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Abstract

Background: Biomarker panels derived separately from genomic and proteomic data and with a variety of
computational methods have demonstrated promising classification performance in various diseases. An open
question is how to create effective proteo-genomic panels. The framework of ensemble classifiers has been applied
successfully in various analytical domains to combine classifiers so that the performance of the ensemble exceeds
the performance of individual classifiers. Using blood-based diagnosis of acute renal allograft rejection as a case
study, we address the following question in this paper: Can acute rejection classification performance be improved by
combining individual genomic and proteomic classifiers in an ensemble?

Results: The first part of the paper presents a computational biomarker development pipeline for genomic and
proteomic data. The pipeline begins with data acquisition (e.g., from bio-samples to microarray data), quality
control, statistical analysis and mining of the data, and finally various forms of validation. The pipeline ensures that
the various classifiers to be combined later in an ensemble are diverse and adequate for clinical use. Five mRNA
genomic and five proteomic classifiers were developed independently using single time-point blood samples from
11 acute-rejection and 22 non-rejection renal transplant patients. The second part of the paper examines five
ensembles ranging in size from two to 10 individual classifiers. Performance of ensembles is characterized by area
under the curve (AUQ), sensitivity, and specificity, as derived from the probability of acute rejection for individual
classifiers in the ensemble in combination with one of two aggregation methods: (1) Average Probability or (2)
Vote Threshold. One ensemble demonstrated superior performance and was able to improve sensitivity and AUC
beyond the best values observed for any of the individual classifiers in the ensemble, while staying within the
range of observed specificity. The Vote Threshold aggregation method achieved improved sensitivity for all 5
ensembles, but typically at the cost of decreased specificity.

Conclusion: Proteo-genomic biomarker ensemble classifiers show promise in the diagnosis of acute renal allograft
rejection and can improve classification performance beyond that of individual genomic or proteomic classifiers
alone. Validation of our results in an international multicenter study is currently underway.
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Background

With the advancement of whole-genome technologies
and unbiased discovery approaches such as microarrays
and mass spectrometry, molecular biomarker panel de-
velopment has attracted much attention and investment
in the past decade. Given that biomarker panels may be
valuable for prognosis, diagnosis or prediction of a med-
ical condition, or for efficacy and safety of a treatment
option [1-3], many teams have embarked on biomarker
panel development projects and programs with the aim
of clinical utility and health care benefits.

The mission of the NCE CECR Centre of Excellence
for Prevention of Organ Failure (PROOF Centre) is to
develop biomarker panels for heart, lung and kidney
conditions along the life cycle from risk to presence,
progression and variable responses to clinical interven-
tions including pharmacotherapies. Its flagship program
is the Biomarker in Transplantation initiative, which
began in 2004. One branch of the work focuses on renal
allograft rejection, which is harnessed in this paper as an
illustrative case study. Samples from this study are of
one of two types: acute rejection (AR) or non-rejection
(NR), representing binary classification tasks. Acute
renal allograft rejection in transplant patients in Canada
occurs in approximately 10-20% of transplant patients
within the first 12 weeks post-transplant. Acute rejection
is a serious problem that leads to kidney failure and graft
loss if untreated and recurrent. Early detection of acute
rejection with a highly sensitive test followed by appro-
priate treatment is thus of paramount importance; simi-
larly, the exclusion of acute rejection with a highly
specific test followed by tailoring of immunosuppressive
therapy will benefit many patients by reducing toxic
side-effects. Acute rejection is currently diagnosed by
tissue biopsy, an invasive procedure that requires sub-
jective grading by pathologists to determine if and to
what degree acute rejection is present in the tissue sam-
ple [4]. A promising alternative to tissue biopsy, one
which we have pursued since 2004, is the use of blood-
based biomarkers for diagnosing acute rejection. We
reported the first such genomic biomarker panel in
Transplantation [5] and a proteomic panel in Molecu-
lar&Cellular Proteomics [6]. With successful replication
of our early results, we participated in a Voluntary Ex-
ploratory Data Submission to the USA FDA. A multi-
national observational trial on refined biomarker panels
is now in its late stages, with the goal of obtaining regu-
latory approval from the USA FDA and Health Canada.

This paper will first present an established computa-
tional biomarker development pipeline for genomic and
proteomic data. The pipeline begins with data acquisition
(e.g., from bio-samples to microarray data), quality con-
trol, statistical analysis and mining of the data, and finally
various forms of validation. Several groups, including
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ours, have explored blood-based genomic and proteomic
classifiers of acute rejection in kidney and heart transplant
recipients with promising results [5-11]. However, the po-
tential of combining genomic- and proteomic-based clas-
sifiers in an effective manner remains largely unknown.
Second, we describe an ensemble approach for building
proteo-genomic biomarker panels. An intuitive strategy
for building such panels is to merge genomic and prote-
omic data and apply a single-platform analysis strategy to
the merged data set [12,13]. Unfortunately, with this
approach, one encounters challenges related to scaling
and normalization, especially with the large differences in
the distribution of the data values between the two plat-
forms. In addition, due to differing signal strengths be-
tween genomic and proteomic data, it is likely for data
from one platform to dominate the final classifier panel,
masking what might be a potentially valuable contribution
from the second data type. Although these issues have
been addressed by potential solutions, such as the promis-
ing approach taken by mixOmics tools that incorporate
partial least squares and canonical correlation analysis
[14], a different path is described in this paper. Fully deve-
loped individual classifiers are combined in an ensemble
[15-17], thus avoiding the aforementioned issues while
allowing for an intuitive interpretation and straight-
forward implementation.

Methods

Biomarker development pipeline

The biomarker development process represents a series
of sequential steps that can be described as a computa-
tional pipeline. Figure 1 shows the genomic biomarker
development pipeline, with initial data quality assess-
ment, sample selection, and pre-processing steps on the
left, and main analysis components such as pre-filtering,
uni- and multivariate ranking and filtering steps in the
center. The numbers on the right represent the number
of features (e.g., probe sets in the genomic case) that
correspond to each analysis step. The purpose of pre-
filtering, uni- and multivariate ranking, and filtering
steps is to reduce the number of features to be used
in the classification model, while selecting relevant
features for the classification task. This final list of
features represents the biomarker panel which typic-
ally ranges in size from 1-100 features.

The analysis of proteomic data requires some proteomic-
specific analytical steps that are beyond the scope of this
article, including data assembled from untargeted lists of
identified protein groups, imputation of missing values,
and quality assessment of protein identification para-
meters [18]. Regardless, the main aims of the analyses
undertaken at the different steps of the proteomics and
the genomics pipeline are essentially the same. Briefly, at
the discovery stage, the proteomics computational
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Figure 1 Schematic representation of the biomarker development pipeline for genomic microarray data. The analysis starts with a pre-

filtering step applied to the full pre-processed data set (54613 probe sets from the Affymetrix Human Genome U133 Plus 2 GeneChip) on top of
the funnel, followed by uni- and multivariate ranking and filtering steps before arriving at a biomarker panel. The numbers on the right indicate
the number of features (probe sets) at each step. The biomarker development pipeline for proteomic data looks similar except that data sets are
typically smaller and proteomic-specific pre-processing steps need to be applied.

