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Abstract

hypothesis testing.

Background: Causal graphs are an increasingly popular tool for the analysis of biological datasets. In particular,
signed causal graphs-directed graphs whose edges additionally have a sign denoting upregulation or
downregulation—can be used to model regulatory networks within a cell. Such models allow prediction of
downstream effects of regulation of biological entities; conversely, they also enable inference of causative agents
behind observed expression changes. However, due to their complex nature, signed causal graph models present
special challenges with respect to assessing statistical significance. In this paper we frame and solve two
fundamental computational problems that arise in practice when computing appropriate null distributions for

Results: First, we show how to compute a p-value for agreement between observed and model-predicted
classifications of gene transcripts as upregulated, downregulated, or neither. Specifically, how likely are the
classifications to agree to the same extent under the null distribution of the observed classification being
randomized? This problem, which we call “Ternary Dot Product Distribution” owing to its mathematical form, can
be viewed as a generalization of Fisher's exact test to ternary variables. We present two computationally efficient
algorithms for computing the Ternary Dot Product Distribution and investigate its combinatorial structure
analytically and numerically to establish computational complexity bounds.

Second, we develop an algorithm for efficiently performing random sampling of causal graphs. This enables p-
value computation under a different, equally important null distribution obtained by randomizing the graph
topology but keeping fixed its basic structure: connectedness and the positive and negative in- and out-degrees of
each vertex. We provide an algorithm for sampling a graph from this distribution uniformly at random. We also
highlight theoretical challenges unique to signed causal graphs; previous work on graph randomization has
studied undirected graphs and directed but unsigned graphs.

Conclusion: We present algorithmic solutions to two statistical significance questions necessary to apply the causal
graph methodology, a powerful tool for biological network analysis. The algorithms we present are both fast and
provably correct. Our work may be of independent interest in non-biological contexts as well, as it generalizes
mathematical results that have been studied extensively in other fields.

Background

Causal graphs are a convenient representation of causal
relationships between variables in a complex system:
variables are represented by nodes in the graph and
relationships by directed edges. In many applications the
edges are also signed, with the sign indicating whether a
change in the causal variable positively or negatively
affects the second variable. Causal graphs can serve as
predictive models, and conclusions can be drawn from
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comparing the models’ predictions to experimental mea-
surements of these variables. Pollard et al. [1] pioneered
the use of large-scale causal graphs to interpret gene
expression data and the approach has been used suc-
cessfully in several contexts [2-4]. We present our own
causal reasoning approach in our companion paper [5];
here we give a brief overview.

Published research in biology provides a wealth of reg-
ulatory relationships within the cell that we mine to
produce a causal network. The edges in this network
are directed (by the flow of causality among the corre-
sponding variables) and signed (by the sign of the corre-
lation between the variables). Directed paths within the
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network thus predict putative upregulation and downre-
gulation that would be effected downstream by changes
in the level of a given entity (i.e., vertex in the graph).
Our companion paper [5] shows that this reasoning can
be applied to the inverse problem: given data from a
gene expression assay, our causal network enables us to
infer potential upstream causes for the measured gene
expression changes. The key output of the method is a
list of upstream hypotheses that explain a large fraction
of the observed changes in a statistically significant
manner. As hypotheses are based on existing literature,
they are easily interpretable by biological experts and
can provide building blocks for a more comprehensive
understanding of causal drivers of the processes under
consideration. Figure 1 provides a schematic of the
approach.

In this paper, we study the problem of evaluating sta-
tistical significance of the conclusions drawn from a
causal graph-based model given a particular gene
expression dataset. To form a null distribution, either
the correspondence between gene transcripts and
experimental expression values or the connectivity of
the graph can be randomized. Thus, the statistical sig-
nificance question splits into two subproblems. First,
how likely is it for the same level of agreement between
predicted and observed regulation to be achieved when
the classification of gene transcripts (as upregulated,
downregulated, or neither) is randomly drawn from a
family of all classifications with similar characteristics?
Second, how likely is it to occur when the causal graph
is randomly drawn from a family of all causal graphs
with similar characteristics?

Answering the first question amounts to computing
the distribution of the dot product of two vectors with
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components in {-1, 0, 1}, each drawn randomly from the
family containing all such vectors with a fixed number
of components of each value. This problem, which we
call Ternary Dot Product Distribution, generalizes Fish-
er’s exact test [6] to ternary variables and we thus
believe it is of independent interest. Fisher’s exact test is
ubiquitously used in gene set enrichment analysis and
many other areas of computational biology [7]. This test
is appropriate to assess statistical significance of enrich-
ment in many settings but neglects the sign of differen-
tial regulation. In many cases, the sign of the regulation
is available and could be harnessed to obtain additional
insights. One example where our proposed extension is
directly applicable is as an alternative scoring mechan-
ism for the well-known Connectivity Map approach [8].

Answering the second statistical significance question
analytically does not appear to be possible, but the
desired likelihood may be approximated by sampling
uniformly at random from the family of all causal
graphs with the same basic structure as the original cau-
sal graph: namely, the same positive and negative in-
and out-degrees of each vertex. Because of the structure
of the problem, even drawing one causal graph from
this family is challenging. We call this the Causal Graph
Randomization problem. Previous work on the problem
of graph randomization has focused on undirected
graphs [9-11]; the context of directed graphs is less
well-studied theoretically [12-17] despite finding many
uses in bioinformatics [18-20].

The rest of this paper is organized as follows. We
begin by describing the regulatory network model based
on causal graphs and discuss the way conclusions are
drawn from it and the importance and subtleties of
computing their statistical significance. We then

“In cultured hepatocytes, PGC-1(alpha) protein
increases expression of rat Ugtla mRNA.”

“In D247MG cells, HIF1A protein increases
expression of human IGFBP5 mRNA.”

A,

PGC-1a t(Ugtla)
HIF1A + t(IGFBP5) DEF
Liver injury + t(FN1) GHI

transformed into a causal graph, used to explain gene expression data.

+ ABC

Figure 1 lllustration of the causal graph methodology. Schematic depiction of a set of relationships curated from the literature and
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describe the Ternary Dot Product Distribution problem
and present two efficient algorithms to solve it: an algo-
rithm with complexity cubic in the number of variables
(i.e., vertices) in the graph but requiring computation in
exact arithmetic, and an algorithm with a weaker com-
plexity guarantee but numerically stable and efficient in
practice. Finally, we discuss the challenges of the Causal
Graph Randomization problem and present a practical
algorithm for it using local graph operations, and con-
clude by describing future work.

