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Abstract

Background: In-vivo single voxel proton magnetic resonance spectroscopy (SV 1H-MRS), coupled with supervised
pattern recognition (PR) methods, has been widely used in clinical studies of discrimination of brain tumour types
and follow-up of patients bearing abnormal brain masses. SV 1H-MRS provides useful biochemical information
about the metabolic state of tumours and can be performed at short (< 45 ms) or long (> 45 ms) echo time (TE),
each with particular advantages. Short-TE spectra are more adequate for detecting lipids, while the long-TE
provides a much flatter signal baseline in between peaks but also negative signals for metabolites such as lactate.
Both, lipids and lactate, are respectively indicative of specific metabolic processes taking place. Ideally, the
information provided by both TE should be of use for clinical purposes. In this study, we characterise the
performance of a range of Non-negative Matrix Factorisation (NMF) methods in two respects: first, to derive
sources correlated with the mean spectra of known tissue types (tumours and normal tissue); second, taking the
best performing NMF method for source separation, we compare its accuracy for class assignment when using the
mixing matrix directly as a basis for classification, as against using the method for dimensionality reduction (DR).
For this, we used SV 1H-MRS data with positive and negative peaks, from a widely tested SV 1H-MRS human brain
tumour database.

Results: The results reported in this paper reveal the advantage of using a recently described variant of NMF,
namely Convex-NMF, as an unsupervised method of source extraction from SV1H-MRS. Most of the sources
extracted in our experiments closely correspond to the mean spectra of some of the analysed tumour types. This
similarity allows accurate diagnostic predictions to be made both in fully unsupervised mode and using Convex-
NMF as a DR step previous to standard supervised classification. The obtained results are comparable to, or more
accurate than those obtained with supervised techniques.

Conclusions: The unsupervised properties of Convex-NMF place this approach one step ahead of classical label-
requiring supervised methods for the discrimination of brain tumour types, as it accounts for their increasingly
recognised molecular subtype heterogeneity. The application of Convex-NMF in computer assisted decision
support systems is expected to facilitate further improvements in the uptake of MRS-derived information by
clinicians.
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Background
Introduction
The clinical investigation of an abnormal mass in the brain
frequently starts with its non-invasive characterisation
(localisation, infiltration, etc.), normally with a magnetic
resonance imaging (MRI) study. Magnetic resonance spec-
troscopy (MRS) is another MR technique that, unlike MRI,
provides insight into the biochemistry of tissue through a
discrete signal in the frequency domain (a spectrum) con-
taining information about the relative abundance of several
low molecular weight metabolites, lipids and macromole-
cules in the millimolar range of concentration.
This MR modality has been used in computer-based sys-

tems for diagnostic decision support [1], building on the
increasing availability of data in electronic format [2,3].
However, for brain tumours and, more specifically, glial
tumours, the computer-based discrimination of the grade
or the specific subtype of tumour still leaves a “gray zone”
of uncertainty between class labels [4-6]. Therefore, it
would be desirable to define decision support systems that
were able to provide accurate discrimination of tumour
types from the spectra without prior information regard-
ing tumour type and grade. From the PR viewpoint, this is
an unsupervised modelling task.
The MRS data analysed in the current work are single-

voxel. That is, for each patient we have a single spectrum
corresponding to a small volume located within the
tumour core. The aim of this study is to separate the
constituent source signals on the assumption that they
are mixed linearly in each single-voxel spectral measure-
ment. This is because, even within a single voxel, an het-
erogeneous mix of tissue types may be expected. In this
way, the main constituents of the voxel could be sepa-
rately identified and quantified, providing, in turn, a
quantification of class (tumour type or healthy tissue)
membership for the sources of each single voxel spec-
trum, as an alternative to the class labelling of the spec-
trum as a whole.
Linear unsupervised feature extraction PR techniques

are commonly used in neuro-oncology for data preproces-
sing and dimensionality reduction (DR) previous to the
diagnostic classification of brain tumours. The usual
choices are principal component analysis (PCA) [7-9] and
independent component analysis (ICA) [10-12]. PCA has
mostly been used within a DR framework, and the
extracted features lack a direct interpretation. In a recent
study [13], PCA was applied in an alternative manner to
represent each tumour type through mean and variability
spectra for ulterior classification using an LCModel [14].
ICA, instead, goes beyond DR to provide source extrac-
tion, by identifying the sources that add together to form
the measured MRS signal. As stated in [10], though, in
analysing these type of data, ICA will often yield compo-
nents that “would correspond with identifying the

independent degrees of freedom in MRS, not with indivi-
dual metabolites, but with characteristic tissue generators”,
or, in other words, constituent tissues that are present in
different proportions in each of the voxels where MRS is
measured. There is no guarantee that these tissue genera-
tors will be tumour type-specific and, therefore, there is
little a priori evidence to support that these sources will
suffice to infer accurate tumour type predictions [11]. The
alternative to feature extraction for DR is feature selection
[15-17]. Here, the interpretability of the results fully
depends on the correspondence between the selected fea-
tures (MRS frequencies) and known metabolites.
In this study, we characterise the performance of a

range of variants of an unsupervised method of the
matrix factorisation family, namely Non-negative Matrix
Factorisation (NMF, [18,19]), in two respects: first, to
derive sources correlated with the mean spectra of
known tissue types; second, taking the best performing
NMF method for source separation, we compare its accu-
racy for class assignment when using the mixing matrix
directly as a basis for classification, as against using the
method for DR. This method is unsupervised in the
sense that labelled cases are not required to create a
model of the analysed MRS data (i.e., to find the MRS
sources). Conceptually, it lies somewhere in between
PCA and ICA. In the spectroscopy-related bioinformatics
domain, standard NMF has previously been used for dis-
ease classification from infrared spectroscopy blood
serum data [20] and the related nonnegative PCA
(NPCA) technique has been applied to the classification
of different tumours from mass spectroscopy serum pro-
teomic data [21]. Also within the oncology field, NMF
has recently been used for DR in large scale gene expres-
sion data [22] and for recovering constituent sources
from MR chemical shift imaging (CSI) of the brain, in a
variant called constrained NMF [23].
The results reported in the current paper reveal the

advantage of using one of the recently described NMF
variants, namely Convex-NMF [24], as an unsupervised
method of source extraction from SV 1H-MRS. In con-
trast with ICA, most of the sources extracted by the pro-
posed technique closely correspond to the mean spectra
of some of the analysed tumour types. This similarity
allows accurate diagnostic predictions to be made for
each patient (that is, for each SV spectrum) both in fully
unsupervised mode or using Convex-NMF as a DR step
previous to standard supervised classification. These pre-
dictions are comparable to or more accurate than those
obtained with supervised techniques.
The remaining of the paper is organised as follows. The

Materials subsection describes the data used in this
study, while the Methods subsection summarises existing
approaches for the application of NMF, then discusses
how they are used with MRS data, presents different
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model initialisation methods, and also explains how to
use the obtained information to label cases and to reduce
data dimensionality. The Results section compiles and
presents all the experimental results, with the objective of
assessing NMF in fully unsupervised mode, and to inves-
tigate the use of NMF as a DR method previous to stan-
dard supervised classification. These results are later
discussed and some conclusions are drawn.

Materials
The data analysed in this study were extracted from
INTERPRET, an international multi-centre database [2]
resulting from the INTERPRET European research pro-
jecta [8]. Class labelling was performed according to the
World Health Organisation system for diagnosing brain
tumours by histopathological analysis of a biopsy sample.
These are single-voxel proton MRS (SV-1H-MRS) data
acquired at 1.5T and at two different echo times (short,
20-32 ms (STE) and long, 135-144 ms (LTE)) from brain
tumour patients and healthy controls (that is, two spec-
tra, one at STE and another at LTE, are available for each
individual).
The importance of using two different signal acquisition

conditions (STE and LTE) lies in the different metabolites
that are detectable at each of them. STE is more sensitive
to those with short T2 (an MR relaxation time parameter)
values (it is, for example, more adequate to detect mobile
lipids) and, in addition, all signal peaks are positive. On
the other hand, in LTE spectra we can find both positive
and negative peaks, where the negative peak is due to the
inverted Alanine or Lactate doublets. The analysed data
set included, at LTE, 20 astrocytomas grade II (A2), 78
glioblastomas (GL), 31 metastases (ME), 55 low-grade
meningiomas (MM) and 15 normal brain parenchyma
measurements from healthy controls (NO); at STE, it
included 22 A2, 86 GL, 38 ME, 58 MM, and 22 NO. Data
were processed as in [1]. A total of 195 clinically-relevant
frequency intensity values measured in parts per million
(ppm) were sampled from each spectrum in the [4.24,0.50]
ppm interval. Unit length normalisation (UL2) of the spec-
tra was performed.
A further test data set (not used for source extraction,

but only for the validation of the obtained results) was
gathered from three medical centres: Centre Diagnòstic
Pedralbes (CDP), Institut d’Alta Tecnologia (IAT) and
Institut de Diagnòstic per la Imatge (IDI)-Badalona in
Barcelona, Spain. It was processed in the same conditions
as the rest of the data, and consists of STE and LTE spec-
tra from 56 patients and healthy controls: 10 A2, 40 high-
grade aggressive tumours (30 GL + 10 ME), 3 MM, and 3
NO subjects.
MRS data were acquired according to the medical

ethics regulations of the countries of the medical centres
involved, in particular, with the Helsinki Declaration and

the Spanish “Ley Orgánica de Protección de Datos de
Carácter Personal"(LOPD), Ley Orgánica 15/1999” and
the “95/46/EU directive on data protection, December
13th, 1999”. All patients or their legal representatives
signed informed consent forms, agreeing to the study
and to the use of their deidentified (anonymised) data for
research.

Methods
As stated in the introduction, NMF can be seen as a DR
technique, functionally similar to source extraction. This
section summarily describes some of the existing NMF
methods and the different alternatives for their initialisa-
tion. The choice of initialisation technique turns out to
be a key feature for the success of NMF as a tumour type
classification method. The specific way in which these
techniques are used and interpreted in the context of
MRS data analysis is also described in this section. We
later explain how the data can be labelled a posteriori,
once the sources have been extracted, with the purpose
of helping us to understand the extent to which obtained
sources are able to represent the data. Finally, the way
sources can be used strictly for DR is also described.

Non-negative matrix factorisation methods for source
extraction
In the standard NMF description [18], a non-negative
matrix V of observed data (d × n, where d is the data
dimensionality and n is the number of observations), is
approximately factorised into two non-negative matrices,
W (of dimensions d × k, where k is the number of data
basis or sources, and k <d) and H (of dimensions k × n,
each of whose columns provides the encoding of a data
point: a SV spectrum in this study). The product of
these two matrices provides a good approximation to
the original matrix, that is, V≈WH. The conventional
approach to finding the two factors is by minimising the
divergence between V and WH:

min
W,H

f (W,H) =
1
2

‖V − WH‖2F

subject to the non-negativity constraints mentioned
above, where ||·||F is the Frobenius norm. In this study,
the following divergence minimisation methods, which
cover a wide palette of algorithmic alternatives, were
considered:
• Euclidean distance update equations (herein referred

to as euc) [19]
The objective function is optimised with multiplicative

update rules for W and H:

W ← W
VHT

WHHT
; and H ← H

WTV
WTWH
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Monotonic convergence of the algorithm can be pro-
ven [19]. These update equations preserve the nonnega-
tivity of W and H, and constrain the columns of W to
sum to unity.
• Alternating least squares (als) [18]
This technique alternately fixes one matrix and

improves the other.