J

pipeline utilizes a combination of appropriate univariate
and multivariate statistical methodologies to identify a
panel of candidate biomarker proteins. The quality of the
identified list of markers is evaluated looking at protein
identification parameters and examining the existence of
potential confounding factors. In previous studies based
on iTRAQ-MALDI-TOF/TOF technology, the total num-
ber of identified protein groups was about 1500. However,
due to undersampling commonly seen in shotgun proteo-
mics studies, only about 10% of these protein groups were
consistently detected in all the samples involved in a par-
ticular analysis. Thus, the proteomic analysis data sets
from this technology were smaller than the genomic one
described in Figure 1.

Quality assessment

It is important to detect quality issues to prevent them
from entering the biomarker development pipeline and
negatively affecting analysis results. The quality of sam-
ples is therefore assessed as the first step. Only samples
that did not raise quality concerns are included in the
analysis, otherwise samples are reanalyzed using a differ-
ent aliquot of the same sample. For Affymetrix Human
Genome U133 Plus 2 GeneChip microarray experi-
ments, quality assessment is through visual inspection of
RLE, NUSE and weight plots produced with the
AffyPLM-package. Other options include the MDQC-
package (developed at the PROOF Centre) and the
arrayQualityMetrics-package in R [19,20]. Quality control

of the plasma depletion step and the acquired iTRAQ data
have been previously described [6], which examines the
reproducibility of sample handling procedures, the confi-
dence on the identified protein identities to be analyzed as
well as their levels.

Sample selection

Analysis samples are selected by a domain expert work-
ing with a statistician to ensure that a statistically sound
analysis can be performed on samples that are relevant
to the study question. Group sizes are reviewed to en-
sure a reasonable design in regards to balance, possible
confounders (typical examples include gender, age, eth-
nicity), and power of the study. The domain expert is
responsible for choosing samples that represent the con-
ditions of interest. For the two-group acute kidney rejec-
tion case study that is used as an example throughout
this paper, a nephrologist confirmed the rejection status
of individuals with acute rejection (AR) based on biopsy
information, and selected control cases with clinical and
demographic characteristics similar to those of rejection
cases. The time of blood collection relative to start of re-
jection treatment in AR patients is an important factor
[21], and was taken into account during sample selec-
tion. The presented case study is based on a prospective
longitudinal design, which required a sample selection
step as described in Figure 1. Depending on the specific
experimental design, a sample selection step might not
be needed in general.
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Pre-processing

Depending on the type of data, specific pre-processing
steps are applied to prepare the raw data for subsequent
statistical analysis. In the case of Affymetrix microarray
experiments, raw data represents expression values for
probes on the array. These values are provided in CEL-
files together with other information about the experi-
ment. Pre-processing in this case includes background
adjustment, normalization and summarization of probe
information into probe sets that can be mapped to genes.
This process transforms raw CEL-files into a data matrix
of probe set values for all analysis samples. We have used
the Robust Multi-Array Average (RMA)-prlocedure in
Bioconductor as implemented in the RMA- and RefPlus-
packages to perform these steps but other methods can be
substituted, for example GCRMA or Factor Analysis for
Robust Microarray Summarization (FARMS) [22-25]. The
normalization can use an expanded sample set to provide
increased performance and stability of the pre-processing
procedures, e.g., by including all available microarray
samples at different time points for the selected patients
in the RMA-normalization procedure.

Prefiltering

Not all features in a data set carry useful information.
Probe sets with little variation and low expression for ex-
ample are dominated by noise that can negatively affect
the statistical analysis, depending on the methods used.
The main goal of the pre-filtering step is therefore to re-
move features with little variation across analysis samples,
independent of sample class, before applying univariate
ranking and filtering methods on the remaining features.
For that purpose a quantile-based filter was applied to the
kidney rejection case study which ranked all samples
according to an empirical central mass range (ECMR) as
given in Eq.(1) where f; is the fraction of the smallest class,

_ 3 Nar Nnr . ~ e
e.g. fi = min (NAR A N +NNR) in the 2-class classifica

tion problem of acute renal allograft rejection, and then
removed all features with values below the median ECMR.

ECMR(x) = quantile <x, 1 —%)

— quantile (x,%) (1)

For the genomic data from the Affymetrix Human
Genome U133 Plus 2 GeneChip, this approach removes
half of the 54,613 probe sets. If a more stringent pre-
filter is desired, one could for example remove 75% of
features with the lowest ECMR. The inter-quartile range
(IQR) is a special case of the ECMR with f;=0.5, i.e., IQR
and ECMR are the same for balanced class sizes. For
unbalanced class sizes the ECMR-based filter allows
variation in the smaller class to enter the calculation of
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the quantile range. Other pre-filtering options include
application of an absolute count cut-off that requires at
least k samples to have an expression above a fixed
threshold, which would address concerns regarding the
impact of dependencies between pre- and univariate fil-
ters and the ability to control type-I error rates [26]. The
choice of threshold in any of these methods represents a
trade-off between allowing more potential biomarkers to
pass the filter and at the same time adding more noisy
features, which increase the chance of identifying false
biomarkers down-stream.

Univariate ranking and filtering

Having a large number of features in a biomarker panel
is typically not practical, as diagnostic or predictive tests
in clinical applications are commonly based on a small
number of relevant markers. In fact, many currently
applied laboratory tests are based on single markers. In
addition, some classification models pose statistical
constraints on the number of features that they can in-
corporate, e.g., a Linear Discriminant Analysis (LDA)
classification model has to be based on fewer features
than the number of training samples. For that reason a
univariate ranking and filtering step is applied to reduce
the number of candidate features to be included in the
classification model.

The univariate ranking step calculates a measure of class
differentiation ability for each individual feature that
passed the pre-filtering stage. Moderated t-tests are com-
monly used for determining differentially expressed fea-
tures when sample sizes are small. Examples are the
limma-package in Bioconductor or the Signficance Anay-
sis of Microarrays (SAM) tool [27,28]. These tests return
adjusted p-values or false discovery rates (FDR) that ac-
count for multiple hypothesis testing by applying permu-
tation tests (SAM), Bonferroni, Benjamini and Hochberg,
or other methods, which is generally recommended for —
omics data [29,30]. The limma package includes an empi-
rical Bayes method that moderates the standard errors of
the estimated log-fold changes. This approach results in
more stable inference and improved power, especially for
experiments with small numbers of arrays [27].

