably, two
other sources that are more lightly integrated, KEGG and
InterPro also perform well relative to the other sources;
under Kendall’s rank correlation, coverage (as defined, per
source, by the fraction of graphs with one or more records
present in a query graph) was significantly related to AUC.

Further analysis of the ROC scores reveals other inter-
esting results. Category 8, Motility, was relatively trivial
to classify not merely by GenNav but by other sources as
well, including KEGG and InterPro. One explanation for
these results was that the motility of bacterial pathogens,
and indeed bacteria in general, is a very well character-
ized process, and proteins related to bacterial motion are
well-annotated and unambiguous. Despite its coverage in
comparison to sources like TIGRFAM and BioCyc, and
contrary to the case in other categories, PDB records
failed to predict motility well. This may partly be due to
the fact that motility-related proteins, given their high
probability of containing transmembrane regions, are dif-
ficult to structurally elucidate and thus good exemplars of
this class are more absent in this database.

Integrated query graph learning versus baseline methods
Besides making inter-source comparisons, we compared
our query-based learning methods to baseline methods.

Table 6 Feature space sizes across sources

Data src. Num. features Feature type
AmiGO 5102 terms

BioCyc 1674 proteins, pathways
Cdd 6463 models

GenNav 6425 terms

InterPro 3540 models

Kegg 234 pathways

Pdb 7954 structures

TigrFam 1109 models

Number of features per source used for specific virulence predictions. Individual
source feature sizes are reported before any feature selection.
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Figure 3 shows the pair-wise comparison results of six
five-fold cross validation runs with the sources and base-
line methods, with better methods appearing higher in the
graph. Note that unlike the parameter-optimized results
in the previous section, feature selection based on training
data for the sources was not performed and classification
was done using an unpruned feature set.

Statistical significance of pairwise comparisons are also
visible in Figure 3 via transitive arrows. It stands out that
in all but one virulence class, at least one of the queried
data sources outperforms all baseline methods; 3-mer
performance on the Surface factor label was exemplary
compared to most sources and the other baseline methods
(see Additional file 3 for exact statistical results). How-
ever, it was also the label with the fewest instances. In
eight of the virulence classes, the ROC curves of GO-term
based methods outperform not just baseline methods, but
all other sources as well. Interestingly, for proteins related
to antibiotic resistance, such as drug efflux pumps, Inter-
Pro does significantly better than all other sources and
methods.

It was also important to determine how well virulence
classes could be discerned using varying levels of train-
ing set sizes. The motivation behind measuring this was
to gauge how well known a family of virulence factors
may need to be for successful identification ‘in the wild’
Figure 4 displays the AUCs of a subset of sources (those
that performed best in the generalized virulence classifi-
cation test) and all baseline methods from three paired
five-fold cross-validations under different and increasing
training set sizes -10%, 40%, 70% and 100% of the original
training set sizes; testing sets remain untouched.

These findings strongly illustrate that the performance
of some classifiers do not significantly change with the
number of instances seen. In the case of the Motility
and Secretion classes, both KEGG and GenNav perform
essentially the same and with little change, though for
other sources such as InterPro the AUC increased with
the training set size. This led to the conclusion that some
data sources may better characterize classes than other
sources, and that in the case of GenNav and KEGG for
Secretion, there are likely a set of terms or pathways that
commonly describe pathogen secretory mechanisms, and
that these annotations are widespread across the set of
secretion-related proteins. Also of note was the perfor-
mance of GenNav under small training set size conditions.
Other sources and methods generally tend to perform
poorly (< 0.7 AUC) with training sets less than 500
instances, whereas GenNav does considerably better in
7 of the 10 cases often by more than 0.1. This suggests
that heavily integrated sources, such as GenNav, may have
additional utility over other methods when the number of
seen and known instances from which to train are very
low, leading to the hypothesis that integrated methods
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Figure 3 Specific ROC comparisons. Statistical significances based on six five-fold cross-validations for all 11 virulence classes. An arrow from a
head source or method to a tail source or method transitively indicates better pairwise performance from the head against the tail. Results, via two-
tailed t-test, for area under the ROC are shown and nodes are color-coded based on source type (blue indicates domain- or motif-based sources, red
GO term-based sources, yellow- brown for pathways, gray for structural sources and green for baseline methods).

may do better under more ambiguous conditions when
compared to competing approaches.