W ← argmin
W≥0

f (W,H); H ← argmin
H≥0

f (W,H)

where W and H are updated as follows:

W ← ((HHT)−1HVT)T ; and H ← (WTW)−1WTV

setting all negative elements in W and H to zero.
• Alternating non-negative least squares using pro-

jected gradients (alspg) [25]
The equations for W and H in the alternating least

squares method above are solved here using projected
gradients. For H, this entails:

H ← P[H − α∇ f̄ (H)]

where a is the step size, and P[·] is a bounding func-
tion that ensures that the solution remains within the
boundaries of feasibility. The gradient function is solved
as:

∇ f̄ (H) = WT(WH − V)

The same approach is used to calculate W.
• Alternating least squares with Optimal Brain Sur-

geon (OBS) [26] (alsobs) [27,28] Similar to alternating
least squares, this algorithm alternately solves the least
squares equations for W and H. The negative elements
in W and H are set to zero and the rest are adjusted
using the OBSmethod, through second-order derivatives.
The update rules for W and H are:

W ← ((HHT)−1HVT)T + δW ; and H ← (WTW)−1WTV + δH

where, δW and δH act as regularisation terms and are
responsible for eliminating the less important elements of
W and H, respectively (the original OBS was used as a
weight pruning mechanism in artificial neural networks),
thus re-adjusting the remaining elements optimally. More
implementation details can be found in [28].
• Convex-NMF (convex) [24]. To achieve interpretability,

this method imposes a constraint that the vectors (col-
umns) defining W must lie within the column space of V,
i.e. W = VA (where A is an auxiliary adaptative weight
matrix that fully determines W), so that V≈VAH. By
restricting W to convex combinations of the columns of V
we can, in fact, understand each of the basis or sources as
weighted sums of data points. Unlike the previous ones,
this NMF variant applies to both nonnegative and mixed-

sign data matrices. The factors H and A are updated as
follows:

HT ← HT

√
(VTV)+A +HTAT(VTV)−A
(VTV)−A +HTAT(VTV)+A

; A ← A

√
(VTV)+HT + (VTV)−AHHT

(VTV)−HT + (VTV)+AHHT

where (·)+ is the positive part of the matrix, where all
negative values become zeros; and (·)- is the negative
part of the matrix, where all positive values become
zeros. All the algorithms, for all initialisations, were
allowed to achieve convergence. Such convergence was
qualified as the lack of variation in the reconstruction
error, from one iteration to the next, over a common
set small threshold of value 10-5.

Interpretation of the methods
In NMF for the analysis of MRS data, the rows in H can
be understood as estimates of the concentration/abun-
dance of the constituent signals or sources, while the
columns in W are the corresponding constituent signals
or sources of the spectra themselves. In conventional
NMF methods (such as the first four previously
described), the matrices V, W and H are constrained to
be non-negative, thus permitting the interpretation of
the mixing matrix entries as quantitative estimates of
the amount of source tissue in the sample. The source
can, as a result, be assigned to the class (tumour type or
healthy tissue) with whose template it shows a higher
correlation. If non-negativity is also imposed on the sig-
nals and sources, then it is commonplace truncating the
negative values to zero, therefore loosing potentially
relevant information (for instance, Lactate, Alanine, and
Glutamine + Glutamate (Glx) in LTE spectra, which are
expected to be especially relevant for discrimination
between tumour types). Some of the methods described
above impose the constraint of non-negativity only on
the mixing elements representing the constituent tissue
fractions. Where non-negative signals are also required,
we propose using absolute values instead, in order to
reduce data loss from the negative peaks.
Convex-NMF, instead, enforces this non-negative con-

straint only on H, while V and W are allowed to be of
mixed sign. Given that the observed MRS data are of
mixed sign, their sources should also be of mixed sign.
Thus, understanding W as the source spectra matrix,
the sources will be intuitively interpretable and no pre-
processing of the spectra is required in order to make
them non-negative, thus preventing any unnecessary
loss of information (in the case of our database, losing
the information in the negative peaks of the SV 1H-
MRS LTE spectra). As in the previous methods, H can
be understood as estimates of the concentration/abun-
dance of the constituent signals.
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NMF initialisations
NMF methods unavoidably converge to local minima. As
a result, the NMF bases will be different for different
initialisations. In this study, six forms of initialisation
were considered (with some variations depending on the
method). Although a standard procedure to justify the
choice of NMF initialisation does not exist, the six alter-
natives considered here cover a wide array of approaches:
from random initialisation, to prototype-based clustering
methods (K-means and Fuzzy C-Means, which provide a
data density-based sample of initial data locations), and
feature extraction techniques (PCA, ICA and NMF itself,
which initialise the algorithm according to the basic
eigenstructure of the data).

• Random:
[all methods]: W and H are initialised as dense
matrices of random values between 0 and 1.
• K-means clustering:
[euc, alspg, als, alsobs]: W is initialised with the clus-
ter centroids, and H with the distances from each
point (MR spectrum) to every centroid.
[convex]: H is initialised as H(0) = C + 0.2E, where E
is a matrix with all its elements equal to one, and C
= (c1, . . ., cn) is filled with the cluster indicators,
which are based on the cluster indices of each point,
such that Cik = {0,1} and the ones indicate cluster
membership. A is initialised as A(0) = (C + 0.2E)D-1,
where D is a diagonal matrix with each element
being the number of points in each cluster [24].
• Fuzzy C-Means (FCM):
[euc, alspg, als, alsobs]: W is initialised with the clus-
ter centres, and H with the fuzzy partition matrix
(or membership function matrix); as in [29].
[convex]: H is initialised as H(0) = C + 0.2E, where C
here is filled with the fuzzy partition values, and E is
a matrix with all its elements equal to one. A is initi-
alised as A(0) = (C + 0.2E)D-1 , where D is a diagonal
matrix with each element being the number of
points in each cluster.
• PCA:
[euc, alspg, als, alsobs]: The mean vector is sub-
tracted from the complete dataset, and this is fol-
lowed by the computation of its eigenvectors and
eigenvalues. The matrix W is initialised with the
whitened data (the corresponding projection of the
eigenvectors), and H with the de-whitening matrix.
In order to use the initial W and H matrices
obtained from PCA in NMF, the negative values are
truncated, as proposed in [29].
[convex]: H is initialised as H(0) = C + 0.2E, where C
is the de-whitening matrix, calculated, as in the rest
of methods, after calculating PCA, and also truncat-
ing the negative values. For the initialisation of A,

and as suggested in [24], first we compute A = HT

(HHT)-1, and then A(0) = (A)+ + 0.2E〈(A)+〉 so that
the negative elements are removed, where 〈X〉 = ∑n,

k|Xn, k|/||Xn, k||0, and where ||Xn, k||0 is the number
of nonzero elements in X.
• ICA (FastICA [30] algorithm):
[euc, alspg, als, alsobs]: The independent compo-
nents extracted using FastICA are used to initialise
W, and H is initialised with the resulting mixing
matrix. Then, to meet the non-negativity condition
of NMF, the negative values are truncated.
[convex]: H and A are initialised as in the PCA (for
convex) initialisation, with the only difference that H
is filled with the sources or independent components
from FastICA.
• Non-negative Matrix Factorisation (NMF, als
algorithm):
[euc, alspg, als, alsobs]: W is initialised with the sources
extracted with NMF (als), and H is initialised with the
resulting mixing matrix. In the case of als method,
initialising with the same method is equivalent to
duplicating the number of iterations, which does not
necessarily mean that the results will improve.
[convex]: H and A are initialised as in the PCA and
FastICA (for convex) initialisations, with the only dif-
ference that H is filled with the sources from NMF
(als).
In principle, we might expect the different initialisa-
tion strategies to behave as follows. Random initiali-
sation might be considered as an uninformed first
estimate for NMF methods, which may lead to dif-
ferent outcomes given different initialisation condi-
tions [29,31]. We might expect K-means and FCM
initialisations to make all methods perform better,
but the results may depend on the initial selection of
clusters; therefore, different results could be
obtained depending on such selection. PCA and
ICA, instead, can provide a unique solution,
although perhaps too biased, while, in the case of
NMF, the existence of a unique solution will depend
on its own initialisation. All these methods will con-
verge to local optima, so there is no guarantee that
the solution obtained will be the best possible.

Tumour type labelling using the mixing matrix and the
sources
As explained in the introduction section, NMF is used in
this study as an unsupervised method in the sense that
labelled MRS cases are not used to create the data model.
The obvious advantage of this approach is that the label-
ling procedure can be made independent of any specific
labelled (or mislabelled) MRS dataset that might bias the
generalisation capabilities of the model.
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In order to determine how well the sources obtained
through NMF represent the data, we propose to infer
the labels of the data only on the basis of the mixing
matrix and the source signals calculated, which will give
us an idea of the extent to which the sources contribute
to the reconstruction of each MRS observation (or
patient case). The calculation of the contribution C of
each source k to each case i is:

C(i,k) = VT
i WkH(k,i)

where V the data matrix, W is the matrix of sources,
and H is the mixing matrix. The predicted label can
then be inferred from the values in C as follows: for
each case i, the label is provided by the source k that
has the highest value of contribution for that case.

Source extraction as a dimensionality reduction
procedure prior to classification
The description of the MR spectra through a limited
number of extracted sources also entails a DR process in
the form of feature extraction. As previously mentioned,
the use of DR methods in the form of feature selection or
extraction is commonplace in the analysis of MRS. The
extracted features can then be used for traditional classi-
fication, within a standard supervised framework using
labelled cases. This was accomplished in the current
study using the Gram-Schmidt process [32] for orthonor-
malising the set of obtained source signals. This method
takes a finite, linearly independent set W = W1, . . ., Wk

for k ≤ n, where k is the number of sources and n is the
number of samples, and generates an orthogonal set
W’ = U1, ..., Uk that spans the same k-dimensional sub-
space of ℜn as W.

Results
In this section, we compile and present all the experi-
mental results. The objective of the experiments was
twofold: first, the assessment of NMF in fully unsuper-
vised mode as a source extraction and tumour type-
labelling method and, second, the evaluation of NMF as
a DR method prior to standard supervised classification.