Various combinations of FDR cut-offs and fold-change
thresholds are applied to produce reduced lists of candi-
date features that serve as input for the subsequent multi-
variate ranking, filtering and supervised learning steps. In
addition, lower and upper counts for the number of fea-
tures are sometimes imposed to ensure a minimum and/
or maximum number of features in the returned list.

Multivariate ranking and filtering

It might be desirable in some instances to filter a list of
features that are relevant as a group without requiring all
of them to be relevant individually. Multivariate ranking is
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achieved by applying a multivariate scoring method that
orders features by method-specific weights. Examples are
support vector machines (SVM) where squared weights
from the SVM model are used, or Random Forest (RF)
which provides a feature-importance measure. The multi-
variate filtering step simply applies a cut-off regarding the
number of ranked features to include.

The steps described above are put together in the
order shown in Figure 1 to develop a biomarker panel.
The final product in terms of class prediction, e.g. acute
rejection versus non-rejection, is a classification model
based on a biomarker panel in combination with a
supervised learner. The requirements for a supervised
learner are that it has to be able to (1) train its classifica-
tion model based on a training set representing pairs of
features (input) and response (output), and (2) return a
class probability or score for the different response types
given a test case, i.e., a set of input features. Not all steps
in the center portion of Figure 1 are performed every time.
For example, the multivariate ranking and filtering step
may be skipped, and the output from the univariate steps
is then used to directly define the biomarker panel. It is
possible that a classification model applies an additional
feature selection step, e.g., Elastic Net [31].

For the binary classification task of separating acute
rejection from non-rejection samples, four supervised
learning methods were applied: Support Vector Machine
(SVM) with linear kernel, Linear Discriminant Analysis
(LDA), Elastic Net (EN), and Random Forest (RF) [31-34].
Where applicable, algorithm parameters were tuned for
model selection. Additional methods such as PAM
(Shrunken Centroids) [35] or sPLS-DA (mixOmics) [14]
have been explored for other data sets at the PROOF
Centre.

Model assessment and selection
Performance of classification models needs to be esti-
mated for model assessment and selection. For this pur-
pose, it is common practice to split a data set into 3
parts: (1) training, (2) validation and (3) testing, with
suggested splits being 50%, 25% and 25%, respectively
[34]. A set of candidate models is first trained on the
training set. One of the candidate models is then
selected by comparing performances on the validation
data, and the performance of the selected model is fi-
nally assessed on the test data. In many cases however,
particularly in the high-throughput genomic and prote-
omic arena, data sets suffer from low sample size and
cross-validation or boot-strap methods are typically ap-
plied to avoid excluding too many samples from the
training set.

For the present case study, nested leave-one-out cross-
validation (LOO-CV) was used in combination with
minimum misclassification error for model selection and
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assessment. The outer loop was used for model selection
while the nested loops were used for model assessment by
averaging performance over k models that were tuned in
the inner loops of the nested cross-validation procedure.
Model parameters were tuned for Elastic Net (lambda)
and LDA (number of features), while the default cost par-
ameter in SVM and default settings for mtry and node-size
parameters were used in Random Forest, since these para-
meters had little impact on the classification performance
in the given data sets. In general, it is advisable to tune
these parameters and study their effects on classification
performance to decide whether tuning is necessary. Esti-
mators based on LOO-CV are known to have low bias but
large variance. An alternative to nested LOO-CV, espe-
cially for larger sample sizes, is based on averaging perfor-
mances over multiple k-fold CV partitions.

In general, models with multiple parameters require
multi-parameter optimization. This is not straightfor-
ward especially when sample sizes are small and differ-
ent areas of the multi-parameter plane show the same or
similar performances. In these cases it is not clear which
parameter combination should be chosen. One solution
is to fix all but one parameter and select a model based
on tuning that parameter. For example, Elastic Net has
two parameters, alpha and lambda, where alpha is typ-
ically fixed to select a trade-off between Lasso penaliza-
tion and ridge regression, while lambda is varied to tune
the model.

In addition to misclassification error, sensitivity, speci-
ficity and area under the ROC curve (AUC) were deter-
mined. Misclassification error, sensitivity and specificity
depend on the probability cut-off used. For example, if a
sample has a predicted probability of 0.4 of being an AR,
it would be misclassified using a cut-off of 0.5 but cor-
rectly classified using a cut-off of 0.3. Misclassification
error is the fraction of misclassified AR and NR samples.
All reported misclassification errors, sensitivities and
specificities are based on a 0.5 cut-off. The AUC is a
quantitative measurement that averages classification
performance over all probability cut-offs, and as such
does not depend on any particular cut-off value.

Ensemble classifiers

In an effort to integrate multiple classification models,
separately developed genomic and proteomic classifiers
were combined in an ensemble of classifiers as shown in
Figure 2. Ensemble classification methods have been ap-
plied in a variety of fields with promising results
[15,33,34,36]. Ensembles often combine predictions from
a large number of different individual classifiers to pro-
duce a final classification that is based on specific aggre-
gation methods, e.g., average vote. The motivating idea
behind ensembles is that inclusion of a diverse set of
classifiers ensures representation of various aspects of
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Figure 2 Schematic overview of ensemble classifiers. Ensemble classifiers represent a combination of genomic and proteomic classifiers.
Individual classifier output is aggregated by either average probability or vote threshold (@ modified version of majority vote).
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the underlying system, while a single classifier typically
has limited focus. For example, a genomic classifier
might focus mainly on an immunological signature in
whole blood, while a proteomic classifier might focus on
an inflammation signature in plasma.

Proteo-genomic ensembles combine classifiers from
genomics and proteomics in an effort to improve per-
formance and robustness of predictions. Each ensemble
consists of a set of genomic and proteomic classifiers
that are characterized by a biomarker panel, i.e., a list of
probe sets or protein groups. All classifiers produce a
probability of acute rejection (AR) when given an un-
known sample. Predicted class probabilities from indi-
vidual classifiers were aggregated using one of two
methods: Average Probability (AP) or Vote Threshold
(VT). The AP aggregation method averaged class prob-
ability for a specific sample from all individual classifiers
in the respective ensemble. Ensemble AUC and other
performance measures were then derived from these
average probabilities. The VT aggregation method repre-
sents a modified majority vote approach that can be ap-
plied to binary classification tasks with only two classes
G1 and G2. The predicted class from each classifier is
interpreted as a vote for that class; if the number of
votes for G1 exceeds a fixed threshold, then the pre-
dicted class is G1, otherwise it is declared G2.

Ensembling of classifiers is well-studied in the literature
[36,37]. In [36], the analysis of ensembling is extended to
imbalanced and high-dimensional data (e.g., tens of thou-
sands of probe sets). The analysis indicates that the more
"independent” the individual classifiers are, the larger the
expected performance gain of the ensemble. This is par-
ticularly relevant to integrating molecular signals from
whole blood RNA and plasma proteins.

