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Abstract

Background: Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand,
computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary
small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise
from proteins’ dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated
states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation
in apo proteins. This variation can be explored by considering sets of related structures: computationally generated
conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to
compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in
defining particular pocket’s boundaries. For a set of conformationally distinct structures the challenge is how to make
reasonable comparisons between them given that a perfect structural alignment is not possible.

Results: We have developed a computational method, Provar, that provides a consistent representation of
predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or
residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using
existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket
prediction algorithms, of pockets across multiple simulated conformations and between homologous structures.
We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis
on a set of complexes and consider three case studies in detail: i) analysis of a kinase superfamily highlights the
conserved occurrence of surface pockets at the active and regulatory sites; ii) a simulated ensemble of unliganded
Bcl2 structures reveals extensions of a known ligand-binding pocket not apparent in the apo crystal structure; iii)
visualisations of interleukin-2 and its homologues highlight conserved pockets at the known receptor interfaces
and regions whose conformation is known to change on inhibitor binding.

Conclusions: Through post-processing of the output of a variety of pocket prediction software, Provar provides a
flexible approach to the analysis and visualization of the persistence or variability of pockets in sets of related
protein structures.

Background
The availability of a protein’s 3D structure may provide
insight into its mechanism and a basis for rational
design of small molecule modulators of its function. Key
to understanding and modifying function in many

proteins is knowledge of the structure of potential bind-
ing sites. Rational drug design strategies may then be
used to design small molecules that bind to complemen-
tary features of such sites. In the absence of a structure
containing a ligand, computational tools allow predic-
tion of small molecule binding sites by scanning the
protein’s surface for pockets. These pockets must at
least be of a size and shape that allows a ligand to bind
with suitable specificity and affinity. Existing computa-
tional tools use a variety of methods to identify pockets,
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the simplest are based on local geometry and include
PASS [1], LIGSITE [2], Pocket [3], PocketPicker [4],
SURFNET [5], CAST [6] and fpocket [7]. Additional
properties can be employed in pocket prediction, for
example, LIGSITE-csc [8] and Concavity [9] combine
structural information with sequence conservation
scores, and Q-Site Finder [10] considers the energy of
binding of hydrophobic probes to the protein’s surface.
It has been shown that the application of these tools to
the analysis of individual static structures is useful in
identifying a primary binding site [11,12], such as an
enzyme’s active site. However, proteins in solution are
dynamic entities that explore conformational space over
time due to side chain motions, local backbone flexibil-
ity and larger sub-domain or domain motions [13]. It
follows that predictions of pockets based on single static
structures may fail to detect potential binding sites, or
features of such sites, that result from changes in their
shape and size over time. The conformational selection
hypothesis posits that bound conformations of proteins
are often observed as transiently populated, high free-
energy conformations of the apo protein. Ligand binding
simply lowers the free-energy of the binding-capable
conformation, thus increasing the probability and popu-
lation of this state [14]. It is thus supposed that some
points of the conformational space dynamically explored
by the apo protein correspond to the pocket conforma-
tion of a ligand-bound form. Therefore, we can expect
to gain insight into binding-capable pockets from
inspecting conformational variants of proteins. Sets of
variants can be derived from several sources: simulated
ensembles created using Molecular Dynamics (MD)
[15,16], Essential Dynamics (ED) [17], Normal Mode
Analysis (NMA) [18] or constraint-based methods such
as CONCOORD [19] and tCONCOORD [20]; solution-
NMR conformational ensembles; multiple structures of
the same protein solved in different crystal forms, or
with different ligands or experimental conditions. It has
also been shown that the structure-space explored
within sets of homologues correlates with that observed
with MD simulations [21], consequently homologous
superfamilies of proteins provide other potentially useful
sets of variant structures.

Difficulties comparing predicted pockets between
different programs or across related structures
Given a set of related protein structures, how do we
compare their pockets and the variation within the set?
An approach is to designate particular pockets, ‘Pocket
A’, ‘Pocket B’, etc., and in each case perform some
detailed analysis of the pocket’s geometry and other
characteristics. This can be effective with a single,
highly-conserved pocket, such as an enzyme’s active site
[22]. However, a problem is that it is not clear how to

consistently and unambiguously define each pocket in
terms of its boundaries in cases where there are many
possible sites i.e. are neighbouring pockets best consid-
ered as two distinct entities, or as part of a single con-
tiguous whole (for discussion see [23,24])? An additional
complication is that for any given single structure we
can obtain different predicted pockets depending on
which software we choose to run. A simple case of two
different programs’ (PASS and LIGSITE) outputs for a
single structure of human interleukin-2 (IL-2) is illu-
strated in Figure 1A, which shows only partial overlap
of the clusters of pocket points for the two programs. In
comparing pockets predicted in homologues, the issue is
to identify whether apparent differences in pocket loca-
tions are simply a result of problems with structural
alignment (Figure 1B). The visual comparison of pockets
in diverse conformations of a single protein can also be
affected by difficulties with alignment. Figure 2 illus-
trates how the spread of PASS predicted pocket points
increases with the number of conformations used, an
effect caused both by local structural variations and dif-
ferences in global orientation required to produce the
best overall alignments of the structures.
Analysing a large set of conformers may help identify