NMF as a source extraction method
Here, we provide the comparative results of the applica-
tion of the five NMF methods for source extraction out-
lined in the Methods section, for each of the six different
initialisation strategies discussed. The goal was to find
the best combination of NMF method and initialisation
for the type of data analysed. Experiments were carried
out for four different brain tumour diagnostic problems
from MRS acquired both at LTE and STE. In each of
these classification problems, we attempted to discrimi-
nate between one or two tumour types and healthy

tissue, namely A2 vs. NO; A2 vs. ME vs. NO; A2 vs. GL
vs. NO; and A2 vs. MM vs. NO.
A2 are low-grade (grade II on a scale I-IV of the

WHO [33]) glial tumours with an infiltrating behaviour
(they grow by infiltrating normal brain tissue). They
evolve (directly or through an intermediate anaplastic
glioma stage, WHO grade III) to GL, which are highly
malignant, WHO grade IV tumours. ME are also grade
IV tumours, but they have a different origin: They are
tumours originated at other parts of the body that
spread (they become metastatic) to distant sites, such as
the brain. Grade IV tumours usually have a necrotic pat-
tern, with strong lipid signals that are most evident
when obtaining MRS data at short times of echo [34].
However, not all GL have this necrotic pattern, and
some retain a spectral pattern which is overall similar to
that of their low-grade glial counterparts, the A2, and
might be considered as atypical within their type, or
class outliers [35,36]. MM are low grade tumours
(WHO grade I), from a completely different origin:
meningeal cells. They have a distinct spectral pattern at
LTE, with an inverted alanine doublet at ca. 1.45 ppm
[8]. Their spectral pattern is also easy to recognise at
STE, without necrosis, and it is different from the glial,
metastatic, or normal patterns.
In summary, the choice of these specific problems at

both time of echo acquisition conditions ultimately
aimed to find answers to the following questions: 1) (A2
vs. NO): Is normal brain correctly distinguished from
infiltrative tumour? 2) (A2 vs. ME vs. NO): Are grades
(II vs. IV) well differentiated and distinct from normal
tissue? 3) (A2 vs. GL vs. NO): Are grades still well
recognised when one of the classes is heterogeneous? 4)
(A2 vs.MM vs. NO): Can low grades (A2 vs. MM, or
grade II vs. I), or infiltrative vs. non-infiltrative be
differentiated?
Tables 1 and 2 compile the results of the correlation

between the mean spectrum of each class (tumour type
or healthy tissue from controls) and the source signal,
extracted with NMF, that best represents this class, i.e.
the source signal that has the highest correlation with the
class. The number of sources calculated was selected
according to the number of classes involved in each diag-
nostic problem studied. Calculating the correlation pro-
vides us with an indicator of to what extent each source
is tumour-type specific.
Figure 1 is a graphical illustrative example of the

obtained sources in the experiment A2 vs. MM vs. NO
at LTE, for all the methods, with the K-means initialisa-
tion. The last row of the figure shows the mean spectra
of the classes involved in this experiment, to be used as
reference.
The computation times for the different methods used

in this study, in a personal computer (memory (RAM):
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Table 1 Summary of the results for LTE.

Experiment: LTE. A2, NO. (2 sources)

Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.98 A2: 0.97 A2: 0.98 A2: 0.91 A2: 0.98 A2: 0.97

NO: 0.96 NO: 0.99 NO: 0.99 NO: 0.98 NO: 0.87 NO: 0.95

als A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97

NO: 0.98 NO: 1.00 NO: 1.00 NO: 1.00 NO: 0.95 NO: 0.96

alspg A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97

NO: 0.96 NO: 1.00 NO: 1.00 NO: 1.00 NO: 0.95 NO: 0.96

alsobs A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97 A2: 0.97

NO: 0.96 NO: 1.00 NO: 1.00 NO: 1.00 NO: 0.95 NO: 0.99

convex A2: 1.00 A2: 1.00 A2: 1.00 A2: 0.99 A2: 1.00 A2: 1.00

NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00

Experiment: LTE. A2, ME, NO. (3 sources)

Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.88 A2: 0.94 A2: 0.94

ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.78 ME: 0.86 ME: 0.85

NO: 0.95 NO: 1.00 NO: 0.99 NO: 0.90 NO: 0.92 NO: 0.93

als A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94

ME: 0.85 ME: 0.84 ME: 0.84 ME: 0.85 ME: 0.85 ME: 0.85

NO: 0.92 NO: 0.99 NO: 0.99 NO: 0.92 NO: 0.91 NO: 0.91

alspg A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94

ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.85

NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.95 NO: 0.93 NO: 0.92

alsobs A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94

ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.85 ME: 0.85

NO: 0.96 NO: 0.99 NO: 0.99 NO: 0.95 NO: 0.95 NO: 0.95

convex A2: 0.99 A2: 0.99 A2: 0.98 A2: 0.98 A2: 0.98 A2: 0.98

ME: 0.88 ME: 0.88 ME: 0.90 ME: 0.86 ME: 0.87 ME: 0.87

NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00

Experiment: LTE. A2, GL, NO. (3 sources)

Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.87 A2: 0.92 A2: 0.91

GL: 0.75 GL: 0.76 GL: 0.75 GL: 0.92 GL: 0.78 GL: 0.76

NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.96 NO: 0.94 NO: 0.99

als A2: 0.92 A2: 0.92 A2: 0.92 A2: 0.92 A2: 0.92 A2: 0.92

GL: 0.76 GL: 0.76 GL: 0.76 GL: 0.76 GL: 0.76 GL: 0.76

NO: 0.95 NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.95 NO: 0.98

alspg A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.91

GL: 0.75 GL: 0.75 GL: 0.75 GL: 0.75 GL: 0.75 GL: 0.75

NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.97 NO: 0.96

alsobs A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.91

GL: 0.75 GL: 0.75 GL: 0.75 GL: 0.75 GL: 0.75 GL: 0.75

NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.99 NO: 0.98 NO: 0.99

convex A2: 0.94 A2: 0.97 A2: 0.95 A2: 0.94 A2: 0.96 A2: 0.96

GL: 0.80 GL: 0.73 GL: 0.77 GL: 0.81 GL: 0.75 GL: 0.74

NO: 0.98 NO: 1.00 NO: 1.00 NO: 0.99 NO: 1.00 NO: 1.00

Experiment: LTE. A2, MM, NO. (3 sources)

Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.96 A2: 0.88 A2: 0.89 A2: 0.97 A2: 0.88 A2: 0.88

MM: 0.92 MM: 0.97 MM: 0.97 MM: 0.91 MM: 0.99 MM: 0.97

Table 1 Summary of the results for LTE. (Continued)

NO: 0.95 NO: 0.98 NO: 0.98 NO: 0.72 NO: 0.89 NO: 0.98

als A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88

MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.97

NO: 0.98 NO: 0.97 NO: 0.97 NO: 0.98 NO: 0.97 NO: 0.98

alspg A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88

MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.97

NO: 0.97 NO: 0.98 NO: 0.98 NO: 0.98 NO: 0.96 NO: 0.98

alsobs A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88 A2: 0.88

MM: 0.98 MM: 0.98 MM: 0.97 MM: 0.97 MM: 0.97 MM: 0.98

NO: 0.98 NO: 0.98 NO: 0.98 NO: 0.98 NO: 0.97 NO: 0.98

convex A2: 0.98 A2: 0.99 A2: 0.98 A2: 0.98 A2: 0.99 A2: 0.88

MM: 1.00 MM: 0.99 MM: 0.99 MM: 0.99 MM: 1.00 MM: 0.98

NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00 NO: 1.00 NO: 0.99

Summary of the correlation values for the sources most highly correlating
with each type of tissue as expressed by its mean spectrum, for different
diagnostic problems at LTE, and for all the NMF methods and initialisation
conditions in the study. The diagnostic problems are: A2, NO; A2, ME, NO; A2,
GL, NO; and A2, MM, NO

Table 2 Summary of the results for STE.

Experiment: STE. A2, NO. (2 sources)

Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.94 A2: 0.94 A2: 0.94 A2: .83 A2: 0.96 A2: 0.92

NO: 0.87 NO: 0.97 NO: 0.96 NO: 0.93 NO: 0.76 NO: 0.75

als A2: 0.92 A2: 0.95 A2: .95 A2: .92 A2: 0.93 A2: 0.92

NO: 0.75 NO: 0.96 NO: 0.96 NO: 0.96 NO: 0.83 NO: 0.75

alspg A2: 0.93 A2: 0.95 A2: .95 A2: .92 A2: 0.95 A2: 0.92

NO: 0.75 NO: 0.96 NO: 0.96 NO: 0.96 NO: 0.75 NO: 0.75

alsobs A2: 0.92 A2: 0.94 A2: .94 A2: .92 A2: 0.95 A2: 0.92

NO: 0.76 NO: 0.96 NO: 0.96 NO: 0.96 NO: 0.75 NO: 0.75

convex A2: 0.99 A2: 0.99 A2: .99 A2: .98 A2: 0.99 A2: .99

NO: 0.99 NO: 1.00 NO: 1.00 NO: 1.00 NO: 0.99 NO: 1.00

Experiment: STE. A2, ME, NO. (3 sources)

Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.93 A2: 0.94 A2: 0.93 A2: 0.91 A2: 0.94 A2: 0.93

ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.86 ME: 0.99 ME: 0.98

NO: 0.83 NO: 0.80 NO: 0.89 NO: 0.87 NO: 0.86 NO: 0.74

als A2: 0.93 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.93

ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98

NO: 0.75 NO: 0.74 NO: 0.74 NO: 0.74 NO: 0.74 NO: 0.74

alspg A2: 0.94 A2: 0.93 A2: 0.93 A2: 0.94 A2: 0.94 A2: 0.94

ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98

NO: 0.69 NO: 0.73 NO: 0.73 NO: 0.69 NO: 0.70 NO: 0.74

alsobs A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94 A2: 0.94

ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98 ME: 0.98

NO: 0.69 NO: 0.69 NO: 0.72 NO: 0.69 NO: 0.71 NO: 0.69

convex A2: 0.98 A2: 0.99 A2: 0.99 A2: 0.91 A2: 0.99 A2: 0.99

ME: 1.00 ME: 1.00 ME: 1.00 ME: 0.99 ME: 0.99 ME: 0.99

NO: 0.99 NO: 1.00 NO: 1.00 NO: 0.93 NO: 0.99 NO: 0.99

Experiment: STE. A2, GL, NO. (3 sources)

Random K-means FCM PCA FastICA NMF (als)
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4 GB, processor: Pentium Dual-Core T4400, 64-bit
operating system), were less than one second in almost
all cases, with the exception of alsobs (euc: 0.2, als: 0.4,
alspg: 0.9, alsobs: 2.9, and convex: 0.8). The different
initialisations added less than one second to the total
computation time.

Labelling using convex-NMF
The results summarised in Tables 1 and 2 lead to one
clear conclusion: Convex-NMF was, consistently, the
variant of NMF that yielded the highest correlations
between the mean spectrum of the tumour types and
the corresponding extracted sources. Convex-NMF was,

therefore, the method of choice for the subsequent
experiments.
We next report the results of the unsupervised labelling

process: That is, the assignment of class labels (tumour
types and healthy tissue) to each of the cases using the
extracted sources and without modelling explicitly the
relationship between the sources and the class labels.
Table 3 shows the accuracy results (percentage of correct
classification, total and by class) of the labelling process
using Convex-NMF, for the same four diagnostic pro-
blems used to assess source extraction. To further assess
the performance of Convex-NMF, we added here two
more complex diagnostic problems with data acquired
both at LTE and STE: the discrimination between A2,
GL+ME (a superclass of the aggressive grade IV tumours:
AG), NO; and A2, AG, MM. These are both classical dis-
crimination problems in brain tumour diagnosis using
MRS [7,9,37,38]. These two specific problems aim to
answer the question: Are grades well recognised when
one of the classes (AG) is heterogeneous (i.e. spectral
pattern sub-types)?
Convex-NMF was also initialised with K-means clus-

tering, and a total of 4 source signals were calculated for
these two problems, given that 4 classes were involved.
The predicted labels were then used to determine to
what extent each observation was correctly labelled,
according to the INTERPRET database information. The
results of the six diagnostic problems are compiled in
Table 3, and Figures 2 and 3.
In the next section we use the sources in the context

of supervised classification, and compare the results
with equivalent classifiers, using the same settings.