Model Description

The two fundamental properties of causal relationships
between biological entities are (1) the direction of caus-
ality between them; and (2) the qualitative response (i.e.,
upregulation or downregulation) of the second entity
when the first one is upregulated or downregulated.
This information can be encapsulated in a signed direc-
ted graph G = (V, E) whose nodes V are genes, tran-
scripts, compounds, or biological processes, and where a
directed edge from node a to node b means that the
abundance or activity of b is regulated by the abundance
of a. The edge (a, b) is labeled with a “+” sign if the reg-
ulation is positive (i.e., an increase in a leads to an
increase in b), and it is labeled with a “-” sign if the reg-
ulation is negative. We call G a causal graph.

For any two nodes a and z not necessarily connected
by an edge, the causal graph G models the effects of a
change in the abundance of a4 on the abundance of z by
tracing the shortest directed path from a to z in G and
then evaluating its sign, given by the product of the
signs of the edges along the path. If this overall sign
turns out to be a plus sign, it is expected that a upregu-
lates z, and if it is a minus sign, that 2 downregulates z
[1].

Hypothesis scoring

Given a gene expression dataset, we may classify gene
transcripts into three families: significantly upregulated,
significantly downregulated, and not significantly regu-
lated. We refer to this classification as the experimental
classification. We wish to understand what perturbations
may have led to these observations.

Given a particular entity v € V in our causal graph,
we can examine the predicted effects of upregulating or
downregulating it. We call v together with the direction
of perturbation a hypothesis. This hypothesis also classi-
fies the gene transcript nodes in the graph into three
families: those predicted to be upregulated by the per-
turbation of v, those predicted to be downregulated by
the perturbation of v, and those not predicted to be
regulated by v. We refer to this classification as the pre-
dicted classification.

In order to evaluate the goodness-of-fit of a particular
hypothesis to the observed gene expression dataset, we
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declare a prediction to be correct if the predicted sign
matches the experimental sign and the regulation was
significant: i.e., both signs are + or both are -. In case of
a mismatch (a + and a -), we declare the prediction to
be incorrect. In all other cases, we declare the prediction
to be ambiguous. We may now score a hypothesis by
awarding 1 point for each correct prediction, -1 for each
incorrect prediction, and 0 for each ambiguous
prediction.

Statistical significance

The scores computed for each putative hypothesis pro-
vide us with an overall ranking of all hypotheses. How-
ever, a good score does not necessarily imply good
explanatory power, because of possible connectivity dif-
ferences between the transcript nodes of G. In particu-
lar, “hubs” with high degree are more likely to have
higher scores regardless of which genes are experimen-
tally observed to be significantly regulated. Therefore,
we also need to look at the statistical significance of
each score when the gene expression data is rando-
mized, preserving the number of upregulated and down-
regulated gene transcript nodes, but not the nodes
themselves.

In addition, we need to understand how significant the
rank of a hypothesis is with respect to another null
model, in which the gene expression data remains fixed
but the causal graph is allowed to vary, only keeping
basic connectivity properties. More specifically, we
examine the rank of a hypothesis of interest in the
family of graphs with the same sequence of positive and
negative in-degrees and out-degrees as G, but randomly
connected otherwise. If these degrees rather than the
full structure of G suffice to give a hypothesis of interest
a good rank, this hypothesis should not be deemed sta-
tistically significant.

lllustrative Example

To build intuition for the proposed method we outline
an example application based on previously published
experimental data (GEO accession GSE7683 [21]) and a
large-scale causal network containing approximately
250,000 unique relationships licensed from Ingenuity,
Inc. and Selventa, Inc. The original study was devised to
study the effect of dexamethasone on the differentiation
and development of primary mouse chondrocytes using
gene expression microarrays. Interestingly, the authors
report difficulties in drawing clear conclusions about the
pathways and biological categories affected by dexa-
methasone using traditional microarray analysis methods
and Gene Ontology annotations. The authors suggest
that the difficulty may be due to modest response to
dexamethasone (i.e., weak signal compared to back-
ground noise) that limited the ability of traditional
approaches to make inference [21].
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Our approach provides a statistical framework for cau-
sal inference that may be particularly valuable in such a
situation. As outlined above, we consider each entity in
our causal graph together with a direction of perturba-
tion as a hypothesis; based on the network model, per-
turbing the entity should effect changes downstream,
and we assess significance of the concordance between
the predicted and experimentally measured changes by
computing p-values based on the Ternary Dot Product
and Causal Graph randomized null models. For simpli-
city, in this example we only consider predicted down-
stream effects one step downstream of each entity.
Figure 2 illustrates the scoring for one particular
hypothesis, KLF4+ (i.e., upregulation of KLF4). Note
that graph entities are not limited to genes or tran-
scripts but may include more abstract concepts tied to
expression changes in the literature; an example we will
encounter below is Response to hypoxia. In this case, the
“direction of perturbation” included in a hypothesis is
also to be understood more abstractly: e.g., Response to
hypoxia+ corresponds to an increase in the effects of
hypoxia (as opposed to a concrete “upregulation”).

Table 1 shows the top ten hypotheses obtained from
the dexamethasone treatment data (specifically, the 24
hr time point) along with corresponding computed p-
values. Five of the top hypotheses directly reflect the
primary experimental perturbation: the perturbation
itself (Dexamethasone+), the target receptor (NR3CI+),
its drug family (Glucocorticoid+) and two other gluco-
corticoids (Hydrocortisone+ and Triamcinolone aceto-
nide+). Other top hypotheses describe major players in
chondrocyte development and differentiation. For exam-
ple, Response to hypoxia+ may reflect the central role of
hypoxia response factors in the development and survi-
val of avascular tissues such as the chondrocytes being
studied here [22]. In fact, examination of the biological
context of the evidence supporting Response to hypoxia
+ revealed corresponding results in the literature such
as the promotion of chondrocyte differentiation by

KLF4

\ \ » 4 \J 1 A a N

tNrld2) t(GJB2) t(CDKN1C) t(DPEPL) HGRKS) t(KRT7) (SMPD3) tMT1E) UMEF2C)
Figure 2 Scoring of an example hypothesis. Illustration of
scoring for the KLF4+ hypothesis based on the experimental dataset
discussed in the main text. Arrows illustrate predicted upregulation
or downregulation of all experimentally regulated transcripts one
step downstream of KLF4. In this case, all predictions match with
experimental observations, resulting in 9 correct and 0 incorrect
predictions and a corresponding score of 9.
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hypoxia [23]. Similarly, KLF4 (shown with supporting
transcriptional evidence in Figure 2) is an important
gene in cell differentiation and chondrogenesis [24] and
has been shown to be upregulated during hypoxia-
induced mesenchymal stem cell differentiation [25].