structural variation in otherwise persistent pockets, and
transient pockets that are observed in only some mem-
bers of the set. Finding evidence of variable or transient
pockets may suggest novel targets and provide a useful
adjunct to rational drug design strategies. Recent ana-
lyses have addressed the evidence for transient pockets
by applying PASS to snapshots of MD trajectories of a
member of the B-cell lymphoma family (Bcl-XL), human
IL-2 and mouse double minute 2 (MDM-2) [25] and
identifying pockets across snapshots by clustering on
pocket volume and the overlapping pocket-lining resi-
dues, finding several distinct transient pockets in these
systems. In a follow-up study, tCONCOORD produced
comparable pockets to the MD simulations for Bcl-XL
and MDM-2 [26]. Another recent approach uses the
fpocket prediction algorithm, with a specific front-end
for analysis of MD ensembles and trajectories
(MDpocket [27]), to understand how pockets change
across many different conformations by mapping pocket
predictions for each structure onto a fixed spatial grid,
calculating the frequency of occurrence of a pocket at
each grid point, and visualising this as a density map
superimposed on a reference protein structure [7]. Here
we propose a similarly probabilistic, but otherwise dis-
tinct, approach that differs in utilising the output of any
suitable geometric pocket prediction program, including
PASS, LIGSITE, fpocket and SiteMap [28], and maps
each set of predictions to its corresponding protein
structure before calculating overall probability densities.
We present a method that provides standardised visual
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analyses of predicted pocket variation across any suita-
ble set of related protein structures. The approach of
first mapping the location of pockets to the protein’s
atoms and residues removes the art factual influence of
differences in global orientation of structurally aligned
sets and provides for weighting of probability densities
by residue conservation. Consequently, the method is
particularly advantageous in analyses of sets of confor-
mers or homologues that differ markedly in structure.

Algorithm
We have developed a method that gives visual insight
into the variability of predicted pockets whilst overcom-
ing the difficulties outlined above. A flowchart outlining
the potential utilization of the method to analyse/iden-
tify regions of interest using multiple pocket predictions
is given in Figure 3.

At the heart of the approach is an algorithm, Provar
(Probability of variation), for automatically identifying
and scoring pocket-lining residues or atoms, which is
outlined in Figure 4. For each set of n related structures
{s1,s2,si,...,sn}, we also have n pocket predictions {d1,d2,
di,...,dn} from programs such as PASS or LIGSITE
whose predictions are collections of points in space.
Together we have a set of pairs of structures and predic-
tions: {{s1,d1},{s2,d2},{si,di}...,{sn,dn}}. For each of these
matched pairs (i), Provar determines that an atom (k) of
a structure is pocket-lining if it lies within a parameter-
defined cut-off distance of any pocket prediction point
and gives it a score of 1 (ak = 1). For each amino acid
(j) in the sequence, should ak = 1 for any of its atoms,
the amino acid is given a score of 1 (rj = 1). This pro-
cess results in an array of atom and residue values for
each structure prediction pair: {si,di} ® {a1,a2,ak,...,al}i

Figure 1 The difficulties of global comparison of pockets on protein surfaces. (A) Pocket predictions from PASS (red) and LIGSITE-cs (green)
for the same interleukin-2 (IL-2) structure (ribbon, PDB:1M47). The similarities and differences between these predictions are readily visualized, but
how can identification of common features be automated? (B) Homologous structures: The surface pockets of IL-2 (white ribbon, green spheres)
[PDB:1M47] and its distant homologue leukaemia inhibitory factor (LIF) (blue ribbon, blue spheres) [PDB:1LKI], both represented by LIGSITE-cs

spheres, show little overlap. Is this because the pockets are genuinely unrelated, or because of the difficulty of making a ‘correct’ structural
alignment?.