Prior to the case study described in this paper, blood
samples were collected from renal allograft recipients in
the Biomarkers in Transplantation initiative- [5,6].

Whole-blood RNA samples were analyzed with Affyme-
trix Human Genome U133 Plus 2.0 arrays (genomic)
and plasma samples were analyzed with iTRAQ
MALDI-TOF/TOF Mass Spectrometry (proteomics).
The two data sources are derived from different com-
partments of peripheral blood and focus on two separate
types of biological material, i.e., leukocyte cellular RNA
and plasma proteins. Perhaps not surprisingly, signals
detected by genomic analysis are different from those
detected by proteomic analysis, although both types of
signals are consistent with the current understanding of
the pathogenesis of acute rejection injury. In particular,
differentially expressed genes represent three major bio-
logical processes related to immune signal transduction,
cytoskeletal reorganization, and apoptosis [5], and differ-
entially expressed proteins represent biological processes
related to inflammation, complement activation, blood
coagulation, and wound repair [6]. This diversity in bio-
logical signals is maintained in individual genomic- and
proteomic-based acute rejection classifiers, and is a
desired property in ensemble classifiers. In general, en-
semble classifiers demonstrate improved classification
performance when individual classifiers in the ensemble
represent independent experts [17,38,39].

Although the current case study focuses on combining
genomic with proteomic data, the ensemble framework
is more general in nature and does not need to be
restricted to these types of data. A second analysis was
performed to show how gene expression could be com-
bined with miRNA classifiers. This analysis was based
on publicly available mRNA- and miRNA- data sets
from a cancer study [40]. Using the computational pipe-
line, classifiers for the diagnosis of tumour- versus
normal- samples were developed separately for the
mRNA- and miRNA- data sets. A number of ensembles
were defined and performances for the AP and VT ag-
gregation methods were estimated.
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Results

Genomic and proteomic classifiers were developed inde-
pendently with the biomarker development pipeline
using 32 samples from the same 32 patients (11AR and
21 NR) collected at the same time point. All samples
were used for classifier training, and thus no samples
remained for classifier testing. As such, validation and
calculation of probability-of-AR was done with 32-fold
(leave-one-out) cross-validation wherein 32-models were
created for each of the genomic and proteomic classi-
fiers separately with one of the samples left out. The
classifer then tested the left-out sample and a
probability-of-AR was returned. When classifier devel-
opment included a model tuning step, nested cross-
validation was applied to ensure an unbiased estimate of
the probability-of-AR.

The 32 samples were used in previous publications
that describe the development of the Genomics 1 and
Proteomics 1 classifiers with a simplified pipeline [5,6]%.
Genomic data represent RNA-based gene expression
profiles as measured by Affymetrix HG-U133 Plus 2
GeneChips and were pre-processed with RMA using an
enlarged pool of 195 genomic samples that were avail-
able at different time-points for the 32 patients, plus an
additional 20 samples from healthy volunteers, taken
from the same biomarker project as described in [5]. An
ECMR-based pre-filter shown in Eq. (1) was applied to
the subset of 32 analysis samples and returned 27,306
probe sets for the analysis. Expression values were ana-
lyzed on the log-base 2 scale.

Proteomic data represent ratios between depleted
plasma samples from transplant patients and healthy
pooled controls as measured by iTRAQ-MALDI-TOF/
TOF methodology and several post-processing steps, in-
cluding ProteinPilot” software v2.0 with the integrated
Paragon” Search and Pro Group  Algorithms, and
searching against the International Protein Index (IPI
HUMAN v3.39) database. A Protein Group Code Algo-
rithm (PGCA; in-house) was used to link protein groups
across different iTRAQ experiments by defining global
protein group codes (PGC) from multiple runs [6].
There were a total of 1260 PGCs, each of which was
detected in at least one sample. Of those, 147 PGCs
passed a 75% minimum detection rule filter across the
32 analysis samples”.

The number of features and performance characteris-
tics of five genomic and five proteomic classifiers is sum-
marized in Table 1°. Performance of individual classifiers
as measured by AUC was typically high, and specificity
was higher than sensitivity for all classifiers. In addition
to the published genomic classifier [5], four additional
genomic classifiers based on SVM, RF and EN classifica-
tion methods were developed [31-34]. Genomics 2 (SVM)
and 3 (RF) classifiers were based on the top 50 FDR-
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ranked probe sets while Genomics 4 and 5 classifiers were
based on probe sets selected by Elastic Net from the probe
sets with an FDR<0.05 (with an additional constraint of at
least 50 but at most 500 probe sets).

The development of the Proteomics 1 classifier was
described previously [6]. Four additional proteomic clas-
sifiers were developed in a process similar to that used
for the Genomics analysis described above. Classifiers
Proteomics 2-5 in Table 1 are based on EN and SVM
classification methods, either robust limma (Proteomics
4-5) or no univariate filter (Proteomics 2—-3), and a fold-
change cutoff of FC>1.15 in all cases. In addition, a 75%-
rule regarding missing values was implemented, ie., a
protein group was only included if it was detected in at
least 75% of all samples. The missing values were imputed
using k-nearest neighbours (knn) with k=3 across all train-
ing samples, independent of class label. Imputation of test
samples was performed in each fold of the cross-
validation by combining the imputed training data with
the test data, then applying knn imputation.

Also shown in Table 1 is the definition of five ensem-
bles representing different combinations of the 10 indi-
vidual classifiers. Ensemble 1 represents a two-classifier
ensemble based on the published genomic and prote-
omic biomarker panels, Ensemble 2 and 3 expand on
Ensemble 1 by adding 2 genomic and 1 proteomic classi-
fier (Ensemble 2), and one genomic and 2 proteomic
classifiers (Ensemble 3). Ensemble 4 combines the lar-
gest genomic (Genomics 5) and proteomic (Proteomics
3) classifiers and Genomics 3. Ensemble 5 combines all
5 genomic and 5 proteomic classifiers.

The performance of ensemble classifiers was charac-
terized by sensitivity, specificity and AUC. These mea-
sures were all derived from a probability-of-AR for the
ensemble, which was calculated from probability-of-AR
values returned by individual classifiers in the ensemble
in combination with either the average probability (AP)
or vote-threshold (VT) aggregation methods. For VT a
threshold of one was used, i.e., a single AR call by any of
the classifiers in the ensemble was enough to call the
sample as AR A probability-threshold of 0.5 was used
in the calculation of sensitivity and specificity. Results
are summarized in Tables 2 and 3.