Importantly, hypotheses are based on overlapping but
different sets of regulated transcripts. Thus, while we
assess significance of each hypothesis in isolation, the
evidence shared among hypotheses should be helpful in
building a more global understanding. For instance, 50%
of the KLF4+ transcriptional evidence is also part of the
Response to hypoxia+ evidence. This supports a major
role of hypoxia in chondrogenesis which is partially
mediated through KLF4.

Only 23 of the top 50 hypotheses by score pass a sig-
nificance cutoff of 0.001 for both metrics, indicating the
utility of significance assessment—not just score—in dis-
cerning hypotheses worthy of further investigation. For
example, NRF2+, ranked 17th by score, is not deemed
statistically significant according to our metrics; this is
consistent with current knowledge as NRF2 negatively
regulates chondrocyte differentiation contrary to the
reported effect of dexamethasone. In contrast to our sig-
nificance tests, a standard test for enrichment based on
Fisher’s Exact Test would have given a p-value < 107, a
result that is probably spurious.

This example is not meant as a comprehensive discus-
sion of the affected biology but should provide some
intuition how the proposed measures can be used. For
complex biological phenotypes, many hypotheses may
be reported as significant that may include overlapping
but distinct sets of transcriptional changes as supporting
evidence. While our proposed metrics judge significance
of single hypotheses independently, the results provide a
statistically well-founded substrate on which to form a
more comprehensive picture of potential drivers of the
observed expression changes.

Results

We divide this section into two parts corresponding to
the two statistical significance questions we address:
Ternary Dot Product Distribution and Causal Graph
Randomization.

Ternary Dot Product Distribution

We begin by establishing notation and phrasing the pro-
blem in a slightly more abstract setting which we find
helpful for investigating its mathematical structure.
Problem definition

A ternary classification of a ground set T (such as the
gene transcript nodes of the causal graph G in our moti-
vating example) is a function from 7 to {-1, 0, 1}. Given
an arbitrary but fixed ordering of the elements of T, we
can naturally represent a ternary classification C of T as



Chindelevitch et al. BMC Bioinformatics 2012, 13:35
http://www.biomedcentral.com/1471-2105/13/35

Page 5 of 14

Table 1 Top hypotheses by score and corresponding p-values on an example dataset

Rank Hypothesis Name Correct Incorrect Score Ternary Dot Product p Causal Graph p
1 Response to Hypoxia+ 48 9 37 2% 1072 < 0001
2 Dexamethasone+ 20 4 16 6% 10° < 0001
3 Hydrocortisone+ 17 4 13 1x10% < 0001
4 PGR+ 12 1 11 6x10° < 0.001
5 SRF+ 10 0 10 3x10° < 0.001
6 KLF4+ 9 0 9 3% 10° < 0.001
7 NR3C1+ 12 4 8 7 x 10* < 0.001
7 Glucocorticoid+ 12 4 8 8x 107 < 0001
7 CCND1+ 9 1 8 3x10* < 0.001
7 Triamcinolone acetonide+ 8 0 8 9% 107 < 0.001
17 NRF2+ 9 4 5 0.18 0.07

Top hypotheses by score in an example experimental dataset of dexamethasone-stimulated chondrocytes (GEO accession GSE7683 [21]). Each hypothesis is
scored by the difference between the numbers of correct and incorrect predictions. Significance is assessed by the Ternary Dot Product and Causal Graph
Randomization p-values discussed in the text; the latter numbers are estimates based on 1000 runs of graph randomization and for this reason are always a
multiple of 0.001. When no randomized graph with a better score for the given hypothesis is detected, we indicate that as “p < 0.001.” Note that hypotheses
with the same numbers of correct and incorrect predictions do not necessarily have the same p-values because the significance calculation takes into account
the full contingency table for each hypothesis; some hypotheses result in more predicted regulations than others.

a ternary vector u(C) whose i-th component is the value
of C on the i-th element of 7. Then, for two ternary
classifications C and C’ of T, the agreement between C
and C’ (corresponding to the goodness-of-fit in our
motivating example) is computed as the dot product u
(O) - u(C).

We are interested in understanding the distribution of
the agreement between the fixed experimental classifica-
tion C and a random classification whose parameters
(numbers of -1, 0 and 1 components) are taken from
the predicted classification C’. In other words, given two
classifications C and C’ of T, we are interested in the
distribution of the agreement between C and a rando-
mized version of C’ over all possible randomizations,
where a randomization of C’is a classification Cp of T~
with the same parameters as C’.

Denote the parameters of C and C’ by

do = #{ilu(C)i =0}, n, =4#{iju(C); = o},

where o € {-1, 0, 1}. Also let
Ny = # {iju(C); = o, u(C); = 1}

for 0, € {-1, 0, 1}, corresponding to the nine ways in
which the classifications C and C’ can overlap. This
gives us the 3 x 3 contingency table for the joint classifi-
cation (C, C’) shown in Table 2. (For notational conve-
nience we write {-, 0, +} instead of {-1, 0, 1} when
indexing variables.)

The same 3 x 3 contingency table will arise from a
large number of randomized classifications Cy, and
the number of such classifications, which we denote by

Din,,, n,, n_,, n_], depends only on the top left 2 x 2
corner of the table since the other entries are deter-
mined by the constraints on row and column sums.
Using multinomial coefficients, we can write

D[n++/ ny—, n—+,n——] =

g+ q- do
Ny, Ny, Nyo n,n._,nyo No+, No—, Noo

We will write D[n..] as shorthand for this quantity.
The score for a classification Cj yielding this table is
simply

S, e, n_y,n__]:=n, +n__ —n,_ —n_,.

We also know that the total number of possible ran-
domized classifications is

> ot =(, )

[ ]

Diot =

Thus, the distribution we are seeking is a sum of the
Din,., n,, n_,, n_] aggregated by the score S[n, ., n,, n.

Table 2 Contingency table comparing predicted and
experimental classifications

Nyt Ny Nyo d+
N, n_ Nno q.
No+ No- Noo do
ny n. No |71

Contingency table of predicted and experimental classifications. The columns
sum to n,, n, and ng, the numbers of predicted classifications of each type,
and the rows sum to q,, g, and go, the numbers of experimental
classifications of each type.
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+ n_] and normalized by D, Explicitly, the probability
of a score § is given by

p(S) = >

(nstn,_)—(n_,+n__)=8

and the p-value of a score can be computed by sum-
ming the right tail of the distribution.