Estimating the advantage of multiple features for specific
virulence

Thus far, results have strongly suggested that some cate-
gories are much easier to classify than others. For exam-
ple, Motility was easily predicted across all integrated
sources, and for some even at very low numbers of train-
ing instances. In comparison, other virulence classes such
as Invasion and Defense remain harder to identify with
strong confidence. Because many of these nuances in
performance are both source- and label-specific, it was
of interest to generate ROCs without a classifier, and
using only the weights determined from the propagation
algorithm in the query graphs. For each category and
source, the F-score per (5) was computed, and the highest-
performing feature was kept. Recall that each feature was
assigned a weight from the query graph; this value was
used as the thresholding function for the generation of
AUC scores. The result of this was essentially a very basic
classifier, Top-F1, which relied only on the single-most
discriminating feature of each source for each label. The
AUC for this classifier represents predictions ignorant of
any value in combining multiple features; comparisons of

this with other methods would thus illustrate any advan-
tages or disadvantages from using more sophisticated
approaches on the query graph data.

Figure 5 shows a heatmap of the difference between
SVM AUC:s. Across all sources and labels, the ROC curves
using SVM-based methods demonstrated added utility
over Top-FI. Colors trending toward the deep blue end
of the spectrum represent modest increases in perfor-
mance, while colors closer to deep red are more marked
improvements for the SVM method over Top-FI It was
clear that there is marginal benefit to using a more sophis-
ticated classification method for KEGG and GenNav on
the Motility class, although other sources such as BioCyc
derive a noticeable advantage from using SVMs for classi-
fication; for some sources and labels the mere presence of
a single feature can be strongly indicative of membership.

At the same time, other sources benefit greatly from the
combination of features, namely InterPro and CDD, the
two sources that on average have the highest improvement
of using SVMs over Top-F1. At the opposite end, TIGR-
FAM and BioCyc show the least overall improvement,
with the GO-term based sources (AmiGO, GenNav)
showing moderate improvement. Examining the GO-
term based sources shows interesting differences between
using only direct annotation information (AmiGO) and
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Figure 4 Performance as an effect of dataset size. Average AUCs and 95% confidence intervals for a subset of sources and the baselines by
training set size, based on three five-fold cross-validations. The ‘Surface factor’ virulence class is omitted due to the small number of instances
present in the training set.

enrichment via traversing the GO hierarchy (GenNav).
While most of the changes between the two sources are
commensurate, AmiGO strongly benefits from the use of
SVMs for the Secretion category. One conclusion from
this is that there are several top-level terms in GO that
suggest secretion, and that under GenNav these terms are
retrieved; under AmiGO, however, this information was

not available, but was ameliorated by the availability of
terms that may share mutual parents.

Conclusions

In the case of general virulence, and in the majority of
specific virulence classes, a classification approach that
used integrated queries as input performed significantly
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better than the baselines and competing approaches. Sur-
prisingly, it was found that the data sources several nodes
away from our query were the most predictive, which may
at first glance seem counterintuitive. GenNav and AmiGO
both are sources indirectly connected to the initial queries
in the query graph, yet they were the best performing.
A large part of this may be due to their superior cover-
age, as they are referenced by other data sources, but even
when empty graphs are omitted it was found that these
data sources still out-scored the other sources directly
connected to the query. This reinforces the position that,
as it pertains to using biological databases for classifying
protein data, shallow queries are generally not sufficient.
Manually, this information can be difficult to sift through,
and using robust methods to cut through the “chaft” is
indispensable. This is particularly salient given the results
that learning methods more resistant to noise were the
best at identifying virulent proteins.