Ensemble 1 in combination with aggregation method
AP achieves a sensitivity and specificity equaling that of
the Genomics 1 classifier, while the AUC is improved
slightly relative to the Proteomics 1 classifier. Figure 3
shows the estimated probabilities of acute rejection from
the different classifiers for each of the 11AR and 21 NR
samples. For the 11 AR samples all red and orange pairs
fall on the same side of the 0.5-probability threshold line
used to determine rejection status. This means that the
Genomics 1 and Ensemble 1 classifiers not only display
the same sensitivity, but they also misclassify the same
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Table 1 Overview of individual classifier performance and definition of ensembles

Classifier Method Features Sensitivity Specificity AUC Ensemble 1 Ensemble2 Ensemble3 Ensemble4 Ensemble 5
Genomics 1 LDA 24 0.73 0.90 073 X X X X
Genomics 2 SVM 50 0.82 0.95 0.96 X X
Genomics 3 RF 50 0.64 0.95 0.92 X X X
Genomics 4 EN 43 0.73 1.00 093 X X
Genomics 5 EN 174 0.73 1.00 0.95 X X
Proteomics 1 SVM 12 0.64 0.95 094 X X X X
Proteomics 2 EN 10 0.64 0.81 0.90 X X
Proteomics 3 SVM 33 0.55 0.81 0.83 X X
Proteomics 4 EN 13 0.55 0.86 0.85 X X
Proteomics 5 SVM 13 0.64 0.95 0.94 X X

Shown is a list of 5 genomic and 5 proteomic classifiers, their individual classification performance and their inclusion into 5 ensembles that are explored in this
paper. LDA stands for linear discriminant analysis; EN for Elastic Net (Generalized Linear Model); SVM for Support Vector Machine, and RF for Random Forest.
Sensitivity, specificity and area under the ROC [receiver operator characteristics] Curve (AUC) for the individual classifiers were estimated using cross-validation.

AR samples. Also, for the 21 NR samples all black and
grey pairs fall on the same side of the 0.5-probability
threshold line, which explains the same specificity of
Genomics 1 and Ensemble 1, again due to the same NR
samples being misclassified. The figure also provides an
explanation for the improved AUC of the ensemble as
compared to that of Genomics 1 alone. It is due to the
probability of the misclassified NR samples being
reduced from 1.0 (grey points) to a smaller value (black
points), in one case close to the 0.5-probability line. In
other words, although the same two NR samples remain
misclassified, the AUC of the ensemble is improved be-
cause AUC is calculated based on the order of
probability-of-AR for all samples. Overall, ensemble 1 in
combination with aggregation method AP does not seem
to improve classification performance much beyond that
of the Genomics 1 classifier alone.

Figure 3 can also be used to interpret the results for
Ensemble 1 when the VT aggregation method is used. In
this case the red and black points in Figure 3 should be
ignored and the ensemble-produced probability of AR is
instead given by the larger of the probability-pairs repre-
sented by the orange and yellow (for AR), or grey and
brown points (for NR). Ensemble 1 has better sensitivity

than either the genomic or proteomic classifier alone,
and misclassifies only 2 AR samples. However, this im-
provement comes at the cost of decreased specificity,
with 3 misclassified NR samples, as compared to the
genomic (2 misclassified) or proteomic (1 misclassified)
classifier alone.

For all 10 analyses (5 ensembles with 2 aggregation
methods each), we find that sensitivity always meets or
exceeds the maximum sensitivity of all individual classi-
fiers in the corresponding ensemble, but exceeds the
maximum value for all ensembles wherein the vote-
threshold aggregation method is used. A similar obser-
vation holds for Ensemble 4 when the AP aggregation
method is used and an increased sensitivity of 82% is
observed. Specificity, on the other hand, is never better
than the best specificity of all individual classifiers in an
ensemble, but is always within the min/max range for
the 5 ensembles when the AP aggregation method is
used, or is usually below the min/max range when the
VT aggregation method is used. Ensemble 4 is again the
exception here, achieving specificity equaling the mini-
mum value of 81%.

When measuring classifier performance, it can be in-
formative to look at performance in a threshold-

Table 2 Summary of classification performance for the Average Probability aggregation method

AVERAGE Sensitivity Specificity AUC
PROBABILITY Ensemble Individual classifiers Ensemble Individual classifiers Ensemble Individual classifiers
classifier min max average classifier min max average classifier min max average

Ensemble 1 073 064 073 068 0.90 0.90 0.95 093 0.95 073 0.94 0.84
Ensemble 2 0.82 0.55 0.82 0.69 0.95 0.86 1.00 093 0.98 0.73 0.96 0.88
Ensemble 3 0.73 0.64 0.73 0.65 095 0.81 095 091 0.97 0.73 094 0.88
Ensemble 4 0.82 0.55 0.73 0.64 0.90 0.81 1.00 0.92 0.97 0.83 095 0.90
Ensemble 5 0.82 055 0.82 0.66 0.95 081 1.00 092 098 073 0.96 0.89

Shown is classification performance as measured by sensitivity, specificity and AUC - for the 5 ensembles defined in Table 1 when using the average probability
aggregation method. The minimum, maximum and average performances of individual classifiers in the respective ensemble are included in the table

for comparison.
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Table 3 Summary of classification performance for the Vote Threshold aggregation method

VOTE Sensitivity Specificity AUC
THRESHOLD Ensemble Individual classifiers Ensemble Individual classifiers Ensemble Individual classifiers
classifier min max  average classifier min max  average classifier min max  average

Ensemble 1 082 064 073 0.68 0.86 090 095 093 089 073 094 0.84
Ensemble 2 091 0.55 0.82 0.69 0.76 0.86 1.00 093 0.89 0.73 0.96 0.88
Ensemble 3 1.00 0.64 0.73 0.65 0.76 0.81 095 091 0.90 0.73 0.94 0.88
Ensemble 4 091 0.55 0.73 0.64 0.81 0.81 1.00 092 095 0.83 0.95 0.90
Ensemble 5 1.00 055 082 0.66 0.62 0.81 1.00 092 0.90 073 096 0.89

Shown is classification performance for the 5 ensembles defined in Table 1 when using the vote threshold aggregation method. Similarly to Table 2, individual

classifier performances are included for comparison.

independent manner. The area under the curve (AUC)
in the ROC assesses performance in this way, summariz-
ing a classifier’s ability to separate two classes across the
complete range of possible probability-thresholds. Using
this measure of performance, we find that the AUC of
ensembles based on the AP aggregation method is al-
ways higher than the best (maximum) AUC of the indi-
vidual classifiers in the corresponding ensemble,
although the improvement is generally small as can be
seen in Table 2. The AUC when using the VT aggrega-
tion method is typically within the range for individual
classifiers, but for Ensemble 4 with an AUC of 0.952

Comparing ensemble performance with mean perform-
ance of individual classifiers in Tables 2 and 3 shows that
the sensitivity and AUC is always higher in the ensemble
classifiers, while ensemble specificity is below mean speci-
ficity for all 5 ensembles with VT aggregation, and 2 out of
5 ensembles with AP aggregation.