In the context of our illustrative example, these are
the p-values given for hypotheses of interest in the
“Ternary Dot Product p“ column of Table 1. Computing
these p-values naively is computationally intensive, how-
ever; to perform the calculations efficiently, we devel-
oped and applied an algorithm we now describe.
Algorithm
The Ternary Dot Product Distribution problem can be
solved by computing each D-value individually in constant
time (see Methods), giving a total running time that scales
as the product n,, 1., q., ., i.e, ON*) where N := max(n,,
n., 4., q.)- While this complexity is acceptable for moder-
ate values of N (say up to 100), it becomes prohibitively
slow for larger values of N, typically between 100 and
1000, that often arise in applications. Hence, faster alterna-
tives are necessary; we give two improvements below.

Instead of computing all the D-values individually, we
can aggregate them by the value of n,, + n_. This still
makes it possible to group them by the score S, as S
only depends on n,, + n_ and n_, + n,.. We can write
the sum of all the D-values with a fixed n := n,. + n_,
in the form of a constant times

e ()

where k=n,,v=q,+q -n,, -n,w=gq, -n,,,x=n,
+n. -n,, -n_,andy = n_- n_. It turns out that F[x] satis-
fies a three-term linear recursion obtained by using the
WZ algorithm [26]. With this recursion, each F[#] can be
computed in average constant time. Since there are only O
(N?) values of F[u] to compute, we get a O(N°) algorithm
for our problem. (See Methods for a full description.)

This cubic algorithm is of theoretical interest but in
practice requires exact arithmetic to obtain correct
answers due to numerical instability (see Testing). We
therefore developed a second algorithm that is both fast
and practical, having the important advantage of work-
ing in floating-point arithmetic.

The key observation underlying our algorithm is that
the vast majority of contingency tables are highly
improbable (i.e., D[n,,, n,_, n_,, n_]/Dy, < 1) and thus
may be safely ignored if we:

(a) need only carry out the computation to fixed
precision; and

Page 6 of 14

(b) do not care about the precise values of tail prob-
abilities: it is enough to know that they are small.

Moreover, the quantities D[n..] follow an easily
described law on certain families of contingency tables,
thus allowing us to identify entire families of tables that
can be discarded after a constant amount of
computation.

Consider families of configurations in which the row
and column sums of the upper-left 2 x 2 submatrix (#..)
are fixed. Denote these sums by r,, r, c,, ¢, noting that
as before, one constraint is redundant as r, + r. = ¢, + c.
=: t is the total of the entries in the submatrix. Thus, in
each family, one degree of freedom remains, which we
may parameterize by the value of #, .. It turns out that
within each such family, D[#n..] is maximized when 7.,
are distributed in proportion to the 2 x 2 row and col-
umn sums, i.e.,

Ngr & 1,0/t foro,t € {+, —}

(with appropriate rounding), and moreover, the prob-
ability decreases monotonically as #,, is varied in either
direction from the optimum. (See Methods for details
and a proof.)

Our algorithm thus proceeds as follows (Figure 3,
Algorithm 1a). First, compute the global maximum D-
value Dy, over all 3 x 3 contingency tables with row
and column sums g, 7,. As in the 2 x 2 case just dis-
cussed, Dy, is achieved when n,, ~ gq,n./|7T| for o, t
€ {+, -, 0}. Now iterate through the O(N?) families of
contingency tables with fixed upper-left 2 x 2 row and
column sums r4, c;. For each such family, compute its
maximum D-value Dy, by setting ny, =~ ryc,/t for o, 7 €
{+, -} (and inferring the remaining five 7., with 0 = 0 or
7 = 0). If Dy, is less than D, times a chosen threshold
factor e (perhaps machine epsilon-i.e., the maximum
relative error of rounding in floating point arithmetic—
divided by N?, though machine epsilon itself is likely
sufficient for practical purposes), discard this family and
proceed to the next one. Otherwise, the maximum prob-
ability for the family is non-negligible; in this case, iter-
ate through the family upward and downward from the
maximizing 7, ,, updating the aggregate probabilities of
the scores S[n,., n,., n_,, n_] obtained, until the D-value
of the current contingency table drops below €D, .

In practice, very few 2 x 2 families are within thresh-
old. In fact, the computation time is often governed by
the O(N®) initial threshold tests for each family (with
fewer than N® additional D-value computations). This
observation allows us to obtain further speedup by con-
sidering superfamilies in which only the row sums r, of
the upper-left 2 x 2 submatrix are fixed, leaving two
degrees of freedom. Each such superfamily is the union
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Algorithm 1a
D sums[] := 0 (sum of D-values for each possible score)
D max := global maximum D-value
for each family of contingency tables with fixed 2x2 sums
D fam := maximum D-value in family
u_opt := value of n_++ achieving D_fam
if D_fam < eps * D max
continue
else
D := D_fam, u := u_opt
while D >= eps * D_max
S := score of table with n_++ = u
update D and add to D_sums[S]
u := u+l
end
D := D _fam, u := u_opt
while D >= eps * D _max
u := u-1
S := score of table with n_++ = u
update D and add to D_sums([S]
end
end
end
Algorithm 1b
D sums[] := 0 (sum of D-values for each possible score)
D max := global maximum D-value
for each family of contingency tables with fixed 3x2 sums
D _fam := maximum D-value in family
if D fam < eps * D_max
continue
else
for each contingency table in family
D := D-value of table
S := score of table
D _sums[S] := D_sums[S] + D
end
end
end
Figure 3 Pseudocode for Ternary Dot Product algorithms.
Pseudocode for algorithms computing the Ternary Dot Product
Distribution using thresholding on families of contingency tables.

-

of a set of families we considered above, and as before,
the maximal D-value achieved by any contingency table
within the superfamily is obtained by assigning counts
to the left 3 x 2 submatrix proportionally to its row and
column sums. We can thus apply the algorithm
described above to the O(N) families of 3 x 2 left sub-
matrices with fixed row sums. When the maximal D-
value of the 3 x 2 family is below threshold, we may
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eliminate an entire one-parameter family of 2 x 2
families, achieving further efficiency (Figure 3, Algo-
rithm 1b).

Testing

We tested our algorithms on a wide range of problem
parameters and found that our thresholded algorithm
achieves substantial speed gains across parameter distri-
butions. Table 3 compares the scaling of run times of
the simple quartic algorithm (computing all D-values)
and Algorithm 1b, the version thresholded on 3 x 2
families, for a parameter distribution representative of
typical use cases. For large cases, the thresholded algo-
rithm reduces run times from days to minutes.