NMF for classification
Using convex-NMF extracted source signals for
dimensionality reduction prior to classification
We now switch to experiments that analyse the use of
Convex-NMF as a dimensionality reduction technique to
preprocess the MRS data prior to standard classification.
For this, we used the orthogonal set corresponding to the
source signals obtained, and projected the data onto this
basis. The SpectraClassifierb software [39] was used to
develop standard Fisher Linear Discriminant Analysis
(LDA) classifiers, which were then evaluated through
bootstrap with 1,000 repetitions. The results are shown
in Table 4.
In order to compare these results with those of a tradi-

tional feature extraction method, we replicated all experi-
ments using the SpectraClassifier software with PCA as
data preprocessing feature extraction method (extracting
a number of principal components equal to the number
of source signals calculated for the corresponding NMF
experiment). This was again followed by Fisher LDA clas-
sification and evaluated through bootstrap with 1,000

Table 2 Summary of the results for STE. (Continued)

euc A2: 0.94 A2: 0.91 A2: 0.91 A2: 0.70 A2: 0.95 A2: 0.91

GL: 0.95 GL: 0.91 GL: 0.94 GL: 0.56 GL: 0.96 GL: 0.95

NO: 0.81 NO: 0.92 NO: 0.92 NO: 0.65 NO: 0.85 NO: 0.80

als A2: 0.91 A2: 0.90 A2: 0.90 A2: 0.90 A2: 0.91 A2: 0.90

GL: 0.95 GL: 0.95 GL: 0.95 GL: 0.95 GL: 0.95 GL: 0.95

NO: 0.76 NO: 0.90 NO: 0.89 NO: 0.83 NO: 0.79 NO: 0.82

alspg A2: 0.90 A2: 0.91 A2: 0.91 A2: 0.90 A2: 0.93 A2: 0.90

GL: 0.95 GL: 0.93 GL: 0.93 GL: 0.95 GL: 0.95 GL: 0.95

NO: 0.84 NO: 0.93 NO: 0.93 NO: 0.85 NO: 0.72 NO: 0.83

alsobs A2: 0.93 A2: 0.91 A2: 0.91 A2: 0.91 A2: 0.92 A2: 0.92

GL: 0.95 GL: 0.95 GL: 0.93 GL: 0.95 GL: 0.95 GL: 0.95

NO: 0.72 NO: 0.80 NO: 0.93 NO: 0.80 NO: 0.72 NO: 0.74

convex A2: 0.95 A2: 0.98 A2: 0.94 A2: 0.94 A2: 0.99 A2: 0.99

GL: 0.98 GL: 0.98 GL: 0.98 GL: 0.98 GL: 0.98 GL: 0.98

NO: 0.94 NO: 1.00 NO: 0.94 NO: 0.95 NO: 0.99 NO: 1.00

Experiment: STE. A2, MM, NO. (3 sources)

Random K-means FCM PCA FastICA NMF (als)

euc A2: 0.93 A2: 0.91 A2: 0.95 A2: 0.83 A2: 0.94 A2: 0.92

MM: 0.57 MM: 0.56 MM: 0.54 MM: 0.74 MM: 0.64 MM: 0.57

NO: 0.83 NO: 0.95 NO: 0.73 NO: 0.89 NO: 0.77 NO: 0.79

als A2: 0.93 A2: 0.93 A2: 0.93 A2: 0.92 A2: 0.93 A2: 0.92

MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57

NO: 0.76 NO: 0.79 NO: 0.77 NO: 0.75 NO: 0.76 NO: 0.75

alspg A2: 0.92 A2: 0.93 A2: 0.91 A2: 0.91 A2: 0.92 A2: 0.92

MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57

NO: 0.77 NO: 0.80 NO: 0.81 NO: 0.81 NO: 0.80 NO: 0.75

alsobs A2: 0.92 A2: 0.92 A2: 0.92 A2: 0.92 A2: 0.92 A2: 0.92

MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57 MM: 0.57

NO: 0.77 NO: 0.80 NO: 0.80 NO: 0.80 NO: 0.76 NO: 0.77

convex A2: 0.95 A2: 0.98 A2: 0.93 A2: 0.96 A2: 0.98 A2: 0.98

MM: 0.98 MM: 0.90 MM: 0.91 MM: 0.79 MM: 0.86 MM: 0.85

NO: 0.91 NO: 1.00 NO: 0.95 NO: 0.98 NO: 0.99 NO: 0.98

Summary of the correlation values for the sources most highly correlating
with each type of tissue as expressed by its mean spectrum, for different
diagnostic problems at STE, and for all the NMF methods and the initialisation
conditions in the study. The diagnostic problems are: A2, NO; A2, ME, NO; A2,
GL, NO; and A2, MM, NO
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Figure 1 Sources extracted in the experiment A2, MM, NO at LTE. The first five rows show the source signals obtained in the experiments
with A2, MM and NO at LTE, for all the methods under study and K-means clustering initialisation. The last row shows, from left to right, the
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comparative purposes.
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repetitions, as in the experiments in Table 4. The combi-
nation of PCA+LDA has been widely used to develop
MRS classifiers [7-9,37]. The results for experiments with
PCA are compiled in Table 5. Results obtained using an
independent test set are shown in Table 6 for both FE
methods: PCA and Convex-NMF.

Determining the most adequate number of sources
One of the issues to which attention should be paid is
the determination of the most appropriate number of
sources for each problem. For this, we investigate the
effect of varying the number of extracted sources on the

classification results. For illustration, results for only one
of the six previously investigated problems, namely A2,
AG, MM, are presented. This problem is the most com-
plex of those studied since it encompasses tumour type
and grade, as well as extra or intra-axial origin discrimi-
nation: low grade neuroepithelial vs. high grade neuroe-
pithelial, plus metastasis vs. low grade meningeal.
Figures 4 and 5 show the different sources obtained, at

LTE and STE, respectively, when we vary the number of
sources. The first four rows show the results of extract-
ing 3, 4, 5 and 6 sources, while the last rows show the
percentage of contribution of each source to each

Table 3 Labelling accuracy results obtained using Convex-NMF.

LTE

A2, NO(2SS) A2, ME, NO(3SS) A2, GL, NO(3SS) A2, MM, NO(3SS) A2, AG, NO(4SS) A2, AG, MM(4SS)

Total:100%(35/35) Total:84.8%(56/66) Total:71.1%(81/113) Total:96.7%(87/90) Total:77.8%(112/144) Total:73.9%(136/184)

A2:100%(20/20) A2:100%(20/20) A2:100%(20/20) A2:100%(20/20) A2:100%(20/20) A2:95.0%(19/20)

NO:100%(15/15) ME:67.7%(21/31) GL:59.0%(46/78) MM:94.5%(52/55) AG:70.6%(77/109) AG:64.2%(70/109)

NO:100%(15/15) NO:100%(15/15) NO:100%(15/15) NO:100%(15/15) MM:85.5%(47/55)

STE

A2, NO(2SS) A2, ME, NO(3SS) A2, GL, NO(3SS) A2, MM, NO(3SS) A2, AG, NO(4SS) A2, AG, MM(4SS)

Total:93.2%(41/44) Total:91.5%(75/82) Total:88.5%(115/130) Total:89.2%(91/102) Total:92.9%(156/168) Total:86.3%(176/204)

A2:86.4%(19/22) A2:77.3%(17/22) A2:81.8%(18/22) A2:77.3%(17/22) A2:81.8%(18/22) A2:90.9%(20/22)

NO:100%(22/22) NO:100%(22/22) GL:87.2%(75/86) MM:89.7%(52/58) AG:93.5%(116/124) AG:87.9%(109/124)

ME:94.7%(36/38) NO:100%(22/22) NO:100%(22/22) NO:100%(22/22) MM:81.0%(47/58)

Summary of the labelling accuracy using Convex-NMF with K-means initialisation for A2, NO; A2, ME, NO; A2, GL, NO; A2, MM, NO; A2, AG, NO; and A2, AG, MM,
at LTE and STE. They include the accuracy (total and by tumour type), and the number of correctly labelled samples from the total, in parentheses. The number
of source signals (SS) used in the experiments is indicated in parentheses
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Figure 2 Sources extracted in the experiment A2, AG, NO at LTE and STE. Source signals obtained in the experiments with A2, AG (GL+ME)
and NO at LTE (first row) and STE (second row), calculated with Convex-NMF, and initialised with K-means clustering. The sources in the first
column (S1) represent A2, the ones in the second column (S2) represent NO, and the ones in the last two columns (S3 and S4) mainly represent
AG. Axes labels and representation as in Figure 1.
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tumour type, for each experiment. Tables 7 and 8 com-
pile the classification results when varying the number
of sources from 2 to 10, for the training and the inde-
pendent test set, respectively; and the plots in Figure 6
summarise the results, at LTE and STE.

Discussion
NMF as a source extraction method
The results reported in Tables 1 and 2 clearly indicate
that, in terms of correlation, the Convex-NMF method
consistently outperforms the rest, yielding better results
in nearly every experiment. The advantage of Convex-

NMF is especially striking at STE (results in Table 2).
Regarding the different initialisation alternatives, correla-
tion results do not show much dependence on the type
of initialisation strategy. Random and K-means-based
initialisations seem to be, overall, the best choices at
both times of echo. Therefore, in all subsequent ana-
lyses, Convex-NMF with K-means initialisation was the
selected method.
The illustrative example of Figure 1, in which the

NMF-extracted sources are shown, reveals an effect
resulting from the fact that the best correlation value
between the mean of the spectra of a class and the
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Figure 3 Sources extracted in the experiment A2, AG, MM at LTE and STE. Source signals obtained in the experiments with A2, AG (GL
+ME) and MM at LTE (first row) and STE (second row), calculated with Convex-NMF, and initialised with K-means clustering. The sources in the
first column (S1) again represent A2, the ones in the second column (S2) represent MM, and the ones in the last two columns (S3 and S4) again
mainly represent AG. Axes labels and representation as in previous figures.

Table 4 Classification results using Convex-NMF for DR prior to classification with Fisher LDA.

