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Abstract

Background: High throughput ’omics’ experiments are usually designed to compare changes observed between
different conditions (or interventions) and to identify biomarkers capable of characterizing each condition. We
consider the complex structure of repeated measurements from different assays where different conditions are
applied on the same subjects.

Results: We propose a two-step analysis combining a multilevel approach and a multivariate approach to reveal
separately the effects of conditions within subjects from the biological variation between subjects. The approach is
extended to two-factor designs and to the integration of two matched data sets. It allows internal variable selection to
highlight genes able to discriminate the net condition effect within subjects. A simulation study was performed to
demonstrate the good performance of the multilevel multivariate approach compared to a classical multivariate
method. The multilevel multivariate approach outperformed the classical multivariate approach with respect to the
classification error rate and the selection of relevant genes. The approach was applied to an HIV-vaccine trial
evaluating the response with gene expression and cytokine secretion. The discriminant multilevel analysis selected a
relevant subset of genes while the integrative multilevel analysis highlighted clusters of genes and cytokines that
were highly correlated across the samples.

Conclusions: Our combined multilevel multivariate approach may help in finding signatures of vaccine effect and
allows for a better understanding of immunological mechanisms activated by the intervention. The integrative
analysis revealed clusters of genes, that were associated with cytokine secretion. These clusters can be seen as gene
signatures to predict future cytokine response. The approach is implemented in the R package mixOmics
(http://cran.r-project.org/) with associated tutorials to perform the analysisa.

Background
Recent advances in high throughput ‘omics’ technolo-
gies enable quantitative measurements of expression or
abundance of biological molecules in a whole biological
system. Various popular omics platforms in systems biol-
ogy include transcriptomics, proteomics, cytomics and
metabolomics. These experiments are usually designed to
compare changes observed between different conditions
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or groups and are often used to identify biomarkers capa-
ble of characterising pathological states or response to
treatment.
The decreasing costs of these high-throughput plat-

forms now enable repeated measures experiments on the
same individuals or biological samples. Such experiments
allow a substantial gain in information. For instance, lon-
gitudinal designs are more powerful as they reduce the
noise due to inter individual variability, as long as the
correlation between repeated observations is taken into
account. There exists an abundant literature on the anal-
ysis of repeated measurements of omics data [1,2]. In
this context, a common approach is to apply a univariate
mixed model on each gene followed by multiple test-
ing correction [3]. However, this approach disregards the
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dependency between genes, and due to the high dimen-
sionality of the data, numerous hypotheses tests must be
performed.
The mixed model approach has been used for the analy-

sis of one single data type (e.g. gene expression). However,
a growing number of high-throughput data are gener-
ated in standard clinical trials. For example, the evaluation
of HIV vaccine in phase I/II trials incorporates mea-
surements of counts of numerous types of cell, of the
production of intra and extracellular cytokines and of gene
expression [4]. The integration of such multi-layer infor-
mation can help unravel the complexities of a biological
system, as each functional level is hypothesized to be
related to each other [5]. However the integration of omics
data is a challenging task. Firstly, the large number of mea-
sured biological entities makes it very difficult to obtain
a good overview or understanding of the system under
study. Secondly, the small number of samples or patients
makes statistical inference difficult and argue for using the
maximum amount of available information. Thirdly, the
integration of heterogeneous data represents an analyti-
cal and numerical challenge when trying to find common
patterns in data from different origins.
In recent years, several multivariate approaches have

been proposed to combine two omics data, often in
an unsupervised framework. In contrast to univariate
repeated measures analysis, these linear multivariate
approaches take into account the dependency between
genes, are able to handle large and noisy data sets and do
not face computational issues in the high dimensional case
as matrix inversions are avoided. Most importantly in the
context of this study, they enable the integration of data
coming from different platforms and provide interpretable
visualisation tools. These approaches aim at selecting cor-
related biological entities from two [6-11] or more data
sets [12]. In particular, with sparse Partial Least Squares
(sPLS) we have shown that the integrative analysis of
large scale omics datasets could generate new knowledge
not accessible by the analysis of a single data type alone
[7,8]. The biological relevance of this approach has been
illustrated recently in some studies [13,14].
The flexibility and versatility of PLS also enable a

supervised framework through PLS-Discriminant Analy-
sis (PLS-DA [15]). A variant of which has recently been
proposed to select discriminative features that best sep-
arate the different conditions (sPLS-DA, [16]). sPLS-DA
was shown to give similar performances to classical clas-
sification methods such as Machine Learning approaches
and variants of Linear Discriminant Analysis and was
recently applied in a biological study [17].
In this paper, we consider a two-step approach to model

the correlation between repeated measurements while
taking advantage of the multivariate approaches. We first
propose to extract the within-sample variation [18-20]

before analysing this transformed data set using sPLS-
DA for a discriminant analysis or sPLS for an integrative
analysis.
Starting from the classical mixed-model, we present the

principle of a multilevel analysis to extract the within-
sample deviation of the data and we extend the approach
to a two-factor analysis. The within data set is then anal-
ysed with either sPLS-DA to select discriminative genes
between the groups of subjects on a single data set, or
with sPLS to select subsets of correlated variables from
two data sets. A simulation study is performed which
demonstrates the good performance of multilevel sPLS-
DA compared to a classical sPLS-DA. The approach is
then illustrated on an HIV vaccination study, where the
effect of a lipopeptide based vaccine was explored by mea-
suring before and after vaccination various components
of the immune response, including gene expression and
cytokine secretion. These repeated measurement were
made in several in vitro conditions on Peripheral Blood
Mononuclear Cells: ‘NS’ (no stimulation); HIV Gag pep-
tides ‘GAG+’ (peptides included in the vaccine), HIV Gag
peptides ‘GAG-’ (peptides not included in the vaccine)
and ‘LIPO5’ (all five peptides included in the vaccine).