Figure 2 The difficulty of comparing pocket predictions for many conformers of a protein. PASS (red) pocket predictions for an increasing
number of conformers are superimposed onto a ribbon structure of human IL-2 [PDB:1M47]. From left to right, the results for 1, then 10 and 50
superimposed conformations. There is a greater spread of predicted pocket locations as the number of conformers increases. However, in this
representation, the spread arises from both local structural variation of pockets and the different reorientation of each conformer required for
the best global alignment.
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where ak Î {0, 1} and l is the number of atoms in the
protein and {si,di} ® {r1,r2,rj,...,rm}i where rj Î{0, 1} and
m is the number of residues in the sequence.
If we are dealing with sets of structure-prediction

pairs containing the same number of atoms and residues
(e.g. CONCOORD conformers, or NMR ensembles) we
can now assign an atom-level probability score for the
kth atom:

pk =
1
n

n∑

i=1

aik (1)

i.e. the proportion of structures in which the atom is
pocket-lining. We can do a similar calculation for the
jth residue:

pj =
1
n

n∑

i=1

rij (2)

If we have a set of homologous structures, then their
sequences must first be aligned. The probability calcula-
tion in this case must take into account the number of
structures nj that have an aligned residue at position j.
Alignments are performed on sequences comprising
those residues having coordinates in the PDB file, as
this ensures missing residues don’t bias the probability
calculations.

pj =
1
nj

n∑

i=1

rij (3)

It is difficult to define an atom-based equivalent to
Equation 1for homologous structures as aligned residues
may have different numbers of atoms. However, a resi-
due-based average of atom scores can be defined as fol-
lows:

pj =
1
nj

n∑

i=1

(
1
lij

lij∑

k=1

aijk) (4)

Figure 3 Workflow for visualisation of pockets in ensembles of
structures using Provar tools.

Figure 4 Provar algorithm scores pocket-lining atoms and
residues on each structure. Illustration of Provar applied to the
same pocket on two simulated conformations of Abl kinase
[PDB:2GQG]. For each structure, pocket atoms (top panels, yellow)
are scored as pocket-lining if sites predicted to be pocket-lining (red
spheres) are within a defined cut-off distance. Residues that contain
pocket-lining atoms are also pocket-lining (mid panels, green). For
each structure this generates one set of scores for each structure’s
atoms and another for its residues. The scores of individual
structures can then be readily combined to calculate the proportion
of the equivalent atoms or residues being pocket-lining within a set
of structures.
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where lij is the number of atoms in the jth residue of
the ith structure and aijk is the atom-based score for the
kth atom of the jth residue for the ith structure. This
can be applied both to structures with the same
sequence and to homologues to give the proportion of
the atoms of each equivalent residue in the set of struc-
tures that are pocket-lining, and can usefully distinguish
those residues which contribute most to the formation
of the pocket.
The probability values for each residue can then be

displayed on a protein structure in a number of ways.
Our software writes the probability values as a percen-
tage to the B-factor column of the PDB file of a user
chosen representative structure from the set. This struc-
ture can then be rendered using any suitable molecular
graphics program. We show how the Provar algorithm
provides a practicable solution to the problems outlined
in the Introduction when considering pocket predictions
from multiple programs on a single structure, across
homologous structures and within sets of generated
conformations.

Results
Visual comparison of alternate pocket predictions,
homologous structures and variation among multiple
conformations
Figure 5A illustrates the use of Provar to represent the
PASS and LIGSITE predictions from Figure 1A on the
surface of IL-2, with atoms colored yellow only if both
programs mark an atom as pocket-lining (pk = 1). For
the more difficult problem involving IL-2 and its distant
homologue LIF (from Figure 1B) - we can now readily
visualise surface patches of coincident pockets between
the two homologues where yellow patches represent
equivalent residues that are pocket-lining in both struc-
tures (pj = 1) mapped to the surface of either IL-2 (Fig-
ure 5B) or LIF (Figure 5C).
Figure 6 provides the Provar solutions to the problem

posed by multiple generated conformations of IL-2
(from Figure 2). The probability that an atom is pocket-
lining across all 50 structures is indicated on a continu-
ous scale on the surface (Figure 6A), while the residue-
level calculation using Equation 2 is applied to a ribbon
representation (Figure 6B). This provides a simple way
of identifying the atoms/residues involved in the most
persistent pockets (darker reds) and regions that har-
bour variable pockets (lighter reds).

Visualising the most conserved pocket-lining residues
across a kinase superfamily
Protein kinases form a large and well conserved super-
family that are of particular interest in drug discovery.
For example, constituent activity of Abl kinase result-
ing from the Bcr-Abl gene fusion leads to chronic

myeloid leukaemia (CML) [29]. Specific small mole-
cule inhibitors of the Abl kinase active site have been
developed and approved as therapy for CML. Using
Provar we can conveniently summarise pocket-lining
residue conservation across all superfamily members
onto a single structure to highlight regions that show
conservation of predicted pockets (Figure 7). As
expected, residues around the active site (indicated
with superimposed ATP) are clearly highlighted (Fig-
ure 7A) due to conservation of structure and function.
Another distinct region is found on the other side of
the protein (Figure 7B) and the high conservation of
this pocket is likely to have functional relevance across
the superfamily. For the specific case of Abl kinase,
this region is known to form part of the interface of
the auto inhibitory interaction with its own SH3
domain, and this fact is suggestive of a conserved role
for this