To further investigate the efficiency attained by
thresholding, we computed counts of the numbers of D-
values computed by the quartic algorithm and during 2
x 2 and 3 x 2 thresholding; we compare these counts to
the actual numbers of contingency tables and families
that pass threshold (Figure 4). We performed these
computations for two parameter distributions: one with
no = 51, and one with ny = 50n,. The first case is rela-
tively dense, i.e., a sizeable portion (around 30%) of the
gene transcripts are significantly upregulated or downre-
gulated. The second case is sparser; here, there are
many more genes but only a few percent of them are
found to be regulated. This latter case is typical in
practice.

The solid black curve in Figure 4 indicates the amount
of work performed by the simple quartic algorithm
while the dotted black curve indicates the number of D-
values that exceed €D,,,,, thus placing a lower bound on
the amount of work that any thresholding-based algo-
rithm must perform. The disparity between these two
curves immediately demonstrates the reason our thresh-
olding algorithms achieve speedup: only a tiny fraction
of the D-values are non-negligible. The comparison
between the left and right panels of Figure 4 also makes
clear the relative effects of 2 x 2 versus 3 x 2 threshold-
ing in different parameter settings. In the dense case 7,
= 5n,, we see that 2 x 2 thresholding (Algorithm 1a) is

Table 3 Run times for Ternary Dot Product Distribution algorithm

Problem size (n,)

Quartic algorithm:compute all D-values

Thresholded algorithm

8

16
32
64
128
256
512
1024

005 s 007 s
0.19 s 0.15's
0925 036 s
6.16 s 061 s
53155 235
689.18 s 593 s
7864.20 s 1954 s
>1d 8576 s

Run time comparison of simple quartic Ternary Dot Product Distribution algorithm to thresholded version for an increasing family of problems with (n,, n., no, g.,
q.) in the ratio (1, 1, 50, 2, 1), a typical usage scenario. Runs were performed on a 3.0 GHz Intel Xeon processor with 2 MB cache.
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ny=5n, ny=50n,

12| —— Contingency tables
- Contingency tables > cutoff

12| —=— Contingency tables
« - Contingency tables > cutoff

—— 2x2 families
o e 2x2 families > outoff
—— 2x3 families

* 2x3 families > cutoff

—— 2x2 families
| T+ 2x2families > cutoff
—— 2x3 families

* 2x3 families > cutoff

Count
Count

Problem size (n,) Problem size (n,)

Figure 4 Computational complexity of Ternary Dot Product
algorithms. Counts of the numbers of D-values computed by the
simple quartic algorithm and during the thresholding part of the 2
X 2-and 3 x 2-family algorithms. Solid lines indicate total counts
while corresponding dotted Lines indicate the numbers of
contingency tables (respectively families) that pass the €Dax
threshold. The left panel shows a “dense” case ny = 5n, while the
right panel shows a “sparse” case ng = 50n,. For these examples we
setn, =n.=q, = q. and chose e = 107°.

probably already close to optimally efficient: the amount
of work required to do the threshold checks (solid blue
curve) is comparable to the total amount of work
required to compute all relevant D-values (dotted black
line). On the other hand, in the sparse case ny = 50n,,
even performing 2 x 2 threshold checks leaves much
room for improvement because the number of relevant
D-values is far smaller. In this situation it is much more
efficient to only compute O(N?) 3 x 2 threshold checks
(solid red line). For an analytical discussion of these
phenomena and a proof that the 2 x 2 thresholding
algorithm has complexity O(N*?), see Methods.

We have left our cubic algorithm out of the previous
figures and discussion because unfortunately, our tests
showed that it is numerically unstable, at least in the
form stated; we now briefly discuss this issue. While the
cubic algorithm does yield the correct distribution when
implemented in arbitrary-precision exact arithmetic, it
fails when implemented in floating-point arithmetic
because the range of values in the recurrence F[n] is
extremely large and subject to cancelation error. For
instance, when the parameters are set to the relatively
small values v = 20, w = 10, x = 10, y = 5, the values of
F[n] already go from 46558512 for n = 0 to 6006 for n
= 15, which means that each term is approximately a
factor of 2 smaller than the previous one. We consider
some alternatives in Discussion.

Implementation

We implemented all of our algorithms in R [27], vector-
izing computations when possible. A few remarks are in
order about implementation details necessary to make
the thresholding algorithm numerically stable. The large
factorials in the D-value formula require us to perform
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all computations in log-transformed space so as to stay
within floating point range. This causes no difficulty;
multiplication simply becomes addition and addition
can be implemented by exponentiating the difference of
two log-transformed values, adding 1, taking the log,
and adding a shift. Numerically, there is no risk of can-
celation error because D-values are only summed and
never subtracted; thus, all rounding error is additive and
well-controlled. The number of summands per score
value S is O(N?), and using a stochastic model of round-
ing error, the total accumulated relative error is thus
bounded by O(N*?) times machine epsilon. In practice
N is typically not more than 1000 while machine preci-
sion is 107 so there is no concern.

The only caveat, as we noted initially, is that our algo-
rithm guarantees precision relative to the maximum
probability of all score values—not the probability of
each particular score. In other words, very small tail
probabilities are known only to the extent that they are
understood to be negligible compared to probabilities
from the bulk distribution; their precise values are not
computed.

Causal Graph Randomization

We now turn to our second computational problem
arising from statistical significance evaluation in causal
graph models, that of graph randomization. We begin
by defining the Causal Graph Randomization problem
and placing it in context with previous work on graph
randomization. We then explain the special challenges
of randomizing a signed causal graph and present an
algorithm that successfully overcomes these challenges
in practice.

Problem definition

The basic statistical significance question motivating our
study of graph randomization is the same as before:
How likely is a given observation to have occurred by
chance? In the preceding development we analyzed this
question from the standpoint of randomizing the identi-
ties of gene transcripts classified as upregulated or
downregulated in a gene expression assay; now we take
the perspective of randomizing the causal graph itself.
Note that the ability to efficiently sample randomized
versions of the graph allows one to create an empirical
distribution of any quantitative graph property of inter-
est, in particular enabling p-value computation.

In our setup, we estimate the p-value of a hypothesis
as the proportion of the randomized graphs with a bet-
ter score for the hypothesis than the actual causal
graph. This is the general context in which we com-
puted the p-values listed in the “Causal Graph p“ col-
umn of Table 1 for our illustrative example. The precise
randomization procedure involves some subtleties both
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in definition and algorithmic implementation, however,
which we now describe.