Methods
Notations
Let X(N × p) and Z(N × q) represent two data matrices
(e.g. gene expression and cytokine secretion). We denote
by N the total number of samples (or rows) in the data,
and by n the number of experimental units (or unique
subjects), p (resp. q) is the total number of genes (resp.
cytokines), also called variables or predictors. The dummy
matrix Y (N × G) indicates the group/treatment of the
samples, with G the total number of groups.

Multilevel approach
We first present the mixed-effect model as a pedagogi-
cal tool and then introduce the concept of the multilevel
approach based on the “split-up” variation. Despite the
fact that some similarities exist between the mixed-effect
model and the multilevel “split-up” variation approach, we
emphasize that the latter is performed completely inde-
pendently from the estimation of the mixed-effect model.
Moreover, the mixed model relies on certain assumptions
(such as Gaussian distribution of random effects) that the
split-up variation approach does not require.

Mixed-effectmodel
Let Xk

sj be the gene expression of a given gene k for subject
s with stimulation j. In this context, the mixed model is
defined by:

Xk
sj = μk

j + πk
s + εksj, s = 1, . . . , n, j = 1, . . . ,Gs

= μk·· + αk
j + πk

s + εksj



Liquet et al. BMC Bioinformatics 2012, 13:325 Page 3 of 14
http://www.biomedcentral.com/1471-2105/13/325

where for a given gene k, μk
j measures the fixed effect

of stimulation j, which can be further decomposed into
μk··, the overall mean stimulation effect, plus αk

j which is
the differential effect for stimulation j. The πk

s are inde-
pendent random variables following a normal distribu-
tion N (0, σ 2

π ,k), which take into account the dependency
between the repeated measures made on the same subject
s, the residuals εksj are independent random variables fol-
lowing a N (0, σ 2

ε,k) distribution. Note that the number of
stimulation for each subject (Gs) may differ. However, for
each subject s we observe no more than one observation
for each stimulation j, thus the subject effect interac-
tions with the stimulation factor are confounded with the
residuals. We also assume that πk

s and εksj are independent.
This model is known also as the one-way unbalanced

random-effects ANOVA. A simple approach for identi-
fying differentially expressed (DE) genes in this model is
to test the stimulation effect for each gene and apply a
multiple testing correction (FDR from [21] set to 5%). Fol-
lowing this global test, pairwise comparison can then be
applied between two stimulations, followed by multiple
correction (e.g. FDR, 5%). Some limitations of this stan-
dard approach are discussed in the Results and discussion
Section. The main advantage of the mixed model is the
introduction of the random element πk

s , which is specific
to the subject s and represents the between-subject devi-
ation. In the same spirit, the multilevel approach based
on the split-up variation focusses on separating the dif-
ferent sources of variation: the within-subject deviation
(“variation”) and the between-subject deviation.

Split-up variation
As suggested by Westerhuis et al. [19] in the mixed model
framework, the observation xksj can be decomposed into:

xksj = xk··︸︷︷︸
offset

+ (xks· − xk··)︸ ︷︷ ︸
between-subject deviation

+ (xksj − xks·)︸ ︷︷ ︸
within-subject deviation

(1)

where xk·· = 1
N

Gs∑
j=1

n∑
s=1

xksj and xks· = 1
Gs

Gs∑
j=1

xksj. The off-

set term xk·· is an estimation of μk··, the between-subject
deviation is an estimation of πk

s and the within-subject
deviation is an estimation of αk

j + εksj and can be further
decomposed as:

(xksj − xks·)︸ ︷︷ ︸
within-subject deviation

= (xk·j − xk··)︸ ︷︷ ︸
Stimulation effect

+ (xksj − xks· − xk·j + xk··)︸ ︷︷ ︸
residual

where xk·j = 1
nj

∑nj
s=1 x

k
sj, with nj the number of sub-

ject undergoing stimulation j. Therefore, a part of the

within-subject deviation is explained by the stimulation
effect.
Let X be the (N × p) gene expression matrix on s =

1, . . . , n subjects with Gs stimulations (in the balanced
case N = n × G, otherwise N = ∑n

s=1Gs). According to
equation (1):

X = X ··︸︷︷︸
offset term

+ Xb︸︷︷︸
between-subject deviation

+ Xw︸︷︷︸
within-subject deviation

The matrix X ·· represents the offset term defined as
1NxT·· , where 1N is the (N ×1) matrix containing ones and
xT·· = (x1··, . . . , x

p··);Xb is the between-subject matrix of size
(N × p) defined by concatenating 1GsxTbs for each subject
into Xb with xTbs = (x1s· − x1··, . . . , x

p
s· − xp··); Xw = X − Xs·

is the within-subject matrix of size (N × p), with Xs· the
matrix defined by concatenating the matrices 1GsxTs· for
each subject into Xs·, with xTs· = (x1s·, . . . , x

p
s·).

