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Abstract

Background: As a powerful tool in whole genome analysis, tiling array has been widely used in the answering of
many genomic questions. Now it could also serve as a capture device for the library preparation in the popular
high throughput sequencing experiments. Thus, a flexible and efficient tiling array design approach is still needed
and could assist in various types and scales of transcriptomic experiment.

Results: In this paper, we address issues and challenges in designing probes suitable for tiling array applications
and targeted sequencing. In particular, we define the penalized uniqueness score, which serves as a controlling
criterion to eliminate potential cross-hybridization, and a flexible tiling array design pipeline. Unlike BLAST or simple
suffix array based methods, computing and using our uniqueness measurement can be more efficient for large
scale design and require less memory. The parameters provided could assist in various types of genomic tiling task.
In addition, using both commercial array data and experiment data we show, unlike previously claimed, that
palindromic sequence exhibiting relatively lower uniqueness.

Conclusions: Our proposed penalized uniqueness score could serve as a better indicator for cross hybridization
with higher sensitivity and specificity, giving more control of expected array quality. The flexible tiling design
algorithm incorporating the penalized uniqueness score was shown to give higher coverage and resolution. The
package to calculate the penalized uniqueness score and the described probe selection algorithm are implemented
as a Perl program, which is freely available at http://www1.fbn-dummerstorf.de/en/forschung/fbs/fb3/paper/2012-
yang-1/OTAD.v1.1.tar.gz.
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Background
As a unique variety of microarray, genome tiling array
targets not only known transcripts that are dispersed
across the genome, but intensively covers all known con-
tiguous regions on the genome with overlapping or
evenly-spaced probes. Being more unbiased than com-
mon gene expression arrays, tiling arrays have the ability
to empirically investigate transcriptional activity across
all known genomic regions, some of which may contain
unknown transcripts and splicing variants. Studies using
tiling arrays in human and Arabidopsis thaliana have
shown that the number of transcripts exceeds predic-
tions by up to 10 times, and further, many exist outside
* Correspondence: wimmers@fbn-dummerstorf.de
1Research Unit Molecular Biology, Leibniz Institute for Farm Animal Biology,
Dummerstorf, Germany
Full list of author information is available at the end of the article

© 2012 Du et al.; licensee BioMed Central Ltd.
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
of annotated exons [1,2]. Besides transcriptome map-
ping, other applications also make tiling array an ideal
tool for whole-genome analysis [3,4], including ChIP-on-
chip for DNA-protein interactions, MeDIP-chip for
DNA methylation, DNase chip for identification of
hypersensitive sites, and array comparative genomic
hybridization (aCGH) to study DNA copy number
variation.
However, in recent years with advancing technology

and lower costs, high-throughput sequencing (next gen-
eration sequencing, NGS) has gained unprecedented
attention in genome research. With its inherent single-
base resolution, NGS achieves higher accuracy in exon
boundary mapping and can be used for SNP detection
[5]. Further, its unlimited dynamic range enables detec-
tion of any subtle changes in the transcription level
[6]. Despite significant cost reduction for NGS, tiling
array remains more cost-effective for large samples —
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which typically provide higher and more reliable statistical
power — therefore, cross-platform collaboration be-
tween deep sequencing data and array data has been
considered [7].
Additionally, relatively few ongoing research projects

seek to solve biological questions on a whole-genome
scale, so it is more likely that several linked QTL regions
or intervals identified in genome-wide association stud-
ies are pursued in detail. Such specific interests can be
addressed by using capture oligos for targeted enrich-
ment of DNA fragments representing the genomic re-
gion of interest [8]. These capture oligos might be
applied either in solution-based or microarray-based
methods, thus combining the two platforms in the array
assisted targeted sequencingapproaches, where targeted
regions could be tiled on DNA capture arrays, and the
hybridization products could be used in the follow-up
sequencing library preparation [9-11] This customized
tailoring tool selectively enriches only the regions of
interest and provides the opportunity to reduce both cost
and processing time, while retaining high sensitivity
through high-throughput technology.
In this paper, we would like to address issues and chal-

lenges in designing probes suitable for genome tiling
and targeted sequencing. In particular, we present the
penalized uniqueness score, which serves as a control-
ling criterion to eliminate potential cross-hybridization,
and a flexible tiling array design pipeline.

Results
Penalized uniqueness score
In microarray design, selected probes should have simi-
lar hybridization efficiencies under a specified narrow
band of temperature, as well as minimal potential for
both self-hybridization and cross-hybridization [12].
However, these selection constraints become much more
difficult to satisfy when applied to tiling probes designed
for a large genomic region. Among these conditions,
cross-hybridization is most problematic, when a non-
targeted nucleotide sequence hybridizes to the designed
probe. Cross-hybridization contributes to the overall
probe signal intensity and may potentially compromise
the downstream analysis [13]. A similar situation with
lower specificity also troubles deep sequencing, when
short reads need to be either aligned to a reference gen-
ome or assembled into contigs [14].
Experimental techniques and analytical methods have

been developed to overcome this issue. Commonly,
approaches to probe design are mostly BLAST [15]
based [16-20]; other researchers [21-23] also employ suf-
fix array [24] for faster indexing and alignment, however
at the cost of increasing space complexity.
Furthermore, Gräf et al. [25] proposed the idea of

uniqueness score (U) for cross-hybridization control in
tiling probe selection. Following their original definition,
a genome sequence in question is called G, which is a
part of the whole genome assembly GS. If a substring X
of G occurs only once in GS, and each substring of X
occurs more than once in GS, then this substring X is
called a minimum unique substring (MUS) of G. At each
position of G, if the substring from this position to the
end of G is unique within GS, then there exists one
shortest unique prefix starting from that position, which
is called a minimal unique prefix (MUP) at that position.
The uniqueness score is then defined as the number of
MUS within any candidate genome interval; finding U
could then be achieved by counting the distinct end
positions of MUP within the region. Details and proof
could be found in [25].
However, in this definition of the score, they only con-

sidered the absolute number of MUS without accounting
for the distribution of length and coverage within the
probe. Hypothetically, the first half of a probe could con-
tain no MUS, while the remainder might harbor a large
number of MUS (which could be up to the user-
specified cutoff ). In certain extreme cases, for longer
oligonucleotide probes, the original definition would give
a score higher than the specified threshold, even though
the actual coverage of these MUS is only 50%, and
cross-hybridization could still occur. Another possible
scenario is that compared to sequences with shorter
MUS, probes with longer and near-window-sized MUS
are more vulnerable to cross hybridization. A schematic
illustration of the 2 aforementioned cases is shown in
Figure 1; some potentially vulnerable probes from one
typical array can be found in Table 1.
Hence we define the penalized uniqueness score Up as

the following,

Up ¼ U � Cmus � 1�mean Lmusð Þ=Lmaxð Þ ð1Þ

� Cmus, is the proportion of the probe covered by all
MUS within.

� Lmus, is length of the MUS within the candidate
probe.

� Lmax, is the maximal length of MUP, default is 30.
� U, is the number of MUS within the candidate probe.

Distribution quartiles of model parameters for one
Agilent chip are shown in Table 2. So in the best case
scenario, all MUS cover the whole probe and the cover-
age will induce no penalty on the uniqueness score.
Regarding the average length of MUS, it will normally
give a coefficient between 0 (only if all MUS within the
probe have maximal length) and 1 (only when there is
no MUS available).



Figure 1 Schematic diagram of low MUS coverage and long MUS. Hypothetically extreme cases showing low MUS coverage (above)
and long MUS (below).
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Penalized uniqueness score evaluation
After BLAT [26] alignment, 99.4% of all Agilent Human
Whole Genome ChIP-on-Chip probes found to have
unique quality alignment, while only 34274 probes had
been mapped to multiple locations. We made back to
back box-plots (Figure 2) for both scores to visualize the
general group differences in their distributions. Both
plots show similar overall pattern. Probes with unique
alignment tend to have a higher score. A visible differ-
ence of the grouping effect between the two scores could
be found, that for the penalized uniqueness score the
difference of median between group 2 and 3 is much
lower than the difference of median between group 2
and group 1. An estimate of grouping effect, calculated
using below formula (2), would give Up a ratio of
3.03557, almost two times higher than 1.66667 for U,
suggesting a larger difference in the distribution of the
penalized score between unique probe group and probes
with multiple alignments.

median U1ð Þ �median U2ð Þ
median U2ð Þ �median U≥3ð Þ ð2Þ

To access directly the relative performance of the two
scores, receiver operating characteristic curve (ROC)
Table 1 Example of 60-mer probes from Agilent ChIP-on-
Chip Set

Probe ID BLAT
hits

MUS
coverage

MUS Avg.
Len.

U Up

A_17_P01761220 2 45 17.55 22 6.85

A_17_P17428106 2 44 16.42 24 7.97

A_17_P04386305 2 59 20.86 22 6.59

A_17_P10898621 12 55 20.86 22 6.14

BLAT hits, number of hybridization-quality alignment to the reference
genome. MUS coverage is the length of the region on the probe covered by
MUS. MUS Avg. Len, is the average length of all MUS within the probe. U, the
original uniqueness score. Up, the penalized uniqueness score.
was adopted measuring the trade-off between sensitivity
and specificity. Curves for both score were overlaid on
Figure 3. It could be seen that both scores work quite
well and strongly deviate from the diagonal, however, a
visible trace of difference could be identified at the
upper left corner, suggesting a clear gain of advantage by
the penalized score.

Design parameters
The melting temperature (Tm), defined as the
temperature at which 50% of the oligonucleotide and
its perfect complement are in duplex and the other
half are in the random coil state, is essential for the
success of stable hybridization, where a narrow band
of Tm across all probes is highly desirable [27]. Com-
mon thermodynamics prediction models utilizing only
base composition, like GC content [28] or base counts
[29], have been proposed and widely used for short
oligonucleotides. However, these simple models do not
consider the actual probe sequence, but rather use
only the summary statistics of the sequence. The loss
of information will inevitably lead to lower prediction
power. The nearest-neighbor model later proposed is
considered more robust and accurate [30]. Thus, in
this algorithm we implemented the adapted prediction
model of Tm (3) using the same parameters as in
[31]. Aside from Tm, the GC content could also be
controlled separately.

Tm ¼
X

ΔHdð Þ þ ΔHiX
ΔSdð Þ þ ΔSi þ ΔSself þ R� lnCT=b

þ 16:6� log Naþ½ � ð3Þ

To limit self-hybridization potential, palindromic con-
tent, measured as the maximal proportion of inverted
repeat (IR), could be controlled via a user-specified
threshold. Interestingly, unlike in [25], where the author
claimed that palindromic sequences are more unique in



Table 2 Summary of MUS coverage ratio and average
length (in bp) of Agilent ChIP-on-Chip Set probes

Min. 1st Qu. Median Mean 3rd Qu. Max.

Cmus 0.23 0.96 0.97 0.97 0.98 1

mean(Lmus) 13.26 16.91 17.32 17.33 17.76 30
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the genome, we observed an opposing relationship
between palindromes and uniqueness (in Figure 4):
Agilent's catalog probes with higher palindromic content
tended to have lower mean uniqueness scores, which
caused a left-shifting of their distributions when using
a high palindrome cutoff. Small yet significant correla-
tions could also be detected for both uniqueness scores
[U, -0.0736428 (p<2.2e-16); Up, -0.1050423 (p<2.2e-16)]
and BLAT hits [0.00209 (p=3.578e-07)] with palindromic
content. However, the distribution of BLAT scores is ex-
tremely left-tilted, since most probes are aligned only
once, therefore, despite supporting our findings, the cor-
relation test may not be valid.
Repetitive regions, as one major source of cross-

hybridization, account for a large proportion of mamma-
lian genomes like human and pig. The most commonly
adopted approach to handle repetitive regions is to
exclude those using tools like RepeatMasker (http://
repeatmasker.org) or Window Masker [32]. However,
evidence suggests a role for repetitive DNA in gene
conversion; therefore not all repeats are “junk” [33].
Tandem repeats have also been shown to be asso-
ciated with regulation of transcription factor binding
[34,35] and various disease forms including cancer
[36,37]. Thus, when the uniqueness score is used to
control cross-hybridization, regions, that were masked
as repetitive but had a high uniqueness score, could
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Figure 2 Back-to-back box-plot. Back-to-back box-plot of original
uniqueness score (U, left) and the penalized uniqueness score (Up, right)
distribution within different BLAT hits groups (1, aligned to 1 position;
2, aligned to 2 positions; ≥3, aligned to at least 3 positions).
still be included. Therefore it is suggested that, as an
optional but recommended preprocessing step, target
regions of the genome could be masked with the
aforementioned tools. Further, a parameter controlling
the proportion of repetitive masked regions on the candi-
date probe is available, allowing for either full exclusion
of repetitive regions or partial inclusion of a specified
proportion. Back-mapping Agilent chip targets to the
reference sequence also suggests inclusion of repetitive
sequence, with 411292 probes having a repetitive propor-
tion greater than zero, and 199471 probes being com-
pletely masked as repetitive.

Probe selection algorithm
Tiling arrays can be designed in the most straightfor-
ward way, either using an end-to-end fashion or with a
fixed distance or overlap between neighboring tiles.
However, these simple strategies will easily encounter
problems like cross-hybridization and low hybridization
potential, problems that would eventually contaminate
the data. Also, instead of having a high coverage up to
100% initially, the number of probes with valid signals
could fall significantly in the end. To gain more control
of the expected quality while giving better resolution
and coverage, we present the following design strategy
and pipeline.
The algorithm searches for candidate probes in an in-

tuitive growing fashion, from the 5' of the sequence to
the 3' end. In general, we attempted to make neighbor-
ing probes having a fixed size of overlap, if the targeted
probe satisfies the user-specified constraints. Otherwise,
the adjacent positions overlapping with 1 nt more or less
would be tested, and the search would keep shifting until
the next valid probe is found or the boundary of the
genomic region is reached. Pseudo code of the detailed
selection mechanism is shown in the algorithm (section
“Pseudo code of the probe selection algorithm”. An
evenly-spaced, non-overlapping tiling path can be
achieved by specifying a negative value for the overlap
size. Another separate option of flexible probe length
can be combined with the overlapping option to com-
pensate for coverage in regions where fixed-length
probes cannot be placed. Strand-specific design is also
possible; if both strands are present on the same array,
offsets between reverse compliment tiles on the two
strands are determined internally.

Pseudo code of the probe selection algorithm

start from the 5’

while still enough space to place a probe
if probe temperature is too high
if all position to the 5' has been checked

http://repeatmasker.org
http://repeatmasker.org
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jump to last checked position to 3’, shift 1 nt to
3' and re-check

else if probe length can be shorter
probe length minus 1 and re-check

else if it is ok to shift to 5’
shift 1 nt to 5' and re-check

else if probe temperature is too low or not unique
enough
if all possible positions to the 5' has been checked
jump to last checked position to 3’, shift 1 nt to
3' and re-check

else if probe length can be shorter and ok to shift
to 5’
probe length plus 1, shift 1 nt to 5' and re-check

else if it is ok to shift to 5’
shift 1 nt to 5' and re-check

if other remaining checks failed
if all position to the 5' has been checked
jump to last checked position to 3’, shift 1 nt to
3' and re-check

else if probe length can be shorter and ok to shift
to 5’
probe length plus 1, shift 1 nt to 5' and re-check

else if it is ok to shift to 5’
shift 1 nt to 5' and re-check

tile found
move to next candidate position

end loop

Design comparison
For the Agilent catalog array set, we evaluated all the
probes based on our design parameters, figures of all
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Figure 3 Receiver operating characteristic curve. ROC curves of using o
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parameters' distribution could be found in the
Additional file 1. In general, the catalog probes show
similar hybridization efficiency, with an inter quartile
range of melting temperature from 67.98 to 73.08, low
cross hybridization potential, with an average uniqueness
score of 23.06 (median 24) and penalized uniqueness
score of 9.412 (median 9.53), and limited self-hybridization
potential, having a mean palindromic content of 22.39%
(median 20%). To address the coverage and resolution
of our design, we chose the whole human chromosome
22 (GenBank:NC_000022.10) as the target region, and
detail settings could be found in method.
With our implementation, it took around 2 hours on a

3.0 Ghz single core PC to finish the process. In Table 3,
we summarize the Agilent catalog design and our cus-
tom designs, showing that our flexible strategy could
achieve higher coverage with fewer and, on average,
longer probes. The coverage was assessed using two
types of measurement, the raw non-redundant bases
covered (ambiguous base 'N' adjusted) and the total
length of unit-sized (1000 bp) windows in which at least
one probe was placed.

Uniqueness of palindromic sequence
To investigate further the relationship between sequence
uniqueness and palindromic content, we utilized data
from a separate experiment in which we used our imple-
mentation to design tiling arrays for several chromo-
some regions of the pig genome. For one of them, on
Sus Scrofa chromosome 14 (GenBank:NC_010456.3)
from 74377028 bp to 78176022 bp, we built the profile
of all design parameters for all possible 60-mer probes
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Figure 4 Palindromic content and uniqueness scores of Agilent ChIP-on-Chip Set. Distributions of the original uniqueness score (U, left)
and penalized uniqueness score (Up, right) of the Agilent Human Whole Genome ChIP-on-Chip Set 244K (1 to25) probes, using different level of
palindromic content as cutoff.
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in the indicated region. In total 3328358 candidates were
evaluated.
For the two uniqueness scores (Figure 5), unlike for the

Agilent catalog array, their distributions were far from
normal, both having a peak at zero and a flat, uniform
interval followed by a narrow, bell-shaped region. This
“twin-peak” distribution makes any formal statistical tests
infeasible. However, by thresholding on palindromic con-
tent, we determined the density of uniqueness scores for
candidates with palindromic content higher than the cut-
off; in this way, we directly visualized sequences with
higher palindromic content which are subject to removal
in the probe selection process. When using a higher cut-
off the trend of differences resembles that observed for
the Agilent chip: the density curves tilt left, with both
peaks shrinking and the saddle region raising. In particu-
lar, the proportion of sequences with close to 0
Table 3 Design summary and coverage comparison

Probe
no.

Probe
length‡

Inter probe
distance‡

Base
coverage

Window
coverage

Agilent* 73373 53/52.85 202/426 11.11% 51.25%

-o −250† 75036 60/57.16 246/411.9 12.29% 53.60%

-o −275 72087 60/57.11 269/431.1 11.80% 53.66%

-o −300 69491 60/57.02 292/449.4 11.35% 53.74%

-o −325 67074 60/56.92 313/467.7 10.94% 53.81%

* Agilent Human Whole Genome ChIP-on-Chip Set 244K (Chromosome 22 only).
† Overlapping size set to −250, probe length range [45, 60], Tm range [69, 74], Up

range [9, Inf), palindromic content range [0, 30%], GC content range [30%, 50%].
‡ Table cell is formatted as median/mean.
¶ Using the length of all unit-sized (1000 bp) windows in which at least one
probe was placed.
uniqueness score remained large in the high-palindrome
group (>60%), yet the high uniqueness peak vanished.
Finally, we further filtered out candidates violating

those probe selection parameters used in the design,
which include a narrow band of melting temperature
(69°C≤Tm≤74°C), moderate GC content (30%≤GC≤50%),
no base exceeding 60%, and no single and di-nucleotide
repeats exceeding the thresholds of 6 and 4 respectively.
After filtering, a similar pattern persists, yet is not so
pronounced, suggesting that the filtering removed more
candidates with low uniqueness scores. One particular fea-
ture is that the candidates with high palindrome (>60%)
and 0 uniqueness scores were removed by filtering.

Benchmarking of public array data
We further used our penalized uniqueness score to
evaluate array data from public repository. We choose
one popular platform from Agilent, human whole-
genome expression array 4x44K (ArrayExpress: A-AGIL-
28), which contains 41000 unique probes. We randomly
selected from this platform 14 single color array datasets
all having proper replicate (at least 2) for each factor
level. Probes are scored using our penalized uniqueness
score. For each experiment, like running a practical
microarray analysis we performed pre-processing and fil-
tering, details could be found in method. In the end, we
derived summary statistics of the penalized uniqueness
score for filtered probes (Table 4), which are over-
saturated or outlying and thus could be related to cross-
hybridization. For the analyzed experiments, the number
of probe filtered varies from 1 to 458. Interestingly, for
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Figure 5 Palindromic content and uniqueness scores of experimental data. Distributions of the original uniqueness score (upper-left) and
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all except one experiment (E-GEOD-35635), those fil-
tered probes exhibit lower average Up score and thus are
less unique according to our measurement. To achieve
statistical power of 0.9 when using a two sided t-test to
detect a mean difference of 0.5 with a standard deviation
of 1 would require at least 85 observations in each sam-
ple. Therefore, we only perform t-test for those experi-
ments which has more than 85 probes filtered out. In all
three experiments significantly lower uniqueness scores
are detected for those filtered probes.

Discussion
The probe selection algorithm implemented in this study
utilizes the proposed penalized uniqueness score as a
controlling criterion of cross-hybridization, together
with several other parameters for the flexible tweaking



Table 4 ArrayExpress experiments summary and penalized uniqueness score comparison

E-GEOD-ID Array
no.

Factor
level

Filtered
probe no.

Filtered probe
mean/median

Filtered probe
std. dev.

Normal probe
mean/median

t-test
p-value

22072 5 2 18 9.306/8.798 3.235 9.131/10.04 NA

23131 31 3 61 8.735/9.796 3.492 9.132/10.04 NA

23558 32 2 136 4.784/3.503 4.246 9.146/10.05 2.2E-16

23697 70 2 1 0/0 NA 9.131/10.04 NA

24536 52 5 11 7.508/9.957 4.973 9.132/10.04 NA

25623 32 3 1 4.655/4.655 NA 9.131/10.04 NA

27915 20 5 6 9.633/9.899 2.824 9.131/10.04 NA

29288 132 9 9 8.641/9.957 3.965 9.131/10.04 NA

32155 21 7 23 8.48/9.613 3.642 9.132/10.04 NA

32988 48 10 145 6.618/8.636 4.383 9.14/10.04 1.34E-10

33264 49 16 31 9.428/9.957 2.76 9.131/10.04 NA

35635 57 3 1 12.79/12.79 NA 9.131/10.04 NA

35756 32 8 458 4.229/3.396 3.876 9.187/10.04 2.2E-16

37827 87 29 32 9.078/9.701 2.837 9.131/10.04 NA
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of the positional distribution, optimal hybridization
efficiency, and essential constraints of sequence com-
plexity. Profiling Agilent’s catalog probes confirms the
appropriateness of our parameter settings. The intention
of the algorithm is to allow a part of the probe to over-
lap with its neighboring tiles, giving higher coverage and
resolution for experiments, like a targeted sequencing li-
brary preparation. However, it can also be used to design
CHIP-chip experiments, which require distantly-spaced
probes across large genomic regions. To achieve this,
the selection algorithm behaves slightly differently when
a negative overlap is specified, and it will not attempt to
shift to the 5', if that would induce overlapping. Studies
have shown that sequence polymorphisms may affect
probe hybridization efficiency [38-40]. Thus common
SNPs defined in databases, like dbSNP, could be
excluded in the input FASTA files by cutting the region
into two new regions, or SNP could be masked with
lowercase letters and controlled like repetitive regions.
The design is done on a per-sequence basis thus the

memory requirement of the implementation depends on
the largest sequence contig in question. For each se-
quence header defined in the source FASTA files, to cal-
culate the uniqueness score all corresponding MUP
entries in the prefix file have to be imported and pro-
cessed in RAM; each entry will need two integers for the
position and the length of the prefix, respectively, to be
stored in the array. This in turn suggests that for large
genome tiling design - e.g., when covering a whole mam-
malian chromosome, which could have a length of
3×108 bp, - storing only the prefix array will take about
9 GB of memory on a 64-bit machine. Additionally, the
algorithm runs in linear time with various parameters
affecting the exact time expectation. Yet further
parallelization is easily available either on a per-sequence
basis given sufficient memory or on a per-chunk basis,
since, in our implementation, the individual sequence is
initially pieced into segments with continuous non-
ambiguous bases and sequentially processed. Simple per-
chunk test utilizing 4 parallel processes further reduced
the running time to approximately 45 min for the same
designing task that is presented in the comparison section.
Compared to traditional BLAST-like alignment meth-

ods, our definition of the penalized uniqueness score
makes less parametric model assumptions for the hom-
ologous estimation, letting it be more sequence-driven
and less sensitive to arbitrary parameter settings. The
calculation of the score makes usage of GenomeTools
(http://genometools.org/), which is memory relaxed, and
inherently benefit from the computational efficiency of
the FM-index [41]. As a rational variable, it provides a
more continuous distribution and a wider dynamic
range for the uniqueness measurement without further
increase in the computational complexity, while showing
higher sensitivity and specificity over the original count
score, which only takes discrete integers ranging from 0
to the user specified maximal length of MUP. The score
itself, like the original count score, measures the degree
of uniqueness and dissimilarity of the sequence to the
rest of the genome, which means the lower the score the
higher possibility for non-specific binding. Thus, it could
be further factored in the background correction model
or at the normalization step prior to the downstream
array data analysis, to correct for cross-hybridization
noises using the uniqueness score. Such a correction
model could take the typical form as the exponential-

http://genometools.org/
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normal convolution model in RMA algorithm [42,43],
by adding an additional term for non-specific binding
noise.
Concerning palindrome sequences, which play an im-

portant structural role in the biogenesis of microRNA
[44-46] and also have other functional characteristics
like acting as restriction enzyme sites [47], our results
suggest that with higher palindromic content the se-
quence tends to have a lower uniqueness score, contrary
to what has been previously claimed in [25]. Aside from
nucleotide sequence, Sheari et al. studied the palindrome
in protein sequence using a linguistic measurement, in
which they also related palindromes with low sequence
complexity [48]. Under our uniqueness measurement,
lower complexity normally leads to fewer and longer MUS
in the region, resulting in a lower penalized uniqueness
score. Our experimental observations could also be
explained in plain theory, since a highly palindromic se-
quence will share a large identical segment with its reverse
complement strand; thus there should be fewer unique
substrings found in such regions.

Conclusions
In this study, we defined the penalized uniqueness score,
which could serve as a better measurement for sequence
heterogeneity, showing higher sensitivity and specificity.
The efficient and flexible tiling probe selection algorithm
we implemented could assist in the design of various
types and scales of genome tiling task, with high cover-
age and resolution, while giving more control of the
expected hybridization efficiency. Using Agilent's catalog
array and experimental data, our in silico analysis
revealed that palindromic sequence exhibiting relatively
lower uniqueness (measured by uniqueness scores). Re-
analyzing public array data further provided support of
using the penalized uniqueness score to discriminate
non-specific probes for microarray data analysis.

Methods
Validation data and method
We fetched the Agilent catalog array Human Whole Gen-
ome ChIP-on-Chip Set 244K (1 to 25, available through
Agilent’s eArray), which in total contains 5930500 probes
spanning the whole human genome (hg19:GRCh37). All
probes were processed for the two uniqueness scores, and
BLAT was used to find hybridization-quality alignments,
which is defined as having at most one gap, at least 60%
identity of the probe length, and gap length or mismatched
bases not more than 3. Such alignments are considered to
be hybridized well, thus the number of qualified alignment
could be used as an indicator for cross hybridization po-
tential. According to the chromosomal coordinates pro-
vided in the GEO files shipped together, probes were back-
mapped to the same version of RepeatMasker-masked
genome sequence (hg19:GRCh37). Proportion of masked
bases was calculated for each mapped probe.
Receiver operating characteristic curve
To access directly the relative performance of the two
scores, receiver operating characteristic curve (ROC) was
adopted measuring the trade-off between sensitivity and
specificity. To construct the curve, we used a series of
values ranging from the minimum to the maximum of the
uniqueness score as cutoffs to predict whether the probe
has only one hybridization-quality alignment or more. If
the probe has a uniqueness score higher than the cutoff,
then it is classified as positive and estimated to have only
one quality alignment, and negative otherwise. Sensitivity
is defined as the true positive rate, which is the number of
probes identified as positive and indeed having only one
quality alignment divided by the number of probes with
an alignment score equaled to one. Specificity is defined
as 1 minus the false positive rate, which is the number of
probes identified as positive but having more than one
quality alignment divided by the number of probes actu-
ally having one quality alignment.
Design comparison setup
To address the coverage and resolution of our design,
we chose human chromosome 22 (GenBank:NC_
000022.10) as the target region, and the reference gen-
ome sequence was downloaded from the NCBI archive.
Knowing that, for experiments like CHIP-chip, the
sheared chromatin fragment is generally around 500bp
[49], using short oligonucleotides (< 100-mer) makes it
more cost-efficient to choose an optimal distance be-
tween tiles than to solely increase the number of probes
and the tiling density. To compare with Agilent's catalog
design, we analyzed the distribution of the distance be-
tween neighboring tiles in the catalog array, and we
found a median of 202 nt and mean of 426 nt. The
probe length also varied, ranging from 45-mer to 60-mer
(median 53; mean 52.85). With our implementation, we
tested several overlapping sizes (from −325 nt to −250
nt) to make the overall probe number close to the Agi-
lent catalog design. The minimal probe length was set to
45-mer, while initial probe length always starts at 60-
mer. For Tm, in [25] they used the simple GC model
[50] and tested two ranges of temperatures, 73–76°C
and 77–80°C, which in turn correspond to a GC content
range of around 30-50% for a 50-mer oligo. In contrast,
by considering the Tm distribution in the Agilent catalog
array (see Additional file 1), we empirically selected a
Tm range of 69–74°C for the nearest neighbor model
and combined it with a controlled GC content range of
30-50% as our criteria for optimal hybridization effi-
ciency. For cross-hybridization control, we used a
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penalized uniqueness score of 9 as the empirical cutoff.
A threshold of 30% for palindrome was used, while all
other parameters were kept as the following: no base
proportion higher than 60%, single nucleotide repeats
not exceeding 6 and not having more than 4 di-
nucleotide repeats.

Pre-processing and filtering of public array data
For the preprocessing and filtering of the ArrayExpress
datasets, we used Bioconductor [51] package Agi4x44Pre-
Process. Experimental designs were derived according to
individual experiment description. Procedural and para-
metric settings of background-correction, normalization,
and filtering were set to default and common to all experi-
ments. The filtering in this package is done sequentially:
first, control probes are filtered; then probes with signal
not well above the local background are filtered; the third
criterion is by the Agilent's FeatureExtraction flag
'gIsFound'; for the next step, probes with signal not well
above the negative controls are filtered. So far, the
remaining probes all have detectable and valid signal. In
the next stage, over-saturated probes are removed, which
could be linked to severe cross-hybridization or possible
contamination to the slide; In the end, population outliers
and non-uniform outliers are filtered, which could also be
related to cross-hybridization or other variations in
experimental conditions. In this work, we considered
probes filtered out in the last 2 stages as potential victims
of cross-hybridization and had them further investigated
for uniqueness.

Data analysis
The tiling probe selection algorithm and penalized
uniqueness score computation were implemented as a
Perl program. MUP was calculated using GenomeTools
(http://genometools.org/). All analysis and visualization
were performed using R [52] unless otherwise stated.
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