In order to obtain an appropriate null distribution on
causal graphs, it is important to require that the rando-
mized graphs share basic structural properties with the
original causal graph, yet have enough flexibility to
reflect the space of reasonable graphical models. We
propose to fix the vertex set V of our original graph G
= (V, E) and randomize the edges, requiring that the
randomized versions G’ = (V; E’) maintain three proper-
ties:

1. Vertex degrees. We require that each vertex a €
V have the same positive and negative in- and out-
degrees in G’ as in G. This requirement is important
as biological networks typically have long-tailed
degree distributions that include highly connected
“hubs” as well as vertices with few incident edges.

2. Simplicity. We disallow self-edges and parallel
edges in G’ as these are not present in G. In other
words, for any two vertices a, b € V, there cannot
be an edge from a to itself and there can be at most
one directed edge from a to b, either positive or
negative.

3. Connectedness. We require that G’ be connected,
as is the case for our original biological network G.
For our signed directed graphs, we take connected-
ness to mean that the graph induced by ignoring
edge signs and directions is connected.

Note that the first two properties are local and the
third is global. These properties capture the most signif-
icant features of a causal graph and have also been the
subject of previous study in the graph randomization lit-
erature [9-12,14-16], though not until recently in the
signed directed case [13,17] that we investigate here.
Challenges in causal graphs
In the case of undirected graphs, the randomization pro-
blem is typically solved by defining a Markov chain
whose state space is F(G), the family of possible rando-
mizations G’ of G. Transitions in this chain consist of
edge switches, which consist of picking two random
edges (a, b) and (¢, d) and replacing them with the
edges (a, d) and (¢, b), provided this does not violate
required graph properties. This elementary operation
yields an ergodic Markov chain whose unique stationary
distribution is the uniform distribution on F(G)
[9,10,13]. In the directed setting, edge switches are no
longer sufficient to make the Markov chain ergodic, but
adding a further operation, which we call triangle flip-
ping, overcomes this problem at least for the case in
which Property 3 (connectedness) is not required [12].
A triangle flip replaces the edges (a, b), (b, ¢), (¢, a) (a
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directed 3-cycle) with the edges (4, ¢), (¢, b), (b, a) (the
reversed 3-cycle).

In our situation, signed directed graphs, a natural gen-
eralization of the above randomization algorithm is to
allow edge switches and triangle flips of same-sign
edges. Such operations clearly preserve in- and out-
degrees while modifying the edge structure of the graph,
but unfortunately the sign requirement substantially
constrains the set of possible transitions. We have iden-
tified several obstacles that can make parts of the state
space F(G) unreachable by this method; we illustrate
two in Figure 5.

The first one is the strong quadrilateral: a pair of
edges (a, b), (¢, d) of the same sign (say, +) such that
the graph also contains edges (a, d), (¢, b) of the oppo-
site sign (-). The graph obtained by flipping the signs on
the edges of a strong quadrilateral belongs to F(G)—
indeed, it could be obtained by simultaneously perform-
ing edge switches on both pairs of edges—but neither
edge switch is legal on its own because performing one
edge switch would cause the pairs of edges to overlap,
destroying simplicity.

The second obstacle is the strong triangle: a triplet of
edges (a, b), (b, ¢), (¢, a) of the same sign (say, +) such
that the edges (a, ¢), (¢, b), (b, a) of the opposite sign (-)
also exist in the graph. Again, the graph obtained by
flipping the signs on all the edges of a strong triangle
has the same degree sequence as the original one, and it
can be reached by a pair of simultaneous triangle flips,
but either flip is illegal on its own. We have also found
other obstacles that can be created by combinations of
edge pairs, triangles and 3-paths (paths of length 3) with
different signs.

Now, while these examples show that in general it is
impossible to produce all the graphs in F(G) via same-
sign edge switches and triangle flips, we believe that the
situation is not so bleak for the large, sparse causal
graphs we deal with in practice. By leveraging auxiliary
edges, it is usually possible to bypass the above obstacles.
We give one possible construction showing that strong

X e

A c A

Figure 5 Two obstacles to randomization of signed directed
graphs. A strong quadrilateral and a strong triangle. Solid lines
indicate positive edges and dotted lines indicate negative edges.
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triangles do not actually present obstacles in a large,
sparse causal graph; a similar construction works for
strong quadrilaterals, as well as other obstacles.

Let a, b, c be the vertices of a strong triangle in which
(a, b), (b, ¢), (¢, a) are positive edges. Suppose that there
exist positive edges (ay, as), (b, by), (c1, ¢p) disjoint
from each other and {a, b, ¢}. The following procedure,
illustrated in Figure 6, “flips” both parts of the strong
triangle:

1. Opening: Switch (a, b) with (cy, ¢,), (b, ¢) with (ay,
a,), (¢, a) with (by, b,).

2. Flipping: Flip the triangle (a, ¢), (¢, b), (b, a)
(which can now be done).

3. Closing: Switch (a3, ¢) with (a4, ¢,), (b1, a) with (b,
a,), (c1, b) with (¢, by).

4. Restoring: Switch (by, a,) with (c1, by) and then
switch (cq, a,) with (aq, ¢).

Algorithm
Given that causal graphs arising from biological net-
works are typically large and sparse, we expect that in
practice the combination of same-sign edge flips and tri-
angle switches suffices to overcome local obstacles to
randomization, as observed above.

We thus propose the following algorithm for Causal
Graph Randomization. Repeatedly perform the following
procedure:

1. Pick two edges uniformly at random from the
edge set E. If the edges are of different sign, restart.
2. If the edges share no endpoints, perform an edge
switch if it is legal; otherwise, restart.

Figure 6 Flipping a strong triangle using auxiliary edges. The
sequence of same-sign edge switches and triangle flips that flips a
strong triangle: (1) Opening, (2) Flipping, (3) Closing, and (4)
Restoring. Solid lines indicate positive edges and dotted lines
indicate negative edges.
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3. If the edges share one endpoint and belong to a
directed triangle, perform a triangle flip if it is legal;
otherwise, restart.

Note that in order for a transition to be legal, con-
nectedness must be preserved (Property 3), which is a
global property and thus slow to verify. To improve the
efficiency of our algorithm, we therefore perform multi-
ple iterations in between connectivity checks. We allow
the number of iterations K between checks to vary
dynamically, adopting a heuristic from Viger and Latapy
[11]. More precisely, when we perform a connectivity
check after K iterations, we proceed as follows. If the
check succeeds, we multiply K by a factor of 1 + Q.. If
it fails, we multiply it by 1 - Q_ and revert to the pre-
vious state of the graph (saved after the previous con-
nectivity check K iterations ago). The constants Q, and
Q_ are chosen to match the heuristic argument pre-
sented by Viger and Latapy [11].

