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Abstract

Background: Phages (viruses that infect bacteria) have gained significant attention because of their abundance,
diversity and important ecological roles. However, the lack of a universal gene shared by all phages presents a
challenge for phage identification and characterization, especially in environmental samples where it is difficult to
culture phage-host systems. Homologous conserved genes (or “signature genes”) present in groups of closely-
related phages can be used to explore phage diversity and define evolutionary relationships amongst these
phages. Bioinformatic approaches are needed to identify candidate signature genes and design PCR primers to
amplify those genes from environmental samples; however, there is currently no existing computational tool that
biologists can use for this purpose.

Results: Here we present PhiSiGns, a web-based and standalone application that performs a pairwise comparison
of each gene present in user-selected phage genomes, identifies signature genes, generates alignments of these
genes, and designs potential PCR primer pairs. PhiSiGns is available at (http://www.phantome.org/phisigns/; http://
phisigns.sourceforge.net/) with a link to the source code. Here we describe the specifications of PhiSiGns and
demonstrate its application with a case study.

Conclusions: PhiSiGns provides phage biologists with a user-friendly tool to identify signature genes and design
PCR primers to amplify related genes from uncultured phages in environmental samples. This bioinformatics tool
will facilitate the development of novel signature genes for use as molecular markers in studies of phage diversity,

phylogeny, and evolution.

Background

Phages (viruses that infect bacteria) are ubiquitous on
Earth, where they are the most abundant and diverse
biological entities [1-3]. Phages have been central to
many tools and discoveries in molecular biology, and
serve important ecological functions, including structur-
ing microbial communities [4,5], driving evolution
through gene transfer [6,7], and playing major roles in
biogeochemical cycling [8,9]. Since phages are often
host-specific predators [10,11], it is important to under-
stand not only the abundance of phages, but also which
types of phages are present in the environment.
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Phages are extremely diverse, encompassing a wide
range of virion properties, genome sizes and types, host
ranges, and lifestyles. Phages are typically classified by
the International Committee on Taxonomy of Viruses
(ICTV) based on morphology and nucleic acid type [12]
or by sequence-based taxonomic systems [13-16]. Tradi-
tional culture-based methods for exploring the diversity
of phages in the environment are limited because they
require having the bacterial host in culture, and it is
known that the majority of environmental bacteria can-
not be cultured using standard laboratory techniques
[17,18]. Recently, molecular techniques have overcome
these limitations, revealing a vast diversity of phages in
natural environments without the requirement of cultur-
ing [19-23].

Development of the 16S ribosomal RNA gene as a
molecular marker for studying microbial communities
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revolutionized the field of microbial ecology by allowing
researchers to access the vast diversity of uncultured
microbes in natural systems [24-26]. However, explora-
tion and comparative genomics of environmental phage
communities have been hampered by the lack of a uni-
versally conserved genetic marker that can be used to
examine the diversity of phages and trace their evolu-
tionary histories. Despite the fact that there is no single
gene found in all known phages, groups of related phage
genomes often share conserved genes ("signature genes”)
which have been used to examine phage diversity. For
example, conserved regions of phage structural proteins,
such as the portal vertex protein (¢g20) and the major
capsid protein (g23), are routinely used to characterize
genetic diversity in T4-like myophage communities
[22,27-33]. Other studies have used the DNA polymer-
ase gene for examining the diversity and evolution of
T7-like podophages [20,21,23,34]. Numerous auxiliary
metabolic genes (i.e., phage-encoded metabolic genes
that were previously thought to be restricted to cellular
genomes [2]) involved in photosynthesis, carbon meta-
bolism, and nucleotide metabolism have also been used
as signature genes for marine phages [30,35-39].
Although these signature genes are restricted to specific
subsets of phage genomes and are not universally pre-
sent in all phage types, they are good targets to design
PCR primers for exploring related uncultured phages in
environmental samples. Further examination of environ-
mental phage diversity would be greatly enhanced
through the development of PCR assays for additional
signature genes.