A limitation that is not explored in this work but is
self-evident in implementation is that performance will
likely be very dependent on the choice of data sources
and cross- linkages. Moreover, as data sources evolve, are
expanded or curated, source-specific findings may vary.
This caveat is particularly applicable to sources which
are directly queried (e.g., CDD); indirect features (e.g.,
GO terms) may be more robust to this effect as multiple

sources are integrated. In either case, query proteins ide-
ally will have some limited sequence similarity to other
proteins; truly novel proteins may not provide sufficient
results for classification. In such instances, relaxing strin-
gency to provide results with very low homology may
be effective, though accuracy and interpretability will
likely suffer. Another notable limitation involves evaluat-
ing the classifications. The circuitous nature of sequence
annotation from biological databases makes it difficult to
identify annotations that were derived transitively. While
we attempted to address this problem by omitting from
the query graph any results with 100% similarity to the
query sequences and disallowed sequence results from
serving as seeds for other sequence queries, it is likely
that protein families or domains with GO assignments,
which may have been curated based in part on the query
sequence, were returned and used for classification. Based
on our analysis of the results, however, we believe the most
influential reason for the dominating performance of GO
terms may be how informative the features are relative
to other sources. Recall that the AUC findings between
AmiGO (linked GO terms only) and GenNav (linked
and hierarchical GO terms) was greater than the differ-
ence between AmiGO and the top-performing non-GO
sources (Table 4); indeed, InterPro performs similarly to
linked GO, but does not outperform hierarchical GO. This
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leads us to believe that there is inherent value in using a
standardized and rich vocabulary for classification beyond
coverage alone. We find that there is value in cross-linking
across data sources, and that while provenance and quality
of data are naturally very important even the most naive
retrieval approaches can provide useful information on
identifying protein virulence, and perhaps protein class in
general.

Notably, our method used each data source, weighted
via query integration, to serve as separate inputs to
individual classifiers. This approach resulted in multiple
source-specific classifiers that only utilized a subgraph of
the entire query graph. A perhaps preferable alternative
would be single classifier that utilized the entire graph.
To that end, we explored additional methods of source
integration to augment query weighting, and in particu-
lar kernel integration, where kernels generated for each
source were additively combined before learning. Our
initial findings using this approach resulted in marginal
improvement using naive equal kernel weighting, at pro-
hibitively high computational cost. Achieving full query
graph integration for the classification phase is a reason-
able extension of this work, however, and further work
is needed to explore ways of optimizing kernel weight
selection to improve performance and justify the cost [53].

By presenting a method of exploting this data in the
context of virulence and presenting the results, a major
insight is that even without extensive manual curation
integrated data can be very effective for prioritization of
both virulence factors and general function prediction.
This approach scales well against both the number of
sources incorporated and the amount of ground truth
information known, making it an appropriate choice for
high-throughput biological research. Towards this end,
our methods have been incorporated into the target selec-
tion pipeline of the Seattle Structural Genomics Center for
Infectious Disease (SSGCID) for down-selecting virulence
related proteins for structural elucidation [54]. Lastly,
results produced by this research are possible targets of
health-related interest in public health and infectious dis-
ease biology; highlighting these proteins for 5itional study
may further improve knowledge of pathogenesis and dis-
ease.

Additional files

Additional file 1: faa — Specific virulence protein sequences. This
FASTA file contains the 3700 protein sequences used for training and
testing the specific virulence classifiers. Note that the FASTA sequence
headers contain only the unique identifiers; labels are located in a separate
file.

Additional file 2: txt - Specific virulence class labels. This tab-delimited

file contains two columns. The first column is the unique sequence
identifier matched to some protein sequence in the specific
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virulence FASTA file, and the second column indicates the specific virulence
label, per Table 2. Non-virulent proteins are assigned class ‘12" in this file.

Additional file 3: pdf — Statistical significance outcomes of method
and source comparisons. A PDF containing tabular results of statistical
significance testing from six five-fold cross-validations of integrated data
against each other and baselines. Data from these tables was used to
construct the comparison networks in Figure 3.
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