An important final detail of the algorithm is the num-
ber of iterations to perform; this relates to the mixing
time of the Markov chain. While the mixing times of
chains arising from graph randomization are not theore-
tically known, a constant multiple ¥ of the number of
edges in the graph is enough in practice. We set y = 100
by default as suggested in previous literature [14]; our
tests below indicate that this value is sufficient and in
fact smaller values may already suffice.

Testing

We tested our algorithm on the causal graph studied
in our companion paper [5], which has 36,924 vertices
and 248,709 edges (of which 165,037 are positive and
83,672 are negative) for an average vertex degree less
than 7. To check that our randomization algorithm
indeed explores the state space of possible graphs—i.e.,
the Markov chain mixes sufficiently-we performed 100
independent runs of the algorithm using varying num-
bers of iterations (corresponding to y = 1, 2, ..., 100)
and compared the numbers of edges shared between
pairs of graphs produced at consecutive values of .
The number of shared edges converged rapidly to a
limiting value of ~10,200 edges in common, and in
fact convergence already appeared to have happened
by v = 5.

We also tabulated some statistics from an independent
set of 79 runs with y = 100 that illuminate the workings
of our algorithm. In Table 4, we give occurrence rates
of local structures—in particular, potential obstacles—that
our algorithm identified. We see that in our application,
all of these structures were extremely rare, with strong
quadrilaterals appearing only a few times per ten thou-
sand iterations and strong triangles a few times per bil-
lion. These statistics demonstrate that local obstacles are
unlikely to cause difficulty in practice.
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Table 4 Statistics from runs of Causal Graph
Randomization algorithm

Structure Occurrence rate
Strong quadrilateral 376 x 10
Flippable triangle 122 % 10°
Strong triangle 244 x 107

Rates of occurrence of local graph structures in 79 runs of the randomization
algorithm on our test graph. A total of 5.3 billion iterations were performed
during these runs.

Finally, we recorded the variation of the connectivity
check interval K in our runs and found that on average
1163 moves were performed between checks, represent-
ing a great speedup over testing connectivity after every
iteration. Even with this speedup, creating one rando-
mized version of the graph took roughly one hour on a
standard PC, a nontrivial computational cost. Note,
however, that for inference on a fixed causal graph, ran-
domized versions of the graph can be precomputed
once and then used for assessing statistical significance
on any number of experimental datasets.

Implementation

We implemented our algorithm in R using the igraph
package [28]. The parameters we chose were K = 50 for
the initial number of iterations between connectivity
checks and Q, = 0.131, Q_ = 0.076 for the dynamic
update of K. For our tests, we used a computational grid
to perform independent runs of our algorithm.

Discussion

Our work provides practical algorithms for assessing
statistical significance in causal graphs but also raises a
number of unresolved theoretical questions; we describe
a few of them now.

In the Ternary Dot Product Distribution problem, we
saw that the recursion used to obtain a cubic algorithm
leads to cancelation of large approximately equal num-
bers. This naturally brings up the following question: Is
numerical instability an artifact of a poor setup of the
recursion computing F[#] or is it an inherent feature of
the problem? We believe that the numerical instability
is indeed an inherent feature of the problem, but it is
conceivable that a clever transformation could improve
the conditioning.

Another open question is the precise computational
complexity of our thresholding algorithm. In Methods
we prove an O(N*>®°) bound on the complexity, but our
empirical results (Figure 4) indicate that the actual per-
formance is much faster. Can our analysis be tightened
to bring down the exponent? In particular, what is the
number of terms D[n..] that are within a multiplicative
factor of € from the largest term D, as a function of
N and €?
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Furthermore, it would be interesting to investigate the
consequences of level stratification in regulatory net-
works in order to propose a more refined null model.
While such a multilevel model may indeed provide
more precise estimates of statistical significance, it
would be much more challenging to estimate that signif-
icance and would likely require simulation rather than
an analytic approach like the one in this paper.

In the Causal Graph Randomization problem, we saw
that same-sign edge switches and triangle flips are insuf-
ficient to reach all possible random graphs in the state
space F(G). Does there exist an augmented set of moves
that suffices? It is worth noting that (to the best of our
knowledge) this question is open even in the unsigned
directed case when connectedness (Property 3) is
required. While edge switches and triangle flips solve
the directed case without connectedness [12], these two
operations do not suffice when connectedness is
imposed. Indeed, consider a directed graph G with ver-
tices a, b, ¢, d and directed edges (a, b), (b, ¢), (¢, d).
There are no triangles to flip, and the unique allowed
edge switch, involving (a, b) and (¢, d), disconnects the
graph. Thus, in order to get to the other graph in F(G),
namely, the graph with edges (a, ¢), (¢, b), (b, d), a
further operation, called a 3-swap [15], is required. It is
interesting to note that the triangle flip is a special case
of the 3-swap where a = d.

On the other hand, in practical cases with large,
sparse graphs, we showed that it is often possible to
overcome local obstacles to randomization. This gives
rise to the following question: Is there a lower bound on
the size or upper bound on the edge density of the
graph that would make same-sign edge switches and tri-
angle flips sufficient?

An alternative approach to overcoming obstacles is to
limit ourselves to edge switches and triangle flips, but
allow several moves to be performed in sequence before
the simplicity of the resulting graph is verified. Let K(n)
denote the longest such sequence that is required to
make the resulting Markov chain on F(G) connected,
where 7 is the number of vertices of G. It is clear that
K(n) is always finite and in fact bounded by n? — n, the
largest number of edges in a simple graph on 7 vertices.
Does K (n) grow linearly with #, is it bounded above by
a constant, or something in between?

Finally, even in cases that Markov chains can be
shown to generate all possible graph randomizations,
their mixing time remains an open question. It is known
that the Markov chain rapidly mixes in the case of regu-
lar directed graphs, i.e., graphs in which all vertices
have the same in- and out-degrees [16], but it appears
to be slowly mixing for some exponential degree distri-
butions [29]. It would be interesting to better
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understand the mixing time behavior of the chain we
proposed for signed directed graphs.

In some cases it may be possible to reduce the size
of a causal graph, and thereby the resources required
to solve the Causal Graph Randomization problem, by
performing a transitive reduction of the graph. A tran-
sitive reduction of a graph is a minimal graph with
the same transitive closure as the original graph (so a
transitive reduction does not contain any edges
between vertices that are connected by a different
path in the graph). Transitive reduction has been suc-
cessfully used in computational biology [30]; we opted
not to use it here to avoid the possibility of filtering
out potentially useful relationships, particularly
because our graph likely contains some noise. This
reduction approach might prove most helpful when
some causal relationships in the graph are known a
priori to be indirect.

Conclusions

This paper presents the first systematic attempt at
addressing the computational challenges that arise in
the evaluation of the significance of results produced by
a causal graph-based model. We develop two algorithms
for the Ternary Dot Product Distribution problem and
one algorithm for the Causal Graph Randomization pro-
blem. All the algorithms are implemented in the statisti-
cal computing language R and available on request for
academic purposes. We believe that our work opens the
door to further study of causal graphs from both a theo-
retical and practical perspective, and we hope that these
algorithms will enable the integration of statistical sig-
nificance computations into causal graph-related meth-
ods in biology and other areas of science.

Methods

Quartic algorithm for Ternary Dot Product Distribution
The Ternary Dot Product Distribution problem can be
solved with a simple algorithm using the following rela-
tionships between the D-values:

DlijikI+1] _q-—(+1) n —(k+I)

Dli,j, k1] I+1 r+(i+j+k+1)
Dlijk+1,1] q,—(i+k) n_—(k+l)
Dlij k1~ k+1 r+(i+j+k+])
Dlij+ 1Lkl q —(G+0) n —(i+j)
Dlijk1] —  j+1  re(i+jrk+])
Dli+1j k1 q.—(i+k) n —(i+j)
Dlijk1] i+l  r+(i+jrk+])

where r:=qo+no — |7+ 1
This algorithm can be made numerically stable by
computing an initial normalized value DI0, 0, 0, 0]/T,
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so that all the values throughout the recurrence stay
between 0 and 1. (There is a slight subtlety that if r <
0 we need to use an initial value other than (0, 0, 0,

0).)

Cubic algorithm for Ternary Dot Product Distribution
Setting yy :==mn,, + n, pi=n_, + n,,8:=n,,, t:=n,,
we rewrite D[n,.] as

q+ q-
S, LTy Y1i—8V2— L1

( qo )
no—y+(s—t)n,—ya—(s—1t)r /)’

wherer, :=q, - (s+8),r.:=q. - (1 + ) + (s+ 1), 79
=r-1+ (71 + ). By rearranging the factorials, we can
further rewrite this expression as

(i Vq)) <y1, o (ot s n)))
q-

do
. <n+ +n_ — (y1 + yz))f(yl’ Y2,5,t),

where

f(yll Y2,$, t) =
<)/2> <(J+ +q-— (1 + V2)> <”+ +n_—(n+ J/z))
t g, — (s+1) (o —y)+(s—1t) )°
Note that the product above only depends on ¢
through fiyy, %, s, t). If we could compute F(y1, ¥, s) :=
Y. (71, Y2, s t) in constant time per term, we would

obtain a cubic algorithm instead of a quartic one.
Let us now define

o2 () (70 (1)

where we made the following substitutions to simplify
the previous expression: n := ¥, k:=t, v:i=q, + 4. - ",
Wi=q,-SX=H,+N -7, Y:=n-%+Ss
By using the WZ algorithm [26], we obtain the follow-
ing recursion on F[n]:
(n+2)(n+1)agF[n]
—(n+2)(bo + byn + ban® + bs3n® + byn*)F[n + 1]
t(n—x+1)(n—v+1)
-(co + c1n + con? + c3n®)F[n + 2]
—dsF[n+3]=0,

where the coefficients of the polynomial multipliers
are given in Additional File 1.
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Practical algorithm for Ternary Dot Product: Mathematical
details and O(N*?) complexity bound
Consider families of contingency matrices in which the
row and column sums of the upper-left 2 x 2 submatrix
(n..) are fixed. Denote these sums by r,, r, ¢, ¢, not-
ing that as before, one constraint is redundant as r, + r.
= ¢, + ¢. =: t is the total of the entries in the submatrix.
Thus, in each family, one degree of freedom remains,
which we may parameterize by the value of n,, =: u.
Within each such family, the values of ny,, 1y, 1.9, 1.
o» Moo are determined by r,, r, c¢,, c. and thus indepen-
dent of u. It follows that relative D-values within a
family obey the simple proportionality relation

1
(ne ) () (no)!(no2)!

Explicitly, the proportionality constant is
[T 1!/ (nos'no—n.0'n_o'nge!). We now observe that the
expression on the right is maximized when n.. are dis-
tributed in proportion to the 2 x 2 row and column
sums, i.e.,

Dn.,ne_,n_,, n__] «

Nor X 1,6, [t foro,t € {+ —}

(with appropriate rounding), and moreover, the prob-
ability decreases monotonically as u is varied in either
direction from the optimum. To see this, observe that
the multiplicative change AD[u] in D upon decrement-
ing u is simply

Dlu—1,r, —u+1l,¢, —u+1,7— —c, +u—1]
Dlu,r, —u, ¢, —u,7— —cy + U]
_ u(r— —c, +u)

o —u+)(c, —u+1)

The numerator and denominator are both monic
quadratics in # and hence cross at precisely one point
which is easily computed, giving the result claimed.

We now provide an argument that our algorithm per-
forms no more than O(+/N) iterations per family, prov-
ing an O(N>®) bound on the complexity of the overall
algorithm. Denote by u,p ~ r,c./t the value of #,, max-
imizing D for a given family and compare

Uopt (T— — €4 + Uopt) N
(e — topt + 1) (s — Uopr + 1) -
u(r— —c, +u)
(re —u+1)(ce —u+1)

AD[uopt] =

AD[u] =

As u decreases from u,p, observe that the terms in
the numerator of AD[u] each decrease in unit intervals
while the terms in the denominator each increase. It fol-
lows just from restricting our attention to the first term
in the numerator that
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uopt_k<1_ k

ADJugp — k] < <1-

Uopt

(In fact, it is not hard to see that all four terms contri-

bute such factors, but for the purpose of asymptotics

our bounds need not be tight.) Chaining these bounds
together,

Dluop: — K]

AD —K-1]---AD
D[“op[] [uOPl ] [uopt]

(-2

k=1

IA

from which it follows that the D-value drops below €
times the family optimum within K = O(\/N log(1/¢))
iterations, or for fixed ¢, K = O(\/ N).

Additional material

Additional file 1: Recurrence relation for Ternary Dot Product
Distribution cubic algorithm. Details of recurrence relation for F[n] in
cubic algorithm.
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