In Figure 4, one of the two genomic classifiers (Gen-
omics 5) in Ensemble 4 is compared with the proteomic
classifier from the same ensemble, using posterior prob-
abilities of acute rejection (AR). The plot demonstrates
that for the majority of samples the two classifiers agree
and assign the same class label (points that fall in yellow

slightly exceeds the best individual AUC of 0.948. areas), although they do not produce the same
N
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Figure 3 Comparison of predicted probabilities of acute rejection. Estimated probability of acute rejection (AR) for each of the AR and NR
samples as returned by the Genomics 1 and Proteomics 1 classifiers in Ensemble 1, and the Ensemble 1 classifier which represents a combination
of Genomics 1 and Proteomics 1. Samples are grouped along the x-axis into 11 AR (left group) and 21 NR (right group). Each point represents a
probability of acute rejection for a specific sample. Three color-coded probabilities are shown per sample. Red and black points represent
probabilities from Ensemble 1, orange and grey points from Genomics 1 and yellow and brown points from Proteomics 1.
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Figure 4 Classifier comparison within Ensemble 4. Scatter plot of
the predicted posterior probabilities of AR from the Genomics 5 and
Proteomics 3 classifier in Ensemble 4. Red points represent 11 AR
samples, while black points represent 21 NR samples. Points that fall
into yellow areas were classified identically to the genomic and the
proteomic classifiers while points in the grey area were classified
differently. AR samples are classified correctly when the probability
for the corresponding red point is at or above 0.5. NR samples are
predicted correctly when the probability is below 0.5.

probabilities (which would place points on the diagonal
line); in some cases, the classifiers disagree on the class
of a particular sample (points that fall in grey areas). For
example, the proteomic classifier misclassifies the 4 AR
samples in the right bottom quadrant, while the genomic
classifier misclassifies the two AR samples in the top left
quadrant. One AR sample in the bottom left (yellow)
square is misclassified by both classifiers. It is possible to
compare all pairs of classifiers in an ensemble using the
scatter plot approach from Figure 4. An example of this
is shown in Figure 5, which displays a matrix of scatter
plots for all 10 possible pairs of individual classifiers
from Ensemble 2.

In addition to the presented case study, the ensemble
framework was also applied to a set of publicly available
mRNA- and miRNA- data that contain samples from a
variety of human cancers as well as samples for compar-
able normal tissue. We focused on six tissue types
(colon, kidney, prostate, uterus, lung and breast) and
used all tumour and normal samples for which both
mRNA and miRNA data were available. This resulted in
57 samples (38 tumour and 19 normal samples). The
computational pipeline was applied, using 10x 19-fold
cross-validation and a maximum AUC (within one
standard-error) model selection criteria to develop a set
of 12 classifiers for each of the mRNA- and miRNA-
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data sets separately. Classifier characteristics and esti-
mated performances are shown in Table 4, together with
the definition of six ensembles that represent different
combinations of mRNA- and miRNA- classifiers. Similar
to our results, previous work by Ramaswamy et al. on a
super-set of the mRNA-data was able to differentiate
tumour- from normal samples with an accuracy of 92%
using SVM and cross-validation [41].

Performance of ensemble classifiers was then deter-
mined for the AP and VT aggregation methods. The
vote threshold was set to one as before, i.e. a sample was
classified to class tumour if at least one of the classifiers
in the ensemble classified it as such. Classification per-
formance is summarized in Table 5 (AP) and Table 6
(VT). For both AP and VT aggregation methods, all
ensembles achieve a higher AUC than the best individual
classifier in the respective ensemble. Ensembles D and F
with the AP aggregation method show the best perfor-
mances, both having sensitivity of 100%, specificity of
95% and AUC of 0.9986, although ensemble F is based
on twice as many individual classifiers as ensemble D.
For both ensembles, only one normal sample is misclas-
sified as can be seen in Figure 6, which shows the prob-
ability of tumour for ensemble D and for the six
individual classifiers that are equally split between
mRNA- and miRNA-classifiers (three each).

From Figure 6, it can be seen across the 57 samples
that the three classifiers based on mRNA-data show
similar probabilities of tumour most of the time, as do
the three classifiers based on miRNA-data. However,
because miRNA-classifiers perform better when mRNA-
classifiers misclassify (for example in several of the pros-
tate cancer samples), and mRNA-classifiers perform
better when some of the miRNA classifiers misclassify
(for example in several of the uterus cancer samples),
the ensemble can overall benefit from the averaging of
probabilities. This is evident by the fact that all ensemble
probabilities for the cancer samples (red points) fall
above the probability=0.5 dashed line, thus achieving the
aforementioned sensitivity of 100%. A similar effect of
probability-grouping by platform is observed for the nor-
mal samples. For example, the mRNA-classifiers show a
probability of tumour>0.9 for the single misclassified
normal sample, while all miRNA-classifiers have a prob-
ability of less than 0.3 for the same sample.

Discussion

A biomarker development pipeline with applications in
genomic-, proteomic-, and other —omic data was pre-
sented and applied to the clinical challenge of classifying
acute renal allograft rejection in blood samples.
Genomic- and proteomic-based classification models
were developed and showed adequate classification per-
formance for clinical use. Individual genomic- and
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proteomic-based classifiers were then combined into
Ensemble classifiers. Given the cited improvement in
classification performance of ensemble classifiers in
other fields [36,42-44], an important question underlying
our analysis was the extent that ensembles can improve
classification performance regarding acute renal allograft
rejection beyond that of individual genomic and proteomic
classifiers alone. Our application area is characterized by

small sample sizes and adequate classification per-
formance of individual classifiers. In general, we found
that classification performance improved by using ensem-
bles, although improvements in some performance
measures might be countered by a decrease in other per-
formance measures. In general, the number of classifiers
in an ensemble did not seem to affect performance
improvements.



Table 4 Overview of individual classifier performance and definition of ensembles