With advances in sequencing technologies and the
success of student-driven research/outreach programs
[40], an increasing number of phage genomes are
sequenced each year and are available for bioinformatic
analyses [3]. As of February 2011, the genomes of 636
phages and 33 archaeal viruses were available in the
PhAnToMe database (http://www.phantome.org/) [41].
Many phage ecologists are interested in mining these
genomes to identify and design PCR primers for signa-
ture genes. Numerous tools and databases exist to iden-
tify and analyze homologous gene sequences (e.g.,
COGs [42], OrthoMCL [43], HMMER [44]). One major
limitation of these existing tools is that they are con-
fined to cellular organisms, and very few available tools
incorporate viral genomes (e.g., CoreGenes [45], Cor-
eExtractor [15]). Likewise, numerous tools for primer
design and analysis exist (e.g., CODEHOP [46], IDT
Oligo Analyzer [47], Primer3 [48]), yet they have many
restrictions regarding input file requirements (based
upon nucleotide sequence, protein sequence or multiple
nucleotide alignment), primer type (non-degenerate or
degenerate), genomes of interest, physicochemical prop-
erties, input and output format, and usability. In
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practice, the identification of conserved genes and
design of PCR primers to amplify these genes currently
requires several stand-alone steps that are not integrated
into a single work flow. When performed manually, it
can be a time-consuming, tedious, and error-prone
process.

In light of these problems, PhiSiGns provides a conve-
nient web interface that allows biologists to perform a
dynamic search against selected phage genomes of inter-
est, identify signature genes, generate sequence align-
ments, and design primers for PCR amplification, all in
one environment that increases efficiency and productiv-
ity. Signature genes identified using this tool can be
used to build phylogenetic trees and study phage evolu-
tion. Furthermore, primers designed using PhiSiGns can
be used to amplify related sequences from environmen-
tal samples to increase knowledge of uncultured phage
diversity.

Methods

Implementation

PhiSiGns was written in Perl 5.8 [49] and is available in
both standalone and web-based versions (http://www.
phantome.org/phisigns/; http://phisigns.sourceforge.net/
). The web interface is implemented in Perl using the
Common Gateway Interface (CGI) module to generate
dynamic HTML content. The web version is currently
running on a PC server with Fedora Linux using an
Apache HTTP server to support the web services. The
source code and documentation are freely available at
http://phisigns.sourceforge.net/.

PhiSiGns is an automated tool that runs pairwise
comparisons of all the genes from user-selected phage
genomes, identifies signature genes, generates sequence
alignments, and designs primer pairs for PCR amplifica-
tion (Figure 1). The tool begins with users selecting
phages of interest from the list of available genomes in
the phage genomic database (downloaded from PhAn-
ToMe [41] in February 2011). Potential signature genes
are identified based on pre-calculated BLASTP [50,51]
pairwise sequence similarity search results. The phage
database and pre-calculated BLAST outputs are updated
annually. Subsequently, users can design primers for a
selected signature gene using their preferred parameters.
An alignment of the selected signature gene is generated
using CLUSTALW (currently version 2.0.10) [52] with
default settings, although users can choose to upload
their own manually-curated alignment of the signature
gene instead. From the nucleotide sequence alignment, a
consensus sequence is built using the IUPAC ambiguity
code. Conserved regions are extracted from the consen-
sus sequence and used as a template to generate primers
using a sliding window approach. Each unique primer
sequence is tested for user-specified properties such as
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Figure 1 An outline of the PhiSiGns workflow. PhiSiGns consists of two critical, interlinked processes: 1) the identification of signature genes
conserved amongst a group of phages, and 2) the design of PCR primers for the amplification of these signature genes. Red stars indicate
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primer length, product size (target length to be ampli-
fied), degeneracy (computed by multiplying the degener-
acy of each contributing IUPAC mixed base), GC
content (the number of G’s and C’s in the primer as a

percentage of the total bases), GC clamp (the presence
of G’s or C’s within the last five bases from the 3’ end
of primers; there should be no more than three), maxi-
mum 3’ stability (the maximum stability for the five 3’
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bases of a forward and reverse primer measured in AG;
primers with AG > -9 kcal/mol are considered accepta-
ble for primer pairing), and melting temperature (tem-
perature at which one half of the DNA duplex will
dissociate and become single stranded). A primer com-
plementarity test is also performed as part of the primer
design process, including a check for self-dimers (inter-
molecular base pairing between sense primers or anti-
sense primers), cross-dimers (intermolecular base
pairing between the sense and antisense primers), and
hairpin formation (intramolecular base pairing within
sense primers or antisense primers). Primer pairs that
meet user-specified parameters are output as potential
primer pairs for the selected signature gene. All result
files generated during the process (including the list of
signature genes for the phages of interest, signature
gene FASTA sequences, signature gene sequence align-
ment, and list of potential primer pairs) are displayed on
the web page and directly downloadable.

Case study: using PhiSiGns to design primers to examine
the diversity of T7-like phages in sewage

Raw sewage samples were collected in February 2009
from a wastewater treatment facility in Manatee County,
Florida. Virus particles were purified from 1.2 liters of
sample by filtering through 0.45 pm and 0.2 pm Sterivex
filters (Millipore, Billerica, MA, USA). Virus particles
were further concentrated and purified using PEG preci-
pitation followed by CsCl gradient centrifugation [53].
Viral DNA was extracted using the MinElute Virus Spin
Kit (Qiagen, Valencia, CA, USA).

PhiSiGns was used to identify signature genes amongst
the eight completely sequenced “core” T7-like phage gen-
omes (Enterobacteria phage T7, Enterobacteria phage T3,
Enterobacteria phage K1F, Yersinia pestis phage phiA1122,
Yersinia phage Berlin, Yersinia phage phiYeO3-12, Vibrio
phage VP4, and Pseudomonas phage gh-1) as proposed by
Lavigne et al. (2008). Forward (5-ACHGARGGYGAR-
ATHG-3) and reverse (5-CVCCTTGYTGRTTDC-3’) pri-
mers were designed using PhiSiGns to amplify a ~ 838 bp
region of the primase/helicase gene from T7-like phages.
The 50 pL. PCR mixture contained 2 U Apex Taq DNA
Polymerase (Genesee Scientific, San Diego, CA), 1x Apex
Taq Reaction Buffer, 2 mM Apex MgCI2, 1 uM each pri-
mer, 0.2 mM dNTPs, and 4 pL of template DNA. The
reaction conditions were (i) 5 minutes of initial denatura-
tion at 94°C; (ii) 30 cycles of (a) one minute of denatura-
tion (94°C), (b) one minute of annealing (51.1°C - 0.5°C/
cycle), (c) two minutes of extension (72°C); and (iii) 10
minutes of final extension at 72°C. After amplification, the
PCR product was cleaned with the MoBio UltraClean PCR
Clean-Up Kit (MO BIO Laboratories, Carlsbad, CA) and
cloned using the TOPO TA Cloning Kit for Sequencing
(Invitrogen, Carlsbad, CA). Positive transformants were
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sequenced by Beckman Coulter Genomics (Danvers, MA).
Vector and low-quality sequences were trimmed with
Sequencher 4.7 (Gene Codes, Ann Arbor, MI) and
sequences were compared against the NCBI non-redun-
dant database using BLASTX to identify sequences with
similarity to the primase/helicase of T7-like phages.

The T7-like primase/helicase sequences were de-repli-
cated using FastGroupll [54] by considering sequences
with > 99% nucleotide identity as identical. The 50
unique sequences recovered from the sewage samples
[GenBank: JN180326-JN180375] were aligned with T7-
like phages from GenBank using CLUSTALW [52] as
implemented in MEGA v5.0 [55]. A phylogenetic tree
was then constructed on the aligned dataset using
PhyML v3.0 [56]. Maximum-likelihood analysis was per-
formed using the GTR nucleotide substitution model
with six substitution rate categories and parameters
(base frequencies, proportion of invariable sites, gamma
distribution) estimated from the dataset. One thousand
bootstrap replicates were performed to assess statistical
support for the tree topology.