LTE

A2, NO(2SS) A2, ME, NO(3SS) A2, GL, NO(3SS) A2, MM, NO(3SS) A2, AG, NO(4SS) A2, AG, MM(4SS)

Total:100% ± 0.0 Total:92.6% ± 3.3 Total:85.1% ± 3.4 Total:97.7% ± 1.6 Total:90.9% ± 2.4 Total:79.4% ± 3.0

A2:100% ± 0.0 A2:100% ± 0.0 A2:84.9% ± 8.5 A2:94.8% ± 5.0 A2:100% ± 0.0 A2:94.9% ± 5.2

NO:100% ± 0.0 ME:84.1% ± 6.8 GL:82.3% ± 4.3 GL:98.2% ± 1.9 AG:88.0% ± 3.1 AG:72.5% ± 4.3

NO:100% ± 0.0 NO:100% ± 0.0 NO:100% ± 0.0 NO:100% ± 0.0 MM:87.5% ± 4.3

STE

A2, NO(2SS) A2, ME, NO(3SS) A2, GL, NO(3SS) A2, MM, NO(3SS) A2, AG, NO(4SS) A2, AG, MM(4SS)

Total:95.5% ± 3.1 Total:94.0% ± 2.6 Total:91.0% ± 2.5 Total:92.2% ± 2.7 Total:92.3% ± 2.0 TOTAL:87.7% ± 2.3

A2:91.2% ± 6.0 A2:86.3% ± 7.4 A2:82.5% ± 8.1 A2:86.3% ± 7.7 A2:81.9% ± 8.2 A2:95.5% ± 4.6

NO:100% ± 0.0 ME:95.0% ± 3.5 GL:90.9% ± 3.1 GL:91.5% ± 3.7 AG:92.8% ± 2.3 AG:86.3% ± 3.2

NO:100% ± 0.0 NO:100% ± 0.0 NO:100% ± 0.0 NO:100% ± 0.0 MM:87.7% ± 4.3

Classification results (accuracy ± standard deviation) obtained with Fisher LDA (implemented in SpectraClassifier) for six diagnostic problems, from the source
signals obtained by Convex-NMF, for data acquired at LTE and STE. Classifier results were validated through bootstrap. The number of source signals (SS) used in
the experiments is indicated in parentheses
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sources is used as the indicator for selecting the source
that best represents that class: for some types of NMF,
this approach results in situations in which each source

does not necessarily correspond univocally to a single
class; sometimes, instead, a single source may encompass
more than one class. This can be clearly seen in Figure 1,

Table 5 Classification results using PCA for DR prior to classification with Fisher LDA.

LTE

A2, NO(2PC) A2, ME, NO(3PC) A2, GL, NO(3PC) A2, MM, NO(3PC) A2, AG, NO(4PC) A2, AG, MM(4PC)

Total:100% ± 0.0 Total:93.8% ± 3.1 Total:82.1% ± 3.6 Total:95.4% ± 2.2 Total:84.6% ± 3.0 Total:80.2% ± 2.9

A2:100% ± 0.0 A2:100% ± 0.0 A2:100.0% ± 0.0 A2:95.0% ± 5.1 A2:100% ± 0.0 A2:100% ± 0.0

NO:100% ± 0.0 ME:86.9% ± 6.1 GL:75.4% ± 4.9 MM:94.4% ± 3.1 AG:79.7% ± 3.9 AG:75.9% ± 4.2

NO:100% ± 0.0 NO:93.2% ± 6.8 NO:100% ± 0.0 NO:100% ± 0.0 MM:81.6% ± 5.2

STE

A2, NO(2PC) A2, ME, NO(3PC) A2, GL, NO(3PC) A2, MM, NO(3PC) A2, AG, NO(4PC) A2, AG, MM(4PC)

Total:93.2% ± 3.9 Total:90.2% ± 3.3 Total:84.4% ± 3.2 Total:88.1% ± 3.2 Total:86.2% ± 2.7 Total:81.3% ± 2.7

A2:86.4% ± 7.4 A2:86.2% ± 7.5 A2:81.4% ± 8.4 A2:81.6% ± 8.4 A2:72.5% ± 9.6 A2:90.7% ± 6.4

NO:100% ± 0.0 ME:91.9% ± 4.4 GL:84.6% ± 3.8 MM:87.8% ± 4.2 AG:89.5% ± 2.8 AG:80.6% ± 3.5

NO:91.1% ± 6.0 NO:86.2% ± 7.5 NO:95.5% ± 4.5 NO:81.5% ± 8.6 MM:79.2% ± 5.3

Classification results (accuracy ± standard deviation) obtained with Fisher LDA (implemented in SpectraClassifier) for six diagnostic problems, from the source
signals obtained by PCA, for data acquired at LTE and STE. Classifier results were validated through bootstrap. The number of principal components (PC) in the
experiments is indicated in parentheses

Table 6 Classification accuracies for the independent test set.

LTE, FE method:PCA

A2, NO(2PC) A2, ME, NO(3PC) A2, GL, NO(3PC) A2, MM, NO(3PC) A2, AG, NO(4PC) A2, AG, MM(4PC)

Total:92.3%(12/13) Total:82.6%(19/23) Total:65.1%(28/43) Total:81.3%(13/16) Total:64.2%(34/53) Total:67.9%(36/53)

A2:100%(10/10) A2:100%(10/10) A2:90%(9/10) A2:80.0%(8/10) A2:90%(9/10) A2:80.0%(8/10)

NO:66.7%(2/3) ME:70.0%(7/10) GL:53.3%(16/30) MM:66.7%(2/3) AG:57.5%(23/40) AG:62.5%(25/40)

NO:66.7%(2/3) NO:100%(3/3) NO:100%(3/3) NO:66.7%(2/3) MM:100%(3/3)

BER:0.17 BER:0.21 BER:0.19 BER:0.18 BER:0.29 BER:0.19

LTE, FE method:Convex-NMF

A2, NO(2SS) A2, ME, NO(3SS) A2, GL, NO(3SS) A2, MM, NO(3SS) A2, AG, NO(4SS) A2, AG, MM(4SS)

Total:92.3%(12/13) Total:82.6%(19/23) Total:67.4%(29/43) Total:68.8(11/16) Total:71.7%(38/53) Total:64.2%(34/53)

A2:90.0%(9/10) A2:90.0%(9/10) A2:70.0%(7/10) A2:50.0%(5/10) A2:70.0%(7/10) A2:60%(6/10)

NO:100%(3/3) ME:70.0%(7/10) GL:63.3%(19/30) MM:100%(3/3) AG:70.0%(28/40) AG:62.5%(25/40)

NO:100%(3/3) NO:100%(3/3) NO:100%(3/3) NO:100%(3/3) MM:100%(3/3)

BER:0.05 BER:0.13 BER:0.22 BER:0.17 BER:0.20 BER:0.26

STE, FE method:PCA

A2, NO(2PC) A2, ME, NO(3PC) A2, GL, NO(3PC) A2, MM, NO(3PC) A2, AG, NO(4PC) A2, AG, MM(4PC)

Total:92.3%(12/13) Total:73.9%(17/23) Total:76.7%(33/43) Total:75.0(12/16) Total:83.0%(44/53) Total:73.6%(39/53)

A2:90.0%(9/10) A2:80.0%(8/10) A2:60.0%(6/10) A2:60.0%(6/10) A2:80.0%(8/10) A2:70.0%(7/10)

NO:100%(3/3) ME:70.0%(7/10) GL:80.0%(24/30) MM:100%(3/3) AG:87.5%(35/40) AG:72.5%(29/40)

NO:66.7%(2/3) NO:100%(3/3) NO:100%(3/3) NO:33.3%(1/3) MM:100%(3/3)

BER:0.05 BER:0.28 BER:0.20 BER:0.13 BER:0.33 BER:0.19

STE, FE method:Convex-NMF

A2, NO(2SS) A2, ME, NO(3SS) A2, GL, NO(3SS) A2, MM,NO(3SS) A2, AG, NO(4SS) A2, AG, MM(4SS)

Total:92.3%(12/13) Total:91.3%(21/23) Total:90.7%(39/43) Total:87.5(14/16) Total:90.6%(48/53) Total:83.0%(44/53)

A2:90.0%(9/10) A2:90.0%(9/10) A2:90.0%(9/10) A2:80.0%(8/10) A2:90.0%(9/10) A2:90.0%(9/10)

NO:100%(3/3) ME:90.0%(9/10) GL:90.0%(27/30) MM:100%(3/3) AG:90.0%(36/40) AG:80.0%(32/40)

NO:100%(3/3) NO:100%(3/3) NO:100%(3/3) NO:100%(3/3) MM:100%(3/3)

BER:0.05 BER:0.07 BER:0.07 BER:0.07 BER:0.07 BER:0.10

Classification accuracies (total and by tumour type) and balanced error rates (BER) for the independent test set, using all the classification settings from Tables 4
and 5, for data at LTE and STE
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where the sources calculated with the first four methods
(euc, als, alspg, and alsobs) can be explained as follows:
the ones in the leftmost column describe mostly the A2
and MM tumour types, respectively (the correlation
values can be seen in Table 1); the ones in the rightmost
column describe the normal tissue; and the ones in the
middle column have a low correlation with the three
tumour types in the experiment, as evidenced if we com-
pare them qualitatively to the mean spectra at the bottom
of the Figure.
In stark contrast, we can also conclude from Figure 1

(and from further results not reported here, but which
are consistent with the high correlation values shown in
Tables 1 and 2) that Convex-NMF performs class-speci-
fic source extraction far better than the other methods
studied. It is remarkable how Convex-NMF is able to
extract sources that represent each class univocally.

Here, A2 is represented by one source (leftmost column
in Figure 1), meningiomas by another source (middle
column of Figure 1) and normal tissue by a third one
(rightmost column in Figure 1). This way, Convex-NMF
extremely simplifies the interpretation of the source sig-
nals extracted. For example, while the sources produced
by the euc, als, alspgand alsobs methods show a doublet
at about 1.5 ppm (Alanine), the two sources for A2 and
MM in the convex method clearly discriminate the con-
tribution from the Lactate inverted doublet centred at
1.35 ppm, typical of A2, from the Alanine inverted
doublet centred at 1.45 ppm, which is typical from
meningioma.

Labelling using convex-NMF
The results reported in Table 3, and Figures 2 and 3
show that normal brain (NO) is perfectly discriminated
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in all of the comparisons carried out, as it might be
expected due to the metabolic differences of healthy tis-
sue with respect to brain tumours in general. Further-
more, the differential discrimination among meningeal,
glial (A2) and control is reasonably good for both times
of echo (89-97%). On the other hand, the trilateral discri-
mination between the aggressive tumours (ME or GL),
A2 and NO is far less accurate, reaching a low 71% for
the A2, GL, NO at LTE. The detailed interpretation of
the last two diagnostic problems, involving the aggressive
grade IV superclass is as follows:

• Problem A2 vs. AG vs. NO at LTE: A2 is fully repre-
sented by one of the sources (Figure 2, first row, col-
umn S1), which correlates at 0.98 with the mean
spectrum of A2; AG is labelled with an accuracy of
70.6% and it is mostly represented by two sources

(Figure 2, first row, columns S3 and S4), which corre-
late at 0.97 and 0.67 with the mean spectrum of AG;
finally, NO is also fully represented by one of the
sources (Figure 2, first row, column S2), which fully
correlates (1.0) with the mean spectrum of NO. The
accuracy for the groups A2 and NO is 100%, while it
falls to 70% for AG, which totals 77.8% of correctly
labelled samples.
• Problem A2 vs. AG vs. NO at STE: A2 is labelled
with an accuracy of 81.8% and it is represented
almost exclusively by one of the sources (Figure 2,
second row, column S1), which correlates at 0.99
with the mean spectrum of A2;AG is labelled with an
accuracy of 92.7% and it is mostly represented by two
sources (Figure 2, second row, columns S3 and S4),
which correlate at 0.94 and 0.98 with the mean spec-
trum of AG; and NO is fully represented by one of
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experiments with varying number of extracted sources. The first 4 rows show the sources corresponding to experiments in which 3, 4, 5 and 6
sources were calculated. Horizontal axis in the first four rows: frequency in ppm scale. The last row shows the percentage of contribution of
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previous figures.
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the sources (Figure 2, second row, column S2), which
fully correlates (1.0) with the mean spectrum of NO.
At STE, the highest accuracy for AG raises the overall
accuracy to 92.3%. The higher accuracy for short
echo time classifiers is also common in other studies
based in supervised analysis of data (i.e. [1]).
• Problem A2 vs. AG vs. MM at LTE: A2 is labelled
with an accuracy of 95% and it is represented almost
exclusively by one of the sources (Figure 3, first row,
column S1), which correlates at 0.99 with the mean
spectrum of A2; AG is labelled with an accuracy of

64.2% and it is mostly represented by two sources
(Figure 3, first row, columns S3 and S4), which cor-
relate at 0.96 and 0.66 with the mean spectrum of
AG; finally MM is labelled with an accuracy of 85.5
• Problem A2 vs. AG vs. MM at STE: A2 is labelled
with an accuracy of 90.9% and it is represented almost
exclusively by one of the sources (Figure 3, second
row, column S1), which correlates at 0.98 with the
mean spectrum of A2; AG is labelled with an accuracy
of 85.5% and it is mostly represented by two sources
(Figure 3, second row, columns S3 and S4), which

Table 7 Classification results of A2, AG, MM for the training set, varying the number of extracted features.

PC/SS LTE. PCA LTE. Convex-NMF STE. PCA STE. Convex-NMF

2 Total:68.4% ± 3.4 Total:62.2% ± 3.6 Total:83.7% ± 2.6 Total:80.6% ± 2.7

A2:75.0% ± 9.8 A2:55.4% ± 11.7 A2:86.8% ± 7.6 A2:78.0% ± 8.9

AG:65.9% ± 4.1 AG:71.6% ± 4.2 AG:82.9% ± 3.3 AG:84.0% ± 3.3

MM:71.0% ± 6.1 MM:45.7% ± 7.0 MM:84.3% ± 4.9 MM:74.3% ± 5.7

3 Total:77.6% ± 3.0 Total:73.0% ± 3.2 Total:81.7% ± 2.8 Total:83.4% ± 2.6

A2: 95.0% ± 4.8 A2:90.2% ± 6.8 A2:85.7% ± 7.6 A2:95.4% ± 4.4

AG: 71.5% ± 4.3 AG:63.6% ± 4.6 AG:81.3% ± 3.5 AG:81.7% ± 3.6

MM: 83.5% ± 4.9 MM:85.4% ± 5.0 MM:80.8% ± 5.3 MM:82.7% ± 4.9

4 Total:80.2% ± 2.9 Total:79.4% ± 3.0 Total:81.3% ± 2.7 Total:87.7% ± 2.3

A2:100% ± 0.0 A2:94.9% ± 5.2 A2:90.7% ± 6.4 A2:95.5% ± 4.6

AG:75.9% ± 4.2 AG:72.5% ± 4.3 AG:80.6% ± 3.5 AG:86.3% ± 3.2

MM:81.6% ± 5.2 MM:87.5% ± 4.3 MM:79.2% ± 5.3 MM:87.7% ± 4.3

5 Total:83.6% ± 2.7 Total:82.2% ± 2.9 Total:81.8% ± 2.7 Total:86.3% ± 2.4

A2:100% ± 0.0 A2:100% ± 0.0 A2:90.8% ± 6.3 A2:90.6% ± 6.4

AG:79.7% ± 3.9 AG:80.0% ± 3.9 AG:80.5% ± 3.6 AG:86.3% ± 3.1

MM:85.5% ± 4.6 MM:80.3% ± 5.4 MM:81.2% ± 5.3 MM:84.6% ± 4.6

6 Total:84.8% ± 2.5 Total:84.9% ± 2.6 Total:92.1% ± 1.9 Total:91.8% ± 1.9

A2:100% ± 0.0 A2:100% ± 0.0 A2:95.3% ± 4.6 A2:95.7% ± 4.1

AG:81.7% ± 3.5 AG:82.8% ± 3.6 AG:92.7% ± 2.3 AG:91.2% ± 2.6

MM:85.4% ± 4.8 MM:83.7% ± 4.9 MM:89.7% ± 4.1 MM:91.4 ± 3.8

7 Total:84.0% ± 2.7 Total:83.2% ± 2.7 Total:92.5% ± 1.9 Total:92.3% ± 1.9

A2:100% ± 0.0 A2:100% ± 0.0 A2:95.6% ± 4.4 A2:91.2% ± 6.1

AG:80.6% ± 3.8 AG:79.0% ± 4.0 AG:92.6% ± 2.3 AG:92.1% ± 2.4

MM:85.2% ± 4.8 MM:85.7% ± 4.6 MM:91.2% ± 3.9 MM:93.0% ± 3.4

8 Total:83.0% ± 2.7 Total:85.3% ± 2.7 Total:93.5% ± 1.7 Total:92.2% ± 1.9

A2:100% ± 0.0 A2:100% ± 0.0 A2:95.3% ± 4.6 A2:95.6% ± 4.5

AG:78.7% ± 3.8 AG:80.7% ± 3.8 AG:93.0% ± 2.2 AG:91.2% ± 2.5

MM:85.4% ± 4.9 MM:89.0% ± 4.3 MM:92.9% ± 3.4 MM:93.2% ± 3.3

9 Total:84.3% ± 2.6 Total:85.3% ± 2.6 Total:93.5% ± 1.7 Total:94.2% ± 1.7

A2:100% ± 0.0 A2:100% ± 0.0 A2:95.3% ± 4.6 A2:95.5% ± 4.6

AG:80.7% ± 3.6 AG:82.6% ± 3.5 AG:93.5% ± 2.2 AG:95.2% ± 1.9

MM:85.5% ± 4.7 MM:85.5% ± 4.8 MM:92.9% ± 3.4 MM:91.4% ± 3.7

10 Total:82.7% ± 2.8 Total:88.4% ± 2.3 Total:92.6% ± 1.9 Total:93.7% ± 1.7

A2:100% ± 0.0 A2:100% ± 0.0 A2:95.5% ± 4.5 A2:95.7% ± 4.5

AG:79.1% ± 3.9 AG:87.0% ± 3.2 AG:91.9% ± 2.5 AG:93.5% ± 2.2

MM:83.6% ± 4.9 MM:87.1% ± 4.5 MM:93.1% ± 3.4 MM:93.1% ± 3.3

Classification results (accuracy ± standard deviation) for the training set, at LTE and STE, obtained when varying the number of extracted features (principal
components -PC- and source signals -SS-) from 4 to 10, for the problem A2, AG, MM. Fisher LDA was the classification method, and results were validated
through bootstrap. The second and fourth columns show the results for PCA, and the third and fifth columns the results for Convex-NMF
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Table 8 Classification results of A2, AG, MM for the independent test set, varying the number of extracted features.

PC/SS LTE. PCA LTE. Convex-NMF STE. PCA STE. Convex-NMF

2 Total:54.7%(29/53) Total:54.7%(29/53) Total:73.6%(39/53) Total:71.7%(38/53)

A2:60.0%(6/10) A2:60.0%(6/10) A2:90.0%(9/10) A2:60.0%(6/10)

AG:52.5% (21/40) AG:50.0%(20/40) AG:67.5%(27/40) AG:72.5% (29/40)

MM:66.7% (2/3) MM:100% (3/3) MM:100% (3/3) MM:100% (3/3)

BER:0.40 BER:0.30 BER:0.14 BER:0.23

3 Total: 60.4%(32/53) Total:52.8%(28/53) Total:69.8%(37/53) Total:75.5%(40/53)

A2:70.0%(7/10) A2:60.0%(6/10) A2:80.0%(8/10) A2:80.0%(8/10)

AG:55.0% (22/40) AG:50.0%(20/40) AG:65.0%(26/40) AG:75.0%(30/40)

MM:100% (3/3) MM:66.7% (2/3) MM:100% (3/3) MM:66.7% (2/3)

BER:0.25 BER:0.41 BER:0.18 BER:0.26

4 Total:67.9%(36/53) Total:64.2%(34/53) Total:73.6%(39/53) Total:83.0%(44/53)

A2:80%(8/10) A2:60.0%(6/10) A2:70.0%(7/10) A2:90.0%(9/10)

AG:62.5%(25/40) AG:62.5%(25/40) AG:72.5%(29/40) AG:80%(32/40)

MM:100%(3/3) MM:100%(3/3) MM:100%(3/3) MM:100%(3/3)

BER:0.19 BER:0.26 BER:0.19 BER:0.10

5 Total:67.9%(36/53) Total:75.5%(40/53) Total:73.6%(39/53) Total:79.2%(42/53)

A2:80%(8/10) A2:70.0%(7/10) A2:70.0%(7/10) A2:80.0%(8/10)

AG:62.5%(25/40) AG:75.0%(30/40) AG:72.5%(29/40) AG:77.5%(31/40)

MM:100%(3/3) MM:100%(3/3) MM:100%(3/3) MM:100%(3/3)

BER:0.19 BER:0.18 BER:0.19 BER:0.14

6 Total:67.9%(36/53) Total:73.6%(39/53) Total:79.2%(42/53) Total:83.0%(44/53)

A2:80%(8/10) A2:70.0%(7/10) A2:70.0%(7/10) A2:90.0%(9/10)

AG:62.5%(25/40) AG:72.5%(29/40) AG:82.5%(33/40) AG:82.5%(33/40)

MM:100%(3/3) MM:100%(3/3) MM:66.7%(2/3) MM:66.7%(2/3)

BER:0.19 BER:0.19 BER:0.27 BER:0.20

7 Total:67.9%(36/53) Total:73.6%(39/53) Total:79.2%(42/53) Total:83.0%(44/53)

A2:80%(8/10) A2:70.0%(7/10) A2:70.0%(7/10) A2:90.0%(9/10)

AG:62.5%(25/40) AG:72.5%(29/40) AG:82.5%(33/40) AG:82.5%(33/40)

MM:100%(3/3) MM:100%(3/3) MM:66.7%(2/3) MM:66.7%(2/3)

BER:0.19 BER:0.19 BER:0.27 BER:0.20

8 Total:75.5%(40/53) Total:69.8%(37/53) Total:81.1%(43/53) Total:84.9%(45/53)

A2:80%(8/10) A2:70.0%(7/10) A2:80%(8/10) A2:90.0%(9/10)

AG:72.5%(29/40) AG:67.5%(27/40) AG:80%(32/40) AG:85%(34/40)

MM:100%(3/3) MM:100%(3/3) MM:100%(3/3) MM:66.7%(2/3)

BER:0.16 BER:0.21 BER:0.13 BER:0.19

9 Total:75.5%(40/53) Total:71.7%(38/53) Total:84.9%(45/53) Total:86.8%(46/53)

A2:80%(8/10) A2:70.0%(7/10) A2:90%(9/10) A2:90%(9/10)

AG:72.5%(29/40) AG:70.0%(28/40) AG:82.5%(33/40) AG:87.5%(35/40)

MM:100%(3/3) MM:100%(3/3) MM:100%(3/3) MM:66.7%(2/3)

BER:0.16 BER:0.20 BER:0.09 BER:0.19

10 Total:73.6%(39/53) Total:69.8%(37/53) Total:86.8%(46/53) Total:84.9%(45/53)

A2:80%(8/10) A2:70.0%(7/10) A2:90%(9/10) A2:90.0%(9/10)

AG:70%(28/40) AG:67.5%(27/40) AG:85%(34/40) AG:85%(34/40)

MM:100%(3/3) MM:100%(3/3) MM:100%(3/3) MM:66.7%(2/3)

BER:0.17 BER:0.21 BER:0.08 BER:0.19

Classification accuracies (total and by tumour type) and BER for the independent test set, at LTE and STE, using the corresponding classification settings from
Table 7. The second and fourth columns show the results for PCA, and the third and fifth columns the results for Convex-NMF
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correlate at 0.94 and 0.93 with the mean spectrum of
AG; finally MM is labelled with an accuracy of 86.2%
and represented almost in full by one of the sources
(Figure 3, second row, column S2), which correlates at
0.97 with the mean spectrum of MM. The overall
accuracy is 86.3%. Again, at STE the accuracy for AG
is higher than at LTE.

The results for the AG superclass illustrate that Con-
vex-NMF is not always successful in extracting tumour
type-specific sources. Two inherent characteristics of
AG may explain this: first, AG has been artificially built
using two tumour types (ME andGL) and, second, GL
by itself is a rather heterogeneous type in which plenty
of substructure can be found [35,40-43].
This does not preclude the interpretation of the sources.

According to the signal profile and its metabolic interpre-
tation, one of the sources representing AG (Figure 2, first
row, column S3) seems to correspond to the necrotic core
(high mobile lipids, ML) [34,44]; while the other (Figure 2,
first row, column S4) seems to correspond to the cellular
part of the tumour (high total choline, indicating high pro-
liferation rate [45]). Note that this dichotomy is valid for
both echo times, and the two problems above, in which
one source represents the cellular part while the other
represents the necrotic core, and both are needed to accu-
rately recognise SV patterns of GL or ME.

Convex-NMF as DR method prior to classification
The comparison of the results of Tables 4 and 5 reveals
that at STE the classification results for the training
dataset improve in all the experiments when using Con-
vex-NMF for feature extraction instead of PCA, prior to
standard supervised classification. This pattern was
repeated for LTE, with the exception of the A2, AG,
MM problem, which yielded a poorer result; in any
case, the difference is rather small and not significant.
Interestingly, the unsupervised labelling results reported
in Table 3, though worse than those of their supervised
counterparts reported in Table 4, are still comparable to
those obtained with PCA and LDA in fully supervised
mode (in fact, they are consistently better for STE, while
worse for LTE).
An independent test set was then used to further vali-

date the robustness of the developed classifiers for data
preprocessed with both FE methods: PCA and the
orthogonal Convex-NMF sources. Table 6 contains the
accuracy results (total and by tumour type), as well as
the corresponding balanced error rate (BER) [9]. Again,
at STE, the use of Convex-NMF orthogonal sources
yields results that clearly outperform those of PCA-
based classification. However, at LTE the results are
more mixed: similar in the cases of A2, NO; A2, ME,
NO and A2, GL, NO; better in the case of A2, AG, NO;

and worse in remaining two: A2, AG, MM (with a small
difference) and A2, MM, NO, with a more noticeable
difference.
Other studies have addressed similar problems in the

existing literature, for similar data. We report next some
of these results for comparative purposes, although the
techniques and the evaluation criteria involved are not
always the same.

• In [7], as first step of a multiclass classifier for data
acquired at LTE, aggressive tumours (AG) were dis-
criminated from A2 with an accuracy of 84.7%. In
our experiments, which also include the healthy tis-
sue class, an 85.1% accuracy was achieved from the
extracted sources. For the same problem, with data
acquired at STE, an accuracy of 90.9% was reported
in [38], to be compared with a 92.3% obtained in
our study from the sources.
• In [1], when classifying low-grade meningiomas
(MM) vs. low-grade glial tumours (A2, plus oligo-
dendrogliomas and oligoastrocytomas, two tumour
types not analysed in our experiments) vs. high-
grade aggressive tumours (AG), the reported accura-
cies for the training set were 84.2% at LTE and
89.0% at STE, while the accuracies for an indepen-
dent test set were, in turn, 69.8% and 82.5%. The
results obtained in our experiments when separating
A2 from AG and MM, using the sources, were
79.4% at LTE and 87.7% at STE, for training; and
64.2% at LTE and 83.0% at STE, for the independent
test set.

Determining the most adequate number of sources
Figures 4 and 5 show the different sources obtained, at
LTE and STE, respectively, when varying the number of
sources. In both figures, the first columns of sources are
representing mostly the A2 type; the second columns
represent mostly the MM type; and, finally, the third
columns are mainly representing necrotic tissue, which
should only be found in GL and ME. It is interesting to
see how, when calculating 4 sources, the first 3 sources
remain, while the new one seems to correspond to
actively proliferating tumour (high total choline at ca.
3.21 ppm).
The bar plots for 4 sources, at both times of echo,

show the extent to which sources 3 (necrotic tissue) and
4 (proliferative tumour) are representing the AG super-
class. At LTE, when calculating 5 sources, the first four
look very similar to those calculated in the experiment
with 4 sources, while the new one seems to express part
of the AG superclass, which is now in fact split into the
last three sources. The non-necrotic 4th and 5th sources
would show an inverted trend for total choline (ca. 3.21
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ppm) versus ML/Lactate (ca. 1.3 ppm). Then, decreasing
choline would be matched by increased ML/Lactate,
suggesting sampling of aggressive tumour subtypes with
variable proliferation rate (total Choline), with concomi-
tant effects on the lactate and ML accumulation. At
STE, when calculating 5 sources, the first four also look
very similar to those obtained in the experiment with
only 4 sources, but the new one is not only part of AG,
but also partly of MM.
Six sources at LTE already seem to be too many, given

that the contribution of the last one is comparatively
very small and completely unspecific. Six sources at STE
also seem to be too many. In this case, the MM class is
less represented by the second source, while the 5th
does contribute both to AG and MM. This could have
contributions from class outlier cases (atypical menin-
giomas), for which mobile lipids could be starting to
increase. The last one could contain some artefactual
bad water suppression above 3.7 ppm. Up to this point,
and based solely on the patterns of the sources, and the
percentages of contribution of these to each class,
choosing 4 or 5 sources seems to be best option, at
both times of echo, to maintain the correspondence
between source, or set of sources, and individual tumour
types.
Tables 7 and 8 compile the classification results corre-

sponding to the varying number of sources (from 2 to
10), both for the training and the independent test set,
respectively. The plots in Figure 6 summarise these
results. The leftmost column in this figure contains the
results at LTE, and the rightmost column, the results at
STE. Strictly in terms of classification, the use of 5

sources seems to be a good choice at LTE, given the
accurate results obtained with the independent test set,
and its low BER value. At STE, choosing 4 sources
seems to be a good compromise, for which the accura-
cies for the training and the independent test set are
high, while the BER for the test set stays the lowest.

Conclusions
The unsupervised analysis of SV 1H-MRS data from
human brain tumours using Convex-NMF has been
shown to produce a reduced number of sources that
can be confidently recognised as representing brain
tumour types or healthy tissue in a way that other
source extraction methods, including other NMF var-
iants, cannot. Importantly, this result allows us to pro-
duce class assignments for unlabelled spectra in fully
unsupervised mode, using the mixing matrix directly as
a basis for classification, with results that are compar-
able to those obtained in fully supervised mode. The use
of the sources extracted by Convex-NMF for dimension-
ality reduction leads to simple LDA-based classifiers
with independent test performances that are comparable
with, and are often better than previously described stra-
tegies. In summary, the unsupervised properties of Con-
vex-NMF place this approach one step ahead of classical
label-requiring supervised methods for detection of the
increasingly recognised molecular subtype heterogeneity
within human brain tumours. The application of Con-
vex-NMF in computer assisted decision support systems
is expected to facilitate further improvements in the
uptake of MRS-derived information by clinicians.

Endnote
a http://gabrmn.uab.es/interpret
b http://gabrmn.uab.es/sc
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LDA. The left-hand side column corresponds to LTE results, and the
right-hand side column to STE results. The first row displays the
accuracy of the classification for all the methods, for training and
test data sets. The second row displays the balanced error rate (BER)
estimates for the test data sets. Horizontal axis: number of principal
components or source signals. Vertical axis: accuracy and BER,
respectively.

Ortega-Martorell et al. BMC Bioinformatics 2012, 13:38
http://www.biomedcentral.com/1471-2105/13/38

Page 18 of 20

http://gabrmn.uab.es/interpret
http://gabrmn.uab.es/sc


Authors’ contributions
SOM, PJGL and CA conceived the overall scope of the study. MJS
participated in the data processing. SOM implemented the methods and
carried out the experiments. SOM, PJGL, and AV designed the set of
experiments, and analysed the results from the machine learning viewpoint.
MJS and CA contributed the biochemical and spectroscopic analysis of the
results. PJGL, AV and CA coordinated the work. All authors helped to draft
the manuscript and approved its final version.

Received: 28 July 2011 Accepted: 8 March 2012
Published: 8 March 2012

References
1. Pérez-Ruiz A, Julià-Sapé M, Mercadal G, Olier I, Majós C, Arús C: The

INTERPRET decision-support system version 3.0 for evaluation of
magnetic resonance spectroscopy data from human brain tumours and
other abnormal brain masses. BMC Bioinformatics 2010, 11:581.

2. Julià-Sapé M, Acosta D, Mier M, Arús C, Watson D, The Interpret
Consortium: A multi-centre, web-accessible and quality control-checked
database of in vivo mr spectra of brain tumour patients. Magn Reson
Mater Phys 2006, 19:22-33.

3. Lisboa PJG, Vellido A, Tagliaferri R, Napolitano F, Ceccarelli M, Martin-
Guerrero JD, Biganzoli E: Data mining in cancer research. IEEE Comput
Intell Mag 2010, 5:14-18.

4. Coons SW, Johnson PC, Scheithauer BW, Yates AJ, Pearl DK: Improving
diagnostic accuracy and interobserver concordance in the classification
and grading of primary gliomas. Cancer 1997, 79(7):1381-1393.

5. Ellison D, Kocak M, Figarella-Branger D, Giangaspero F, Godfraind C,
Pietsch T, Frappaz D, Massimino M, Grill J, Boyett J, Grundy R:
Histopathological grading of pediatric ependymoma: reproducibility and
clinical relevance in European trial cohorts. J Negat Results Biomed 2011,
10:7.

6. Kros JM: Grading of gliomas: the road from eminence to evidence. J
Neuropathol Exp Neurol 2011, 70(2):101-109.

7. Lukas L, Devos A, Suykens JAK, Vanhamme L, Howe FA, Majós C, Moreno-
Torres A, Van Der Graaf M, Tate AR, Arús C, Van Huffel S: Brain tumor
classification based on long echo proton MRS signals. Artif Intell Med
2004, 31:73-89.

8. Tate AR, Underwood J, Acosta DM, Julià-Sapé M, Majós C, Moreno-Torres A,
Howe FA, van der Graaf M, Lefournier V, Murphy MM, Loosemore A,
Ladroue C, Wesseling P, Luc Bosson J, Cabañas ME, Simonetti AW,
Gajewicz W, Calvar J, Capdevila A, Wilkins PR, Bell BA, Rémy C, Heerschap A,
Watson D, Griffiths JR, Arús C: Development of a decision support system
for diagnosis and grading of brain tumours using in vivo magnetic
resonance single voxel spectra. NMR Biomed 2006, 19(4):411-434.

9. García-Gómez JM, Luts J, Julià-Sapé M, Krooshof P, Tortajada S, Robledo J,
Melssen W, Fuster-García E, Olier I, Postma G, Monleón D, Moreno-Torres A,
Pujol J, Candiota AP, Martínez-Bisbal M, Suykens J, Buydens L, Celda B, Van
Huffel S, Arús C, Robles M: Multiproject-multicenter evaluation of
automatic brain tumor classification by magnetic resonance
spectroscopy. Magn Reson Mater Phys 2008, 22:5-18.

10. Huang Y, Lisboa PJG, El-Deredy W: Tumour grading from magnetic
resonance spectroscopy: a comparison of feature extraction with
variable selection. Stat Med 2003, 22:147-164.

11. Ladroue C, Howe FA, Griffiths JR, Tate AR: Independent component
analysis for automated decomposition of in vivo magnetic resonance
spectra. Magn Reson Med 2003, 50(4):697-703.

12. Wright AJ, Arús C, Wijnen JP, Moreno-Torres A, Griffiths JR, Celda B,
Howe FA: Automated quality control protocol for MR spectra of brain
tumors. Magn Reson Med 2008, 59(6):1274-1281.

13. Raschke F, Fuster-Garcia E, Opstad KS, Howe FA: Classification of single
voxel 1H spectra of brain tumours using LCModel. NMR in Biomedicine
2012, 25(2):322-331.

14. Provencher SW: Estimation of metabolite concentrations from localized
in vivo proton NMR spectra. Magn Reson Med 1993, 30(6):672-679.

15. González-Navarro FF, Belanche-Muñoz LA, Romero E, Vellido A, Julià-
Sapé M, Arús C: Feature and model selection with discriminatory
visualization for diagnostic classification of brain tumors. Neurocomputing
2010, 73:622-632.

16. Vellido A, Romero E, González-Navarro FF, Belanche-Muñoz LA, Julià-
Sapé M, Arús C: Outlier exploration and diagnostic classification of a

multi-centre 1H-MRS brain tumour database. Neurocomputing 2009,
72(13-15):3085-3097.

17. Vellido A, Romero E, Julià-Sapé M, Majós C, Moreno-Torres A, Pujol J,
Arús C: Robust discrimination of glioblastomas from metastatic brain
tumors on the basis of single-voxel 1H MRS. NMR Biomed 2011,
doi:10.1002/nbm.1797.

18. Paatero P, Tapper U: Positive matrix factorization: a non-negative factor
model with optimal utilization of error estimates of data values.
Environmetrics 1994, 5(2):111-126.

19. Lee DD, Seung HS: Learning the parts of objects by non-negative matrix
factorization. Nature 1999, 401(6755):788-791.

20. Henneges C, Laskov P, Darmawan E, Backhaus J, Kammerer B, Zell A: A
factorization method for the classification of infrared spectra. BMC
Bioinformatics 2010, 11:561.

21. Han H: Nonnegative principal component analysis for mass spectral
serum profiles and biomarker discovery. BMC Bioinforma 2010, 11(Suppl
1):S1.

22. Han H, Li XL: Multi-resolution independent component analysis for high-
performance tumor classification and biomarker discovery. BMC
Bioinforma 2011, 12(Suppl 1):S7.

23. Sajda P, Du S, Brown T, Stoyanova R, Shungu D, Xiangling M, Parra L:
Nonnegative matrix factorization for rapid recovery of constituent
spectra in magnetic resonance chemical shift imaging of the brain. IEEE
Trans Med Imaging 2004, 23(12):1453-1465.

24. Ding C, Li T, Jordan M: Convex and semi-nonnegative matrix
factorizations. IEEE Trans Pattern Anal Mach Intell 2010, 32:45-55.

25. Lin CJ: Projected gradient methods for nonnegative matrix factorization.
Neural Comput 2007, 19:2756-2779.

26. Hassibi B, Stork D: Second order derivatives for network pruning: optimal
brain surgeon. Adv in Neural Inf Process Syst 1993, 5:164-171.

27. Technical University of Denmark: NMF: DTU Toolbox. Collection of NMF
algorithms implemented for Matlab. 2006 [http://cogsys.imm.dtu.dk/
toolbox/nmf].

28. Ding X, Lee JH, Lee SW: A constrained alternating least squares
nonnegative matrix factorization algorithm enhances task-related
neuronal activity detection from single subject’s fMRI data. 2011
International Conference on Machine Learning and Cybernetics (ICMLC) 2011,
1:338-343.

29. Zheng Z, Yang J, Zhu Y: Initialization enhancer for non-negative matrix
factorization. Eng Appl Artif Intel 2007, 20:101-110.

30. Hyvärinen A: Fast and robust fixed-point algorithms for independent
component analysis. IEEE Trans Neural Netw 1999, 10(3):626-634.

31. Langville A, Meyer C, Albright R: Initializations for the nonnegative matrix
factorization. Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining Philadelphia, PA, USA; 2006.

32. Arfken GB, Weber HJ: Gram-Schmidt Orthogonalization in Mathematical
Methods for Physicists. 6 edition. Academic Press; 2005, 642-648.

33. Louis D, Ohgaki H, Wiestler O, Cavenee W, Burger P, Jouvet A,
Scheithauer B, Kleihues P: The 2007 WHO classification of tumours of the
central nervous system. Acta Neuropathol 2007, 114:97-109.

34. Howe FA, Opstad KS: 1H MR spectroscopy of brain tumours and masses.
NMR Biomed 2003, 16(3):123-131.

35. Tate AR, Griffiths JR, Martínez-Pérez I, Moreno A, Barba I, Cabañas ME,
Watson D, Alonso J, Bartumeus F, Isamat F, Ferrer I, Vila F, Ferrer E,
Capdevila A, Arús C: Towards a method for automated classification of
1H MRS spectra from brain tumours. NMR Biomed 1998, 11(4-5):177-191.

36. Vellido A, Julià-Sapé M, Romero E, Arús C: Exploratory Characterization of
Outliers in a Multi-centre 1H-MRS Brain Tumour Dataset. KES’08:
Proceedings of the 12th international conference on Knowledge-Based
Intelligent Information and Engineering Systems, Part II Berlin, Heidelberg:
Springer-Verlag; 2008, 189-196.

37. Luts J, Poullet JB, Garcia-Gomez JM, Heerschap A, Robles M, Suykens JAK,
Huffel SV: Effect of feature extraction for brain tumor classification based
on short echo time 1H MR spectra. Magn Reson Med 2008, 60(2):288-298.

38. Devos A, Lukas L, Suykens JAK, Vanhamme L, Tate AR, Howe FA, Majós C,
Moreno-Torres A, van der Graaf M, Arús C, Van Huffel S: Classification of
brain tumours using short echo time 1H MR spectra. J Magn Reson 2004,
170:164-175.

39. Ortega-Martorell S, Olier I, Julià-Sapé M, Arús C: SpectraClassifier 1.0: a user
friendly, automated MRS-based classifier-development system. BMC
Bioinforma 2010, 11:106.

Ortega-Martorell et al. BMC Bioinformatics 2012, 13:38
http://www.biomedcentral.com/1471-2105/13/38

Page 19 of 20

http://www.ncbi.nlm.nih.gov/pubmed/21114820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21114820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21114820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21114820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9083161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9083161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9083161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21627842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21627842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21343878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15182848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15182848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16763971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16763971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16763971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12486756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12486756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12486756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14523954?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14523954?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14523954?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18506793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18506793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21796709?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21796709?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21796709?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8139448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8139448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10548103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10548103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21078178?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21078178?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15575404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15575404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19926898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19926898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17716011?dopt=Abstract
http://cogsys.imm.dtu.dk/toolbox/nmf
http://cogsys.imm.dtu.dk/toolbox/nmf
http://www.ncbi.nlm.nih.gov/pubmed/18252563?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18252563?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17618441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17618441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12884355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12884355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9719572?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9719572?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9719572?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22384774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22384774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22384774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18666120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18666120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18666120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15324770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15324770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15324770?dopt=Abstract


40. Colas F, Kok J, Vellido A: Finding discriminative subtypes of aggressive
brain tumours using magnetic resonance spectroscopy. Engineering in
Medicine and Biology Society (EMBC), 2010 Annual International Conference of
the IEEE 2010, 1065-1068.

41. Majós C, Bruna J, Julià-Sapé M, Cos M, Camins A, Gil M, Acebes J,
Aguilera C, Arús C: Proton MR spectroscopy provides relevant prognostic
information in high-grade astrocytomas. Am J Neuroradiol 2011, 32:74-80.

42. Colman H, Zhang L, Sulman EP, McDonald JM, Shooshtari NL, Rivera A,
Popoff S, Nutt CL, Louis DN, Cairncross JG, Gilbert MR, Phillips HS,
Mehta MP, Chakravarti A, Pelloski CE, Bhat K, Feuerstein BG, Jenkins RB,
Aldape K: A multigene predictor of outcome in glioblastoma. Neuro
Oncol 2010, 12:49-57.

43. de Tayrac M, Aubry M, Saïkali S, Etcheverry A, Surbled C, Guénot F,
Galibert MD, Hamlat A, Lesimple T, Quillien V, Menei P, Mosser J: A 4-gene
signature associated with clinical outcome in high-grade gliomas. Clin
Cancer Res 2011, 17(2):317-327.

44. Opstad KS, Murphy MM, Wilkins PR, Bell BA, Griffiths JR, Howe FA:
Differentiation of metastases from high-grade gliomas using short echo
time 1H spectroscopy. J Magn Reson Imaging 2004, 20(2):187-192.

45. Herminghaus S, Pilatus U, Möller-Hartmann W, Raab P, Lanfermann H,
Schlote W, Zanella FE: Increased choline levels coincide with enhanced
proliferative activity of human neuroepithelial brain tumors. NMR Biomed
2002, 15(6):385-392.

doi:10.1186/1471-2105-13-38
Cite this article as: Ortega-Martorell et al.: Non-negative matrix
factorisation methods for the spectral decomposition of MRS data from
human brain tumours. BMC Bioinformatics 2012 13:38.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Ortega-Martorell et al. BMC Bioinformatics 2012, 13:38
http://www.biomedcentral.com/1471-2105/13/38

Page 20 of 20

http://www.ncbi.nlm.nih.gov/pubmed/21030477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21030477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20150367?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21224364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21224364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15269942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15269942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15269942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12357552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12357552?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Introduction
	Materials

	Methods
	Non-negative matrix factorisation methods for source extraction
	Interpretation of the methods
	NMF initialisations
	Tumour type labelling using the mixing matrix and the sources
	Source extraction as a dimensionality reduction procedure prior to classification

	Results
	NMF as a source extraction method
	Labelling using convex-NMF
	NMF for classification
	Using convex-NMF extracted source signals for dimensionality reduction prior to classification

	Determining the most adequate number of sources

	Discussion
	NMF as a source extraction method
	Labelling using convex-NMF
	Convex-NMF as DR method prior to classification
	Determining the most adequate number of sources

	Conclusions
	Endnote
	Acknowledgements
	Author details
	Authors' contributions
	References