Classifier Method  Features  Accuracy  Sensitivity  Specificity AUC Ensemble A Ensemble B Ensemble C  Ensemble D Ensemble E  Ensemble F
mRNA-Classifier1 EN 182 0.9298 09737 0.8421 0.9737 X X X
mRNA-Classifier2 EN 73 09123 1.0000 0.7368 0.9709 X
mMRNA-Classifier3 EN 36 0.8947 0.9737 0.7368 0.9501 X X
mMRNA-Classifier4 LDA 2 0.9298 0.9211 0.9474 0.9640 X
mRNA-Classifier5 RF 500 0.8947 09737 0.7368 09418 X
mRNA-Classifier6 SVM 500 0.9298 0.9474 0.8947 0.9640 X
mMRNA-Classifier7 EN 43 09123 09474 0.8421 0.9598 X
mMRNA-Classifier8 EN 25 0.9298 09737 0.8421 09612 X
mMRNA-Classifier9 EN 17 0.9298 0.9737 0.8421 0.9695 X
mRNA-Classifier10 LDA 2 0.9298 09211 0.9474 0.9640 X X
mMRNA-Classifier11 RF 50 0.9298 0.9474 0.8947 0.9584 X X
mMRNA-Classifier12 SVM 50 0.8947 0.9211 0.8421 0.9557 X X X
miRNA-Classifier1 EN 66 0.8947 09211 0.8421 0.9626 X X
miRNA-Classifier2 EN 21 0.9474 09737 0.8947 0.9709 X X
miRNA-Classifier3 EN 8 0.9649 09737 0.9474 09723 X
miRNA-Classifier4 LDA 4 0.9298 09211 0.9474 0.9626 X
miRNA-Classifier5 RF 152 0.8947 0.8947 0.8947 0.9765 X
miRNA-Classifier6 SVM 152 09123 0.9474 0.8421 0.9626 X
miRNA-Classifier7 EN 36 0.9298 09474 0.8947 0.9709 X
miRNA-Classifier8 EN 16 0.9298 09474 0.8947 0.9848 X
miRNA-Classifier9 EN 12 09474 09737 0.8947 0.9806 X
miRNA-Classifier10 LDA 4 0.9298 09211 0.9474 0.9626 X
miRNA-Classifier11 RF 50 09123 09211 0.8947 09778 X X
miRNA-Classifier12  SYM 50 0.8947 09211 0.8421 09612 X X X

Shown is a list of 12 mRNA- and 12 miRNA classifiers, their individual classification performance and their inclusion into 6 ensembles that are explored for classification of tumour vs normal samples. Abbreviations are
the same as in Table 1.
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Table 5 Summary of classification performance for the Average Probability aggregation method

AVERAGE Sensitivity Specificity AUC
PROBABILITY Ensemble Individual classifiers Ensemble Individual classifiers Ensemble Individual classifiers
classifier min max average classifier min max average classifier min max average

Ensemble A 1.0000 09211 09737 09474 0.8421 08421 08421 0.8421 09972 09626 09737  0.9681
Ensemble B 09737 09211 09211 09211 0.8421 08421 08421 0.8421 0.9931 09557 09612 0.9584
Ensemble C 1.0000 09211 09737 09539 0.8421 0.7368 08947 0.8421 09917 09501 09709 0.9602
Ensemble D 1.0000 09211 09737 09386 09474 08421 09474 09035 0.9986 09557 09778 09677
Ensemble E 1.0000 08947 1.0000 09518 0.8947 07368 09474 08553 09972 09418 09765 0.9643
Ensemble F 1.0000 09211 09737 09430 0.9474 08421 09474 08816 0.9986 09557 09848 0.9672

Shown is performance for tumour vs normal classification for the 6 ensembles defined in Table 4 using the average probability aggregation method. The
minimum, maximum and average performances of individual classifiers in the respective ensemble are included in the table for comparison.

When diagnosing acute kidney rejection, it is arguably
more important to avoid false negatives (rejection that is
falsely classified as non-rejection) than false positives
(non-rejection falsely classified as rejection), because
delays in the treatment of acute rejection cause both
short- and long-term harm to the patient [45,46]. This
was the motivation behind the vote-threshold aggrega-
tion method, which ensures that a single individual
classifier vote for acute-rejection would result in an
acute-rejection classification by the ensemble. The
results in Table 3 demonstrate that the VT aggregation
method achieved an increase in sensitivity across all
ensembles though at the intuitively expected cost of
decreased specificity in 4 out of 5 ensembles. The impact
of this approach is similar to lowering the probability-of-
AR-threshold for an individual classifier, but it benefits
from the increased diversity that comes with an ensem-
ble, which in our case includes genomic- and proteomic-
based biological signals. The VT method is especially
valuable in cases where one platform is able to detect a
rejection signal in some patients while another platform
is not, as is demonstrated, for example, in Figure 4.

One of the ensembles (Ensemble 1) represents a two-
classifier ensemble combining our previously published
genomic and proteomic classifiers [5,6]. Even though
AUC improves slightly when using the AP aggregation

method, the same samples are misclassified as in the
genomic classifier of Ensemble 1. Sensitivity is improved
beyond that of the genomic or proteomic classifier alone
when the VT aggregation method is used, but specificity
dropped below the values for the individual classifiers.
Ensemble 1 therefore does not seem to improve classifi-
cation performance much beyond that of the Genomics
1 classifier alone. Ensembles 2, 3 and 5 represent an ex-
tension of Ensemble 1, where further genomic and/or
proteomic classifiers were added. For the AP aggregation
method these three ensembles show a similar perform-
ance range as Ensemble 1, while for the VT aggregation
method Ensembles 3 and 5 can improve sensitivity to
100% but drop below the range of individual classifiers
for specificity, while staying within range regarding
AUC. Ensemble 5 has a specificity of 62% which is the
lowest specificity across all 5 ensembles and 10 individ-
ual classifiers. This is not surprising since Ensemble 5
combines all 10 individual classifiers and a single AR-
classification of one of the 10 classifiers is enough to call
the sample AR, therefore maximally increasing sensitiv-
ity and lowering specificity. In this case and for ensem-
bles with a larger number of individual classifiers, the
VT method might perform better with a higher thresh-
old, which could be, for example, AR-classification from
at least two classifiers.

Table 6 Summary of classification performance for the Vote Threshold aggregation method

VOTE Sensitivity Specificity AUC
THRESHOLD Ensemble Individual classifiers Ensemble Individual classifiers Ensemble Individual classifiers
Classifier min max average classifier min max average Classifier min max average

Ensemble A 1.0000 09211 09737 09474 0.7368 0.8421  0.8421 0.8421 0.9875 09626 09737 09681
Ensemble B 1.0000 09211 09211 09211 0.6842 08421 08421 0.8421 0.9917 09557 09612 09584
Ensemble C  1.0000 09211 09737 09539 0.6842 07368 08947 08421 0.9861 09501 09709 09602
Ensemble D  1.0000 09211 09737 09386 0.7368 08421 09474 09035 0.9875 09557 09778 09677
Ensemble E  1.0000 08947 1.0000 09518 06316 0.7368 09474 08553 0.9903 09418 09765 0.9643
Ensemble F 1.0000 09211 09737 09430 0.6842 08421 09474 08816 0.9931 09557 09848 09672

Shown is performance for tumour vs normal classification for the 6 ensembles defined in Table 4 using the vote threshold aggregation method. Similarly to

Table 5, individual classifier performances are included for comparison.
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and grey crosses from the three mRNA classifiers, and pink and blue stars from the three miRNA classifiers.

The best-performing ensemble (Ensemble 4) excludes
the published genomic and proteomic classifiers but in-
stead combines the largest genomic, the largest prote-
omic and a 50-feature genomic classifier based on
Random Forest. The results in Table 2 and Table 3
favour Ensemble 4, which is the only one that improves
sensitivity and AUC beyond that of individual classifiers
in the ensemble while staying within the range for speci-
ficity. The two genomic classifiers in Ensemble 4 are
based on Elastic Net (174 features) and Random Forest
(50 features, of which 49 are also included in the 174-
Elastic Net classifier). The proteomic classifier is based
on SVM using 33 features that were selected by fold-
change criteria. A contributing factor for the good per-
formance of Ensemble 4 could therefore be the use of
comparatively large classifier panels and a fold-change
filter on the proteomic side.

Several parts of the biomarker development pipeline
for individual classifiers were designed to reduce the
selection of false positive biomarkers, including pre-fil-
tering, multiple hypothesis testing correction, cross-
validation to maximize use of the small number of
available samples, and nested cross-validation to avoid
bias when models are tuned [29,34,47,48]. Ensembles
provide an additional layer of robustness for classifica-
tion when aggregation methods that average over several

classifiers, e.g. average probability or majority vote, are
used. This robustness is achieved by reducing the impact
of inaccurate classifiers based on false positive genes or
proteins by allowing more accurate classifiers in the en-
semble to “out-vote” a small number of inaccurate clas-
sifiers. Related to the previous point is the fact that the
kidney rejection data is “wide” data, which is defined as
having more features than samples. In “wide” data pro-
blems it is not feasible to find the best classifier. Instead,
one commonly finds many and possibly quite different
classifiers that seem equally valid while displaying a
range of classification performances. Ensembling there-
fore provides a robust approach to “wide” data classifica-
tion problems.

An important question surrounding ensembling con-
cerns the choice of individual classifiers that should be
part of the ensemble. Theoretical analysis points to in-
cluding classifiers that are as independent as possible
[36]. One source of “independence” in the acute kidney
rejection case study comes from the two data types, i.e.
genomic versus proteomic. Within genomic and prote-
omic data, classifiers are developed using different com-
binations of filtering- and classification methods as
shown in Figure 1, thus focusing on different aspects of
genomic and proteomic data respectively. An additional
source of “independence” that has not been explored in
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this study could be provided on a biological level. Bio-
informatics tools, such as pathway analysis tools and
ontology-based tools, can provide insights as to how
much individual biomarker panels differ biologically. In-
dividual classifiers in an ensemble could then be selected
to cover a wide range of biological pathways, thus pro-
viding a diverse biological cross-section. Pathway ana-
lysis is an area of active research in its own right that is
currently going through a dynamic flux [49]. Hence, we
have concentrated in our approach and discussion on
computational aspects of ensemble classifiers.

In addition to selecting individual classifiers to be
combined in an ensemble, a weighting needs to be pro-
vided. We have used equal weights of individual classi-
fiers in our analyses, as suggested by the term average
probability. In general, each classifier can be weighted
differently in classifier aggregation such that more trust-
worthy classifiers receive a higher weight. It is important
to note that any composition of an ensemble introduces
a form of weighting. For example, an ensemble of 2 gen-
omic and 5 proteomic classifiers, in which all classifiers
have equal weights, would put a higher weight on
proteomic-based classifiers as a group when compared
to genomic-based classifiers. If one prefers to give equal
weight to genomic- and proteomic-based classifier-
groups, the two genomic-based classifiers should have a
weight of 0.25 each (thus adding up to 0.5), while the
five proteomic-based classifiers should have a weight of
0.1 each (also adding up to 0.5). The five ensembles in
Table 1 followed an underlying balanced design in this
regard, ie., the difference in the number of genomic and
proteomic classifiers in an ensemble, is at most 1.

Figure 5 shows a matrix of scatter plots for all 10 pos-
sible pairs of individual classifiers from Ensemble 2,
demonstrating the usefulness of this type of visualization
in providing an overview of the diversity between the
classifiers in an ensemble. The scatter plots between
pairs of genomic classifiers (three plots in the upper left)
and proteomic classifiers (one plot in the bottom right)
show similar classification of samples, with most sam-
ples falling into the yellow areas. The remaining 6 scat-
ter plots compare one genomic and one proteomic
classifier each. Here, an increase in disagreement be-
tween the classifier pairs is observed, which is evident by
more samples falling in the grey areas. Disagreement to
some extent is desired in ensemble classifiers since they
derive a benefit from the diversity of the underlying clas-
sifiers. In addition to comparing classifiers in an ensem-
ble based on the number of features and individual
performance characteristics as shown in Table 1, one
can also use information from scatter plots as shown in
Figure 4 and 5 to add or remove classifiers, in an effort
to optimize diversity during the ensemble design
process. It should be noted that the number of plots in a
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scatter plot matrix grows with the square of the number
of individual classifiers, an effect that poses a practical
limitation on this type of visualization.

Because the proteo-genomic ensemble approach
assumes fully developed individual classifiers, test sam-
ples need to be classified by genomic and proteomic
classifiers before they can be aggregated. This requires
the samples to be run on both platforms. In cases where
a sample is only run on one platform, the ensemble clas-
sifier cannot be used. An alternative in this case is to fall
back on a platform-specific classifier, which by itself could
be an ensemble (e.g., a genomic-ensemble), although one
would lose the advantage of using information from
diverse sources for classification. The inclusion of data
from other platforms within the presented ensemble
framework, for example miRNA, metabolomic or clinical
data sources, is easily possible as long as patient-matched
measurements from the corresponding platforms are pro-
vided. The generality of the ensemble framework has been
demonstrated by applying it off the shelf to an additional
cancer data set based on two different types of genomic
data (mRNA and miRNA). The findings there show that
ensemble classifiers can improve upon already well-
performing individual mRNA and miRNA classifiers, thus
supporting the notion that ensemble classifiers based on a
diverse set of individual classifiers across different plat-
forms have the ability to outperform any single classifier
in the ensemble.

Conclusions

Proteo-genomic biomarker ensemble classifiers show
promise in the diagnosis of acute renal allograft rejection
and can improve classification performance beyond that
of individual genomic or proteomic classifiers alone. The
Vote Threshold application method allows fine-tuning of
sensitivity and specificity while incorporating diverse
classification signals from individual classifiers. This is
an important feature in application areas where sensitiv-
ity is more important than specificity. Validation of our
renal allograft rejection results in an international multi-
center study is currently underway.

Endnotes

"The Genomics 1 classifier was developed based on
33-samples which included one additional non-rejection
sample that was available only on the genomic platform.
This sample was not included in the development of the
other genomic and proteomic classifiers.

PClassifier Proteomics 1 in Table 1 is from a previous
publication [6] which used a 67% minimum detection
rule.

“Performance estimates for classifier Genomics 1 in
Table 1 were based on values for 32 samples derived
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from 11-fold cross-validation of the 33 sample set as
described in a previous publication [5].

dPerformance estimates for ensembles that included
the Genomics 1 classifier used posterior probabilities for
the 32 samples in common.
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