Results

PhiSiGns provides a single web interface that combines
two essential processes: (i) the identification of signature
genes sharing amino acid sequence similarity; and (ii)
the design of PCR primers (degenerate or non-degener-
ate) for the amplification of these signature genes.

Identification of signature genes

For signature gene identification, users select phages of
interest from the list of completely sequenced phage
genomes (Figure 2 displays this user interface). This
dataset is derived from the phage database on the
PhAnToMe website [41] and can be sorted using dif-
ferent classification criteria such as phage name,
nucleic acid type, phage family, host domain, host phy-
lum, and host genus. Gene annotations for the protein
coding regions are imported from the SEED [57,58]
and the records that lack annotation are extracted
from GenBank. Once the phages are selected, all pro-
tein sequences from each phage genome are screened
using a BLASTP sequence similarity search [50,51] to
determine if a homologous protein exists in any of the
other selected phage genomes. These all-against-all
protein pairwise comparisons are pre-calculated using
the BLASTP program implemented in the BLAST
stand-alone package [59] with a default E-value cut-off
of 10. The best hits for each protein amongst the
selected genomes are retrieved from these pre-calcu-
lated BLAST results based on a user-defined E-value
and alignment coverage percentage (computed as
alignment length divided by the average query and
subject sequence length). Finally, the genes that are
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Figure 2 Web interface for the identification of signature genes. The interface shows 1) the options to limit the display of available phage
genomes, 2) a list of phage genomes meeting the selection criteria, 3) a list of the user-selected phage genomes from step (2) for signature
gene identification and primer design, 4) the BLAST E-value cut-off for similarity searches, and 5) the BLAST alignment coverage cut-off for
similarity searches. Users can click on the question marks for additional information on a given parameter

shared amongst multiple phage genomes are integrated
into signature gene groups. The list of identified signa-
ture genes can be exported from the web browser as a
tab delimited file.

Primer design
The PhiSiGns primer design web interface (Figure 3)
allows users to design PCR primers (degenerate or non-

degenerate) for a selected signature gene based on the
multiple sequence alignment. In the first step, the
nucleotide sequences for a given signature gene are
translated and the protein sequences are aligned using
the CLUSTALW [52] multiple sequence alignment pro-
gram with default settings. Once the sequences are
aligned, they are reverse-translated to their correspond-
ing nucleotide sequences for subsequent steps. PhiSiGns
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Primer Length (nt) [?] 16 2%
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Basic Melting Temperature (°C) [?] 30 80
Salt-Adjusted Melting Temperature (°C) [?] 30 80
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Minimum Delta G (kcal/mol) [?] -20
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Primer Degeneracy [?) 1000
3" GC Clamp [?] 2
Maximum 3" stability [?] ¥
Complementarity [?] [¥]
List of genes in selected SiG_21 2
(CBI protein ID  Protein function Length (nt) Phage Phage family Start position End
CAJ29365.1 T7-like phage primase/helicase protein 1701 Enterobacteria phage KIF Podoviridae 10936 12636 )
INP_041975.1 T7-like phage primase/helicase protein 1701 Enterobacteria phage T7 Podoviridae 11565 13265 ]
INP_052087.1 T7-like phage primase/helicase protein 1701 Yersinia phage phiYeO3-12 Podoviridae 11406 13106 @
INP_523315.1 T7-like phage primase/helicase protein 1701 Enterobacteria phage T3 Podoviridae 10670 12370 )
INP_813761.1 T7-like phage primase/helicase protein 1689 Pseudomonas phage gh-1 Podoviridae 9844 11532 ¥
INP_848279.1 T7-like phage primase/helicase protein 1701 Yersinia pestis phage phiA1122 Podoviridae 9658 11358 W
YP_249580.2 Primase/Helicase 1710 Vibrio phage VP4 Podoviridae 8503 10212 )
YP_918996.1 T7-like phage primase/helicase protein 1713 Yersinia phage Berlin Podoviridae 9720 11432 ¥
‘ 3 ’ Download FASTA for selected genes Show Clustal\V alignment for selected gene@
Use user-generated alignment (optional): [?
Browse- ( 5 )
Design Primers for Selected SiG Genes |
Figure 3 Web interface for designing primers on a selected signature gene. The interface shows 1) an input box for minimum and
maximum values for the primer parameters, 2) a list of genes within the selected signature gene group (users have the option to select/
deselect genes from the table for alignment and primer design), 3) an option to download the sequence FASTA file, 4) an option to view the
program-generated CLUSTALW alignment, and 5) an option to upload a user-generated alignment for the selected signature gene, to be used
for primer design