Similarly to the Analysis of Variance, it is easy to show
that the sum of squares can be separated into three parts:

||X||2 = ||X ··||2 + ||Xb||2 + ||Xw||2, (2)

where ||X||2 = trace(XTX). Equation (2) can be used
to evaluate the magnitude of the different sources of
variation.
The mixed-model described earlier can provide an anal-

ysis for repeated measurements data in an unbalanced
design. It can be viewed as an extension of a paired t-test
to test the differences between paired observations. How-
ever, to tackle some of the previously mentioned limita-
tions of the approach, we propose to combine a multilevel
approach and a multivariate approach as an interesting
alternative. Indeed, the multilevel step splits the differ-
ent parts of the variation while taking into account the
repeated measurements on each subject. Since the stim-
ulation effect from each subject can be separated from
the between subject deviation (variation), it is possible to
examine the differences in stimulation effect within the
subjects in a much easier way than without the separation
of the difference sources of variation [19]. Westerhuis et.
al (2010) provided the rationale and showed the benefit
of the multilevel approach in the analysis of multivari-
ate paired (cross-over) data. In this paper where we aim
at identifying genes discriminating the different stimula-
tions, we propose to apply a multivariate approach on the
within matrix Xw which includes the stimulation effect,
in the same spirit as in [18-20]. This approach is more
powerful, as it takes into account not only the depen-
dency between genes via the multivariate approach, but
also the repeated measures between individuals and the
stimulation effects via Xw.



Liquet et al. BMC Bioinformatics 2012, 13:325 Page 4 of 14
http://www.biomedcentral.com/1471-2105/13/325

Extendedmethod for two factors
We propose to extend this approach for data with two
factors: the time (‘before’ and ‘after’ vaccination), in addi-
tion to the stimulation factor. Let Xk

sjt be the expres-
sion of a given gene k for subject s with stimulation
j at time t = 1, 2. In this context, the mixed model
is defined as:

⎧⎨
⎩
Xk
sjt = μk

jt + πk
s + (απ)ksj + (βπ)kst + εksjt ,

μk
jt = μk··· + αk

j + βk
t + (αβ)kjt ,

where for a given gene k, μk·· is the gene population mean
(offset term); αk

j measures the fixed effect of stimula-
tion j; βk

t measures the fixed effect of time t; (αβ)kjt is
the interaction effect between the stimulation j and the
time t; πk

s ∼ N(0, σ 2
πk

) is the random subject effect;
(απ)ksj ∼ N(0, σ 2

απk
) measures the random interac-

tion effect between the subject s and the stimulation j;
(βπ)kst ∼ N(0, σ 2

βπk
) measures the random interaction

effect between the subject s and the time t; the residu-
als εsjt ∼ N(0, σ 2

εk
) and the variables πk

s , εksjt , (απ)ksj and
(βπ)kst are assumed to be independent. In the context of
our application, the potential subject interactions effect
with the stimulation and the time effect are confounded
with the residuals terms since only one observation is
available per subject for each level of both time and
stimulation factors.
According to the mixed model, we have:

xksjt = xk···︸︷︷︸
offset term

+ (xks·· − xk···)︸ ︷︷ ︸
between-subject deviation

+ (xksjt − xks··)︸ ︷︷ ︸
within-subject deviation

where the within-subject deviation can be further decom-
posed as:

(xksjt − xks··) = (xk·j· − xk···)︸ ︷︷ ︸
Stimulation effect

+ (xk··t − xk···)︸ ︷︷ ︸
Time effect

+ (xk·jt − xk·j· − xk··t + xk···)︸ ︷︷ ︸
interaction effect

+ (xksj· − xk·j· − xks·· + xk···)︸ ︷︷ ︸
random inter: subject × Stimulation

+ (xks·i − xk··t − xks·· + xk···)︸ ︷︷ ︸
random inter: subject × Time

+ (xksjt − xk·jt − xksj· − xks·t + xk·j· + xk··t + xks·· − xk···)︸ ︷︷ ︸
Residual

The matrix representation gives:

Xw︸︷︷︸
within-subject deviation

= XStimulation + XTime + XStimulation×Time + XResidual︸ ︷︷ ︸
Xw∗

+ Xsubject×Stimulation + Xsubject×Time︸ ︷︷ ︸
random interaction

Similar to the one-factor decomposition, the multivari-
ate approach will be applied on the within matrix Xw∗ ,
which includes stimulation, time and interaction effects.

Discriminant analysis of one data set
Once the multilevel approach has been applied to split
up the variation in the data, a variant of the multivariate
approach PLS Discriminant Analysis (called sparse PLS-
DA) is applied on the within matrix Xw or Xw∗ in order to
select discriminative genes between the groups of subjects
on a single data set.

Sparse PLS-DA
Linear Discriminant Analysis (LDA) and Partial Least
Squares Discriminant Analysis (PLS-DA, [15]) are
exploratory approaches seeking the optimal linear com-
binations of variables (genes) which best separate the
sample groups. PLS-DA has been found to be a promising
alternative to LDA since the latter faces numerical limita-
tions when dealing with too many correlated predictors.
Let X(N × p) be the within predictor matrix (to improve
readability, the subscript w is removed) and Y (N × G)

the response dummy matrix indicating the group of
each sample. In PLS-DA, X is column standardized. The
PLS-DA objective function to solve can be written as [15]:

max
u

cor(Y ,Xu)var(Xu), (3)

where we denote by ξ = Xu the discriminant direc-
tion vector, which is a linear combination of the original
variables. The vector u is the associated loading vector
indicating the weights of each variable in the linear com-
bination ξ . Once step (3) has been performed and the first
weight vector u1 has been extracted, both matrices Y and
X are deflated such that the following loading vector u2 is
orthogonal to the previous one. PLS-DA therefore outputs
a set of loading weight vectors u1,u2, . . . ,uH and associ-
ated discriminant direction vectors ξ1, ξ2, . . . , ξH , where
H is the number of PLS-DA dimensions (or deflations).
The sparse version proposed by Lê Cao et al. [16] uses

the Lagrange form of PLS-DA to include a L1 constraint
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on u in order to ensure that some uj will be estimated
as exactly zero (j = 1, . . . , p). Thus, these corresponding
variables will not contribute to the discriminant direction.
sPLS-DA therefore allows variable selection for choosing
the variables that best discriminate/separate the sample
groups.

Parameters tuning
Two parameters need to be tuned in sPLS-DA: the num-
ber of discriminant vectorsH and the number of variables
to select on each dimension (PLS component). Lê Cao
et al. [16] showed that for most cases, the user could
effectively set H = G − 1. The number of variables to
select is, however, a challenging issue as tuning criteria
are often limited by the very small number of samples. In
this study, we considered two criteria to guide the choice
of this parameter, both of them are applied sequentially,
dimension per dimension.
Tuning criterion 1. One option is to use cross-validation

to choose the optimal number of selected variables in
order to avoid selection bias [22]. After this step, the full
data are analyzed given this tuned parameter. We pro-
pose to estimate the generalization error rate using k
fold cross-validation. In the case of a very small sample
size (< 15 subjects), the leave-one-out cross-validation
(denoted “loo”) can be used instead. In the specific con-
text of repeated measures and in order to respect the data
structure, the training set is composed of the measure-
ments on all experimental units except the measurements
on one subject s which defines the test set denoted Xtest

w,s .
The test set prediction is defined by Y test = Xtest

w,s β , where
β is the regression coefficient matrix from sPLS-DA (see
[16] for more details). The process is repeated for each
subject and the classification error rate is averaged across
all subjects. This process is tested for each number of
variables to select (see Additional file 1: Figure S3 and
Figure S6), and the “optimal” number of variables is then
determined when the lowest error rate is obtained.
Tuning criterion 2. In the case where the number of sub-

jects is too small, an ad-hoc alternative approach was used
on the whole data set by computing cor(Y ,Xu)var(Xu)

for each deflated matrix and with respect to the number
of selected variables. This is similar to that proposed by
Waaijenborg et al. [10] and Parkhomenko et al. [9]. The
number of variables selected is chosen to maximize the
criterion value.

Integrative analysis of two data sets
Similarly to the PLS-DA analysis, a more general PLSmul-
tivariate approach can be applied on the matching within
matrices Xw (or Xw∗ ) and Zw (or Zw∗ ). For this analysis
however, the aim is to integrate two data sets in a non-
supervised manner and select correlated variables from
both data sets across the subjects.

Sparse PLS
Partial Least Square regression (PLS, [23]) is in fact the
ancestor of PLS-DA and is applied in a non supervised
context, where X(N × p) and Z(N × q) are two contin-
uous within matrices of two different types of predictors
(e.g. gene expression and cytokine secretion). In PLS, both
X and Z are column standardized. To improve readabil-
ity, the subscript w is removed from both these matrices.
PLS relates X and Z by a linear multivariate model, while
also modelling the structure of X and Z. PLS is particu-
larly useful for analysing noisy, collinear, even incomplete,
high dimensional data, see [24] for a review.
PLS performs successive decompositions of X and Z into
new variables (component scores) denoted by (ξ1, . . . , ξH)

for the X-scores and (ω1, . . . ,ωH) for the Z-scores. These
scores should be few in number (H small), orthogonal
to each other within each data set, and estimated as lin-
ear combinations of the original variables from X and Z
with their weights coefficients indicated in the associated
loading vectors uh and vh (h = 1, . . . ,H) respectively. In
matrix representation, we have X = �CT + E, Z =
�DT + F , where E and F are the residual matrices, and
the column matrices in C and D are the coefficients from
the local regressions of the score vectors ξh (ωh) onto the
current deflated matrices defined as Xh = Xh−1 − ξhc′h
and Zh = Zh−1 − ωd′

h, where ch = XT
h−1ξh/ξ

′
hξh and

dh = YT
h−1ωh/ω

′
hωh.

PLS relates both matrices by maximising the covariance
between each pair of scores (ξh,ωh). The PLS objective
function is:

arg max‖uh‖=1,‖vh‖=1
cov(Xhuh,Zhvh) h = 1 . . .H . (4)

This PLS form is often referred to as “PLS2 mode A” in
the literature [25] where, similar to Canonical Correlation
Analysis, the aim is to model a ‘bidirectional’ relation-
ship between the two data sets (to maximise the common
information between the two data sets), as opposed to
a ‘unidirectional’ relationship when using a regression
model. The sparse version, sPLS, enables variable selec-
tion from both sets by including L1 penalizations on both
uh and vh simultaneously in (4), which is solved with
a Lagrangian form (see [7,8] for more details about the
methodology and the algorithm). The result is a subset of
correlated variables from both X and Z indicated in the
loading vectors (uh, vh) for each PLS dimension h, and a
set of score vectors (ξh,ωh) that are useful for graphical
representations.

Parameter tuning
As an extension to the tuning criterion 2 from the previous
section, and similar to what was proposed byWaaijenborg
et al. [10] and Parkhomenko et al. [9], the number of PLS
components and number of variables to select in each
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step can be tuned by computing cov(Xhuh,Zhvh), which
is the criterion maximized in sPLS2 mode A for each PLS
dimension h (see equation (4)). For an optimal number of
selected variables from both datasets, one would expect
this criterion to achieve also a maximum.

Results and discussion
We first present the results of a short simulation study
to show the importance of using a multilevel approach
in comparison to a standard sparse partial least square
analysis on the original data. We then apply the proposed
multilevel approach on an HIV-vaccination study.

Simulation study
Simulatedmodel
A simulation study based on the following mixed effects
model was performed:

Xk
sj = μk

j + πk
s + εksj, s = 1, . . . , 12, j = 1, . . . , 4,

with πk
s ∼ N(0, σ 2

πk
), εksj ∼ N(0, σ 2

εk
), where πk

s and
εksj are independent. From this model, 10 clusters of 100
genes each were generated (k = 1, . . . , 1000). For any
given pair of genes k1 and k2 in the same cluster, a pair-
wise correlation for Xk1

sj and Xk2
sj is specified by assuming

cor(πk1
s ,πk2

s ) = ρ and cor(εk1sj , ε
k2
sj ) = ρ, while genes

belonging to different clusters are taken to be uncorre-
lated. The random variables πk

s and εksj from same cluster
are generated from the multivariate normal distribution
(π

k1
s , . . . ,πk100

s ) ∼ N100(0100,�π) where the variance-
covariance matrix �π is a (100 × 100) matrix with σ 2

πk
along the diagonal and ρσ 2

πk
for the others terms; and from

the multivariate normal distribution (ε
k1
sj , . . . , ε

k100
sj ) ∼

N100(0100,�ε)where the variance-covariancematrix�ε is
a (100 × 100) matrix with σ 2

ε along the diagonal and ρσ 2
εk

for the others terms.
To mimic the application, clusters of genes discrimi-

nating 4 conditions were generated (the 4 stimulations
denoted LIPO5, GAG+, GAG- and NS) , where the
mean effect of each stimulation is specified by μk =
(μk

1,μ
k
2,μ

k
3,μ

k
4)

T , according to the following:

• 2 gene clusters discriminate (LIPO5, GAG+) versus
(GAG-, NS) with μk = (4, 4, 0, 0)T and
μk = (3, 3, 0, 0)T .

• 2 gene clusters discriminate LIPO5 versus GAG+,
while GAG+ and NS have the same effect:
μk = (5, 2, 0.2, 0.2)T and μk = (5, 2, 0, 0)T .

• 2 gene clusters discriminate GAG- versus NS, while
LIPO5 and GAG+ have the same effect:
μk = c(1, 1, 5, 2)T and μk = c(0, 0, 5, 2)T .

• the 4 remaining clusters represent noisy signal (no
stimulation effect): μk = c(0, 0, 0, 0)T and
μk = (0.5, 0.5, 0.5, 0.5)T .

The intra cluster correlation was either set to ρ = 0.7 or
0.8. Different values for σ 2

πk
and σ 2

εk
were studied, but for

the sake of conciseness the results are only presented for
σπk = 2 and σεk = 0.5.

Numerical results
From the simulated data, the within matrix was computed
and applied to multilevel sPLS-DA. Figure 1 displays the
sample representation for the first 3 axes or dimensions
for one simulation run.
Firstly, in order to highlight the benefit of the multi-

level approach in comparison to themultivariate approach
without the split-up variation step, a prespecified number
of genes was selected on each dimension in order to assess
the ability of each approach to select the true relevant
genes. As expected, 3 components (linear combinations of
200 genes) were sufficient to discriminate the effect of the
4 stimulations. Multilevel sPLS-DA (applied on the within
matrix) selected 92% of the true simulated discriminative
genes as compared to 75% of the true discriminative genes
for classical sPLS-DA (applied on the original matrix), see
Table 1. The hierarchical clustering of the genes selected
by sPLS-DA on the within matrix (Figure 2) confirmed
the discriminatory ability of these genes to separate the 4
groups of samples. As expected, a group of 6 gene clusters
can be observed. On the contrary, we did not observe such
clusters when applying sPLS-DA on the original matrix
(not shown).
Secondly, leave-one-out cross-validation was performed

on each simulation run to evaluate the error rate of clas-
sification of classical sPLS-DA or multilevel sPLS-DA
(Table 2). The classification error rate was evaluated for
different number of genes selected on each component.
For example, the average classification error rate formulti-
level sPLS-DA was of 0.009 for 200 genes selected on each
of the 3 axes compared to an error rate of 0.268 for the
same parameters with classical sPLS-DA.

Application to HIV vaccine evaluation
Description of the study
The data come from a trial evaluating a vaccine based
on HIV-1 lipopeptides in HIV-negative volunteers [26].
The vaccine (HIV-1 LIPO-5 ANRS vaccine) contains five
HIV-1 amino acid sequences coding for Gag, Pol and
Nef proteins. A subsample of 12 vaccinated participants
was randomly selected and experiments were performed
before and after vaccination. The data consist of moni-
tored cytokine secretion and gene expression measure-
ments from purified in vitro stimulated Peripheral Blood
Mononuclear Cells (PBMC). Cytokine secretion was anal-
ysed by cytokine multiplex (millipore) in the supernatant
of PBMC after 11-day-culture, and the data set consists
of 10 cytokines measurements (IFNγ , IL1β , IL2, IL5, IL6,
IL10, IL13, IL17, IL21, and TNFα). Gene expression was
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Figure 1 Simulation study. Sample representation from multilevel sPLS-DA. Samples were projected onto a subspace spanned by the first 3
sPLS-DA components, based on the 200 genes selected on each of the 3 components.

analysed using the Illumina HumanHT-12 v4 Expression
BeadChip on PBMC before (W0) and 14 weeks after vac-
cination (W14), 6 hours after in vitro stimulation by either
(1) all the peptides included in the vaccine (LIPO-5), or (2)
the Gag peptides included in the vaccine (GAG+) or (3)
the Gag peptides not included in the vaccine (GAG-) or
(4) without any stimulation (NS).

Preprocessing
Background correction, log2 transformation and quan-
tile normalisation were applied on the gene expression
data using the R limma package. Probes were further
prefiltered for each time point (before and after vaccina-
tion) using a P-value detection (<1% in all samples). The
preprocessed data set contained the expression of 25,109

probes for 12 subjects for 4 types of stimulation before
vaccination (W0) and the expression of 24,687 probes
after vaccination (W14). Some samples were not available
due to DNA quality issues, resulting in 44 samples at W0
and 42 samples at W14. For the multilevel approach with
two factors, the analysis was performed on the common
prefiltered probes before and after vaccination (21,350
probes in total).
The statistical analysis was performed on the probe

expression, but the results were biologically interpreted at
the gene level.

Discriminant analysis on the transcriptomics data
First we present results obtained using a mixed model and
discuss some potential limitations of this method in the

Table 1 Simulation study

Component 1 Component 2 Component 3 All

classical sPLS-DA 58.0 75.0 87.2 78.2

multilevel sPLS-DA 82.8 95.6 93.1 92.0

Percentage of the number of true selected genes selected by classical sPLS-DA or multilevel sPLS-DA on each component or dimension (averaged over 100 simulation
runs); 200 genes were selected on each component.
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Sample
1
2
3
4
5
6
7
8
9
10
11
12

Stimulation
GAG+
GAG−
LIPO5
NS

−2

0

2

4

Figure 2 Stimulation study. Hierarchical clustering (Euclidian distance and Ward method aggregation) of the genes selected with multilevel
sPLS-DA. Samples are represented in columns and genes in rows.

context of small sample size. Then we present the results
obtained usingmultilevel sPLS-DA for one and two-factor
analyses. To shorten the length of the paper, some results
have been moved in Additional file 1. The R code used for
the analysis of this study is provided in Additional file 2.

Mixedmodel
The one-level mixed model was applied to the W14 tran-
scriptomics data. We used the mle function from the R
package nlme with the maximum likelihood method for

the estimation of the different models. A global test (like-
lihood ratio test) followed by an FDR multiple correction
(5%) identified 2308 DE genes in at least one of the stim-
ulation. Pairwise comparisons based on Wald test (FDR =
5%) were then performed to compare LIPO5 vs. NS (2108
DE genes), GAG+ vs. NS (1087 DE genes) and GAG-vs.
NS (209 DE genes). The summary of the results is avail-
able in Section 1 of the Additional file 1. In our case study,
the clustering analysis of the 100most significant differen-
tially expressed genes selected by the mixed model failed
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Table 2 Simulation study

Number of Original matrix Within matrix
genes 1 component 2 components 3 components 1 component 2 components 3 components

25 0.535 0.369 0.312 0.500 0.271 0.024

50 0.530 0.364 0.311 0.500 0.265 0.016

75 0.527 0.360 0.306 0.500 0.261 0.013

100 0.524 0.354 0.300 0.500 0.258 0.011

125 0.522 0.351 0.296 0.500 0.257 0.009

150 0.520 0.343 0.285 0.500 0.250 0.008

175 0.518 0.335 0.281 0.500 0.243 0.009

200 0.516 0.327 0.268 0.500 0.234 0.009

225 0.514 0.323 0.269 0.500 0.227 0.009

250 0.512 0.316 0.267 0.500 0.220 0.008

275 0.510 0.314 0.266 0.500 0.207 0.007

300 0.510 0.306 0.262 0.500 0.196 0.007

325 0.509 0.299 0.260 0.500 0.182 0.007

Classification error rate estimation using leave-one-out cross-validation for classical sPLS-DA and multilevel sPLS-DA, with respect to the number of genes selected on
each component (averaged over 100 simulation runs).

to discriminate the four stimulations (Additional file 1:
Figure S2).
The univariate mixed model approach is commonly

used to analyse data with repeated measurement with an
unbalanced design. However, several reasons favor the use
of a multilevel approach in this high dimensional setting.
Apart from the already mentioned problem of numerous
independent tests and the requirement to apply multiple
correction [27], another limitation is the sensitivity of the
FDR threshold (and therefore the number of declared DE
genes) to the total number of test performed. The latter
depends on the preprocessing method used to filter the
probes. Another issue encountered was problems of con-
vergence with both the maximum likelihood (ML) and
the restricted ML methods due to the small number of
samples in this data set. The asymptotic likelihood ratio
test used for fixed effects has been reported to be anti-
conservative in [28]. The authors recommended to use the
F-test which still poses the issue of the choice of the num-
ber of degrees of freedom with a small number of samples
[29,30].

Multilevel approach with one factor
A multilevel sPLS-DA analysis was performed on the
W14 transcriptomics data, with H = 3. Respectively 30,
137 and 123 genes were selected with the approach on
each dimension according to the tuning criterion 1 for
the most parcimonious model. Although k fold cross-
validation would have been preferable to use, loo was used
in this study given the small number of subjects. The
following ‘loo’ classification error rates (0.48, 0.26, 0.24)
were obtained on the first three sPLS-DA dimensions

compared to (0.48, 0.36, 0.38) when applying sPLS-DA on
the original matrices (see Additional file 1: Figure S3).
Given the expression of these 290 selected genes,

Figures 3(b) and 3(c) highlight a good separation between
the four stimulations. These sample representations
obtained from sPLS-DA reveal that the first compo-
nent discriminates the stimulation LIPO5 versus the
other stimulations, while the second component discrimi-
nates the stimulation GAG+ versus the other stimulations
and the third component discriminates the stimulation
GAG- versus the others. Therefore, the first two compo-
nents separated the stimulations according to the pep-
tides included in the vaccine. As expected there was a
clear separation between LIPO5 and other stimulation
conditions. Especially, a part of the differential effect of
LIPO5 compared to GAG+ could be due to the lipid
tail or perhaps to the effect of the other peptides of
LIPO5. GAG- and NS were not distinguishable on the
first two components of the sPLS-DA (Figure 3(b)). This
last result is not surprising as no specific response is
expected from peptides not included in the vaccine after
vaccination.
Figure 3(a) displays the unsupervised clustering of

the 290 selected probes. A cluster of 11 genes MT1M,
C20ORF127, MT2A, MT1A, MT1G, MT1F, LOC441019,
MT1X, MT1H, MTE, MT1E, was removed to improve
visualisation. These genes selected on dimension 1 were
all overexpressed in LIPO5 stimulation (see Additional
file 1: Figure S5).
Several clusters of genes which expression seemed

related to each type of stimulation could be identified.
Cluster 1 included a subset of genes downregulated in
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Figure 3Multilevel sPLS-DA analysis on the transcriptomics data with one factor (W14). (a) Unsupervised clustering analysis with Euclidian
distance and Ward method of the 290 genes selected by sPLS-DA. Samples are represented in columns and genes in rows. (b) and (c) sPLS-DA
sample representation for dimensions 1-2 (b) or 1-3 (c).

GAG-, in cluster 2 the genes were overexpressed in GAG-,
while cluster 3 included a subset of genes overexpressed in
LIPO5 and GAG+, and cluster 4 was composed of a subset
of genesmainly overexpressed in GAG+. The advantage of
sPLS-DA is its ability to select genes related to a specific
stimulation group on each component. For instance, clus-
ters 1 and 2 included 126 out of the 137 probes selected
on the third dimension which separated GAG- from the
other stimulation groups (Figure 3(c)). Cluster 3 included
19 out of the 30 probes selected on the first component,
and 12 probes from the second component in order to dis-
criminate stimulations LIPO5 andGAG+, while the fourth
cluster included 72 out of the 123 probes selected on the
second component which separated GAG+ vs. the other
stimulations (Figure 3(b)). Interestingly, some of the genes
in this cluster belong to the TNF family (TNFSF13B)
or interferon family (ISG20L2) demonstrating a specific
effect of the GAG peptides on gene expression related to
the immune response.
Note that the same analysis was also performed on W0

but identified much fewer discriminative genes (30 genes

in total), indicating that there was a change in expression
level after vaccination (see Additional file 1: Figure S8).

Multilevel approach with two factors
A multilevel sPLS-DA analysis was performed on the
within matrix Xw∗ including the time factor W0 and W14
in addition to the stimulation factor for the transcrip-
tomics data. The complexity of this cross-over design
impliedmore conditions (4×2 = 8) to be compared for 12
unique subjects. Therefore, the tuning criterion 2 gave for
each sPLSDA dimension a maximum correlation of (0.94,
0.96, 0.95) for variable selection sizes of 30, 40, 150 genes
on each dimension. A sudden drop in the correlation value
in the fourth dimension (0.62) indicated that 3 sPLS-DA
dimensions should be chosen for this analysis.
The hierarchical clustering of the 220 selected genes

indicated a very satisfying separation of both time and
stimulation factors (Figure 4(a)). The first component dis-
criminated the stimulations GAG+/LIPO5 vs. GAG-/NS
irrespective of the time, whereas the second component
reflected the time effect W0 vs. W14 (Figure 4(b)). This
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Figure 4Multilevel sPLS-DA analysis on the transcriptomics data with two factors stimulation and time. (a) Unsupervised clustering analysis
with Euclidian distance and Ward method of the 220 genes selected by sPLS-DA. sPLS-DA sample representations for dimensions 1-2 (b) or 1-3 (c).

suggests that the stimulation groups are easier to sep-
arate than the time points by the approach. On this
second dimension, relevant genes related to the immune
response were selected (CD8a, CD79a, CD19, SLAMF6).
The third component (Figure 4(c)) separated GAG+ vs.
LIPO5 irrespective of the time and several of the genes
selected on this third dimension were found to be metal-
lothionein genes (MT1M, MT2A, MT1A, MT1G, MT1F,
MT1X, MT1H, MTE, MT1E) that may be stimulated by
the lipid tail of LIPO5. From a biological point of view,
the significance of genes from metallothionein family in
the context of HIV is not clear although some results
have been recently reported [31]. These authors showed
an increased resistance to apoptosis of immune-activated
monocyte linked to the increase in Metallothionein (MT)
gene expression and intracellular zinc levels.

Integrative analysis
Multilevel sPLS enables the integration of data mea-
sured using different assays. This approach differs from

multilevel sPLS-DA as the aim is to select subsets of genes
and cytokines which are highly correlated (positively or
negatively) across the samples. While the paired structure
of the data is still taken into account in the analysis via
the decomposition of the within matrices X∗

w and Z∗
w, the

analysis is completely unsupervised: no prior knowledge
about the samples groups is included.

Multilevel approach
Multilevel sPLS was applied on the within matrices of
the gene and cytokine data sets after vaccination. Given
the very small number of cytokines, all cytokines were
selected in the model, and the tuning of the number
of variables to select was only performed on the gene
expression data set. Respectively, a selection of 50, 1
and 60 genes was performed each of the sPLS dimen-
sion, corresponding to a correlation of (0.86, 0.62 and
0.84). A drop of the subsequent correlations for the
other dimensions guided the choice of 3 components in
the model.
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Although unexpected and indicated by the tuned cor-
relation value of 0.62, the selection of one single gene on
the second dimension was not surprising given the sam-
ple representation that was obtained (see Additional file 1:
Figure S11): while the first and third dimensions separated
LIPO5, GAG+ and GAG-/NS, the second dimension did
not seem to highlight any interesting pattern in the data.
The approach might reveal some unknown phenomenon

in the data for this component that would need to be fur-
ther investigated.
Nonetheless, sPLS multilevel was able to identify very rel-
evant information from both data sets. Graphical tools
help to unravel the correlation structure between the
two data set such as Clustered Image Maps (CIM).
Figure 5 reveals clusters of selected genes associated
with cytokines secretion. These genes were not known to
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Figure 5 Integrative analysis of gene expression and cytokine secretion for W14. Clustered Image Maps (CIM) obtained from multilevel sPLS.
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participate in the cytokines pathways but can be seen as
gene signatures to predict future cytokine response. For
example Figure 5 highlights relevant clusters of cytokines,
such as the proximity of the two T-Helper type 2 (Th2)
cytokines IL5 and IL13. Also, IL17 and IL21 have often
been associated in the type 17 response. The correlations
between genes and cytokines were similar for the pairs
(IL5, IL13), (IL21,IL1b) and (TNF,IL6) underlying poten-
tial similar pathways related to the production of these
cytokines.

Conclusion
In this paper, we have proposed a two-step analysis com-
bining a multilevel approach and a multivariate approach
to analyze repeated measures of gene expression. The
multilevel approach first extracts the within-sample varia-
tion while the multivariate approach applied on the within
matrix takes into account the dependency between the
variables. The multilevel approach was extended for one
and two factors analyses.
Two multilevel variants were proposed with either

sPLS-DA or sPLS. The multilevel sPLS-DA approach
selects genes separating the groups of subjects on a single
data set. The simulation study comparingmultilevel sPLS-
DA and the sPLS-DA applied on the original data demon-
strated the good performance of themodel. Themultilevel
sPLS approach integrates two experimentsmade on differ-
ent platforms but on the same subjects, and selects subsets
of correlated variables from both sets.
The application of both types of approaches on the

HIV-1 vaccine trial showed their ability to highlight the
stimulation groups and to select biologically relevant
genes related to immune response. Hence, our combined
multilevel approach may help in finding signatures of
vaccine effect and allows for a better understanding of
immunological mechanisms activated by the interven-
tion. Future work will include a thorough analysis on the
gene/probe annotations to fully understand the mecha-
nistic link between gene differential expression, cytokine
secretion according to the various stimulations.

Endnote
ahttp://www.math.univ-toulouse.fr/∼biostat/mixOmics.
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methods for biological data integration: application to a
cross-platform study. BMC Bioinformatics 2009, 10(34 ).

9. Parkhomenko E, Tritchler D, Beyene J: Sparse canonical correlation
analysis with application to genomic data integration. Stat App Genet
Mol Biol 2009, 8(1):1–34.

10. Waaijenborg S, de Witt Hamer V, Philip C, Zwinderman A: Quantifying
the Association between Gene Expressions and DNA-Markers by
Penalized Canonical Correlation Analysis. Stat App Genet Mol Biol
2008, 7(3).

11. Witten DM, Tibshirani R, Hastie T: A penalized matrix decomposition,
with applications to sparse principal components and canonical
correlation analysis. Biostatistics 2009, 10(3):515–534.

12. Tenenhaus A, Tenenhaus M: Regularized Generalized Canonical
Correlation Analysis. Psychometrika 2011, 76(2):257–284.

13. Morine M, Tierney A, van Ommen B, Daniel H, Toomey S, Gjelstad I,
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