also provides users with the option to upload their own
nucleotide alignment of a selected signature gene for
primer design. From the gene sequence alignment, an
IUPAC consensus is computed with a 100% identity
threshold and all potential conserved regions are then
extracted from the consensus. A conserved region is
defined as a region with a minimum of two completely
conserved nucleotide bases (i.e., A, C, G or T; no mixed

bases) within 19 bases of each other. Starting with the
first conserved base, the program screens the next 19
bases to find another conserved base. If none are
located, the program moves on to the next conserved
base and begins the search again. If additional conserved
bases are located within 19 bases of the original residue,
the region between the furthest two of these bases is
extracted along with an additional 5 bases upstream and
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downstream. These steps are repeated for each comple-
tely conserved base, and all regions containing gaps are
excluded from the analysis. This process results in
sequences between 12 and 30 bases in length that con-
tain conserved bases and are sufficiently large to allow
different primer design possibilities. For each conserved
region identified, sequences ranging from 10-28 bases
(the default range for the primer length) are obtained by
a sliding window approach, moving one base at a time
within the region. The length, start position, and stop
position of each potential primer are recorded.

Potential primer sequences are then analyzed for sev-
eral physicochemical properties including primer length,
primer degeneracy, product size, GC content, GC
clamp, melting temperature, maximum 3’ stability, and
complementarity (self-dimer, cross-dimer, and hairpin
formation). The equations and values used in all ther-
modynamic calculations are available at http://phisigns.
sourceforge.net/. Melting temperatures (T,,) are calcu-
lated using three different methods: (1) basic melting
temperature [60,61], (2) salt-adjusted melting tempera-
ture [62,63], and (3) nearest-neighbor melting tempera-
ture [64]. The Gibbs free energy (AG kcal/mol) is
computed to measure the minimum AG and maximum
3" end stability of a primer sequence. AG is the measure
of the spontaneity of the reaction, representing the
energy required to break the secondary structure. Larger
negative values for AG indicate more self-priming and
stable, undesirable secondary structures. Primer pairs
are also tested for self-dimers, cross-dimers and hair-
pins. Primer-dimers and hairpins must have less than
five consecutive base pairings to be considered as poten-
tial primer pairs. The user can input the desired mini-
mum and maximum properties for each of these primer
parameters, or rely on the default parameters provided
(Figure 3). PCR primers for amplifying target regions
are then paired by minimizing differences in melting
temperature between the forward and reverse primers,
while conforming to the user-desired primer and pro-
duct parameters.

Case study: using PhiSiGns to design primers to examine

the diversity of T7-like phages in sewage

T7-like phages are short-tailed, double-stranded DNA
phages with genomes of ~40 kb in length, belonging to
the Podoviridae family [12]. The abundance and high
genetic diversity of T7-like podophages have been pre-
viously documented using highly conserved genes such
as the DNA polymerase in a wide range of environ-
ments [15,20,21,34,65]. To demonstrate the utility of
PhiSiGns, the program was used to identify signature
genes amongst the eight completely sequenced “core”
T7-like phage genomes (Enterobacteria phage T7, Enter-
obacteria phage T3, Enterobacteria phage K1F, Yersinia
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pestis phage phiA1122, Yersinia phage Berlin, Yersinia
phage phiYeO3-12, Vibrio phage VP4, and Pseudomonas
phage gh-1) as proposed by Lavigne et al. (2008). Using
an E-value cut-off of 0.001 and 10 percent alignment
coverage cut-off, PhiSiGns identified 58 signature genes
conserved amongst members of this group (Table 1). Of
these 58 signature genes, 24 are present in all eight gen-
omes, including genes for replication (e.g., DNA poly-
merase, DNA-directed RNA polymerase, primase/
helicase, single-stranded DNA binding protein, DNA
ligase), packaging (e.g., DNA packaging protein A, exo-
nuclease, endonuclease, terminase, RNA polymerase
inhibitor), structural proteins (e.g., phage capsid and
scaffold, portal connector protein, tail fiber, internal
core proteins), cell lysis proteins (e.g., holins, lysins),
and a few unknown phage proteins.

For this case study, the primase/helicase gene was
chosen for the design of degenerate PCR primers to
demonstrate the utility of PhiSiGns and explore the
diversity of T7-like phages in raw sewage samples (see
methods section). A total of 96 sequences were obtained
from the sewage samples, 62 of which had best hits to
phage primase/helicase proteins based on BLASTX
against the GenBank non-redundant database confined
to viruses. The 62 T7-like primase/helicase sequences
were then de-replicated with FastGroupll [54] by con-
sidering sequences with > 99% identity at the nucleotide
level as identical, resulting in 50 unique sequences. A
phylogenetic tree was then constructed using these
uncultured phage sequences from sewage along with
primase/helicase sequences from the cultured core T7-
like phages and several P60-like cyanophages (Figure 4).
Almost all of the sequences amplified using the Phi-
SiGns primers are very closely related to each other and
form a clade (designated as “SEWAGE” in the tree) that
is distinct from the cultured T7-like phages. In addition,
the SEWAGE clade forms a sister group with the P60-
like cyanophages, suggesting that the primase/helicase of
these sewage phages may be more closely related to the
cyanophages than to the core T7-like phages. However,
one sewage sequence falls within the clade of core T7-
like phages, closely grouping with Enterobacteria phage
T7 and Yersinia pestis phage phiA1122.

Discussion

To understand phage evolution and ecology, it is crucial
to identify common genes that share sequence similarity
in different phages and can be used for phylogenetic
comparisons. PhiSiGns provides a simple, user-friendly
platform to enable phage biologists to identify signature
genes and then design primers for PCR amplification of
related sequences from uncultured environmental phage
communities. PhiSiGns can be applied to examine any
user-specified group of phages, such as phages that
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Table 1 Overview of signature genes (SiGs) identified amongst eight core T7-like phage genomes in the PhiSiGns

case study
# of # of  Functional roles
phages SiGs

8 24 DNA polymerase, RNA polymerase, primase/helicase, ssDNA binding protein, ligase, packaging protein A, exonuclease,
endonuclease, terminase, RNA polymerase inhibitor, phage capsid and scaffold, portal connector protein, tail fiber, internal
core proteins, holins, lysins, unknown phage proteins

7 3 endopeptidases, unknown phage proteins

6 6 kinase, ssDNA binding protein, dGTPase, unknown phage proteins

5 6 nuclease, lipoprotein, unknown phage proteins

4 3 primase/helicase, unknown phage proteins

3 4 adenosylmethionine hydrolase, unknown phage proteins

2 12 endonuclease, unknown phage proteins

infect a common host, phages that were originally iso-
lated from the same environment, or phages with a cer-
tain ICTV classification. Comparison of signature gene
sequences from cultured phages and those amplified
from environmental samples using primers designed
with PhiSiGns can yield insight into phage diversity and
evolution.

PhiSiGns provides flexibility to users in choosing the
specific phage genomes of interest, BLAST E-value cut-
off, BLAST alignment coverage cut-off, and primer para-
meter values. In addition, users can upload their own
manually-curated alignments of selected signature genes
to improve primer design. The results generated from
each step of this tool are presented in a table, and can

Synechococcus phage syn3
Synechococcus phage P60 P60-like phages

Prochlorococcus phage P-SSP7

100 Yersinia pestis phage phiA1122
100 L Enterobacteria phage T7

- Yersinia phage phiYeO3-12

 Enterobacteria phage T3

0.2

T7-like phages

100
SEWAGE
100
100
86
100
74
Pseudomonas phage gh-1
86
Vibrio phage VP4
100
Enterobacteria phage K1F
100 Yersinia phage Berlin
@ SEWAGE

Figure 4 Phylogenetic tree of T7-like primase/helicase sequences amplified from sewage samples with degenerate primers designed
with PhiSiGns. The eight core T7-like phages and three cyanophage P60-like phages are shown in red and green, respectively. The sewage
sequences amplified in this study are shown in blue. The SEWAGE clade represents the compressed view of 49 closely related sequences
recovered from sewage in this study. Internal nodes with bootstrap support > 70% are shown with the corresponding bootstrap value indicated.
The scale bar represents the number of nucleotide substitutions per site.
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be downloaded to a local machine. BLASTP sequence
similarity searches are pre-calculated (E-value = 10) for
all phage genomes in the database, and can be parsed
using different E-value and coverage cut-offs which con-
siderably decreases the required computation time. The
online version of PhiSiGns was developed to compare
phages present in the existing database. For additional
phage genomes, such as those that are not yet publicly
available, running the PhiSiGns source code locally
offers more flexibility and control.

PhiSiGns is the only tool currently available that com-
bines the steps of signature gene identification with the
ability to design PCR primers. Instead of requiring com-
plicated user input files, since PhiSiGns is designed spe-
cifically for phage genomes, this program utilizes the
phage genome and sequence annotation information
from PhAnToME, which is available to users as the Phi-
SiGns local database. Thus no additional inputs (such as
RefSeq IDs or sequence files) are needed from the user.
Since primer design is an integral part of PhiSiGns,
users do not need to worry about converting the output
from the signature gene identification program into a
format compatible with an existing primer design pro-
gram. Compared to CODEHOP [46], Primaclade [66],
and PriFi [67], PhiSiGns gives the user more flexibility
in primer design parameters and is easier for phage biol-
ogists to use. CODEHOP [46] is one of the most com-
monly used programs for designing degenerate primers.
Both PhiSiGns and CODEHOP utilize amino acid align-
ments; however, the downstream primer design process
is significantly different in these two tools. From the
amino acid alignment, CODEHOP produces a consensus
amino acid sequence based on a position-weighted scor-
ing matrix, and then creates a nucleotide consensus
sequence based on the user-provided codon usage table.
Therefore, some diversity may be lost through the
CODEHOP primer design algorithm, since it is based
on a dominant amino acid at each position and the rela-
tive codon frequency, as opposed to the actual nucleo-
tide sequences present in the aligned genes. In contrast,
PhiSiGns back-translates the amino acid sequences in
the alignment into the original nucleotide sequences of
the phage genes included in the analysis. Primers are
then designed based on the consensus of this nucleotide
sequence alignment, ensuring that all the genes included
in the alignment will actually be recovered with the cho-
sen primers. The output files generated by PhiSiGns are
accessible in a simple text or tabular format, which can
easily be used by other comparative genomic tools in
further analyses. Compared to other available tools, Phi-
SiGns provides broad-range functionality in the primer
design process to output all possibilities, from which the
users can choose the best candidate primer pairs for
their application. Overall, PhiSiGns is a simple and
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straightforward tool enabling comparative genomic ana-
lysis in the field of phage biology.

Availability and requirements

Project name: PhiSiGns; Project home page: http://
www.phantome.org/phisigns/; http://phisigns.source-
forge.net/; Operating system: Platform independent;
Programming language: Perl; Requirements for web-
version: Browser with JavaScript support; Requirements
for locally installed version: Perl; BioPerl, BLAST,
CLUSTALW,; Any restrictions to use by non-aca-
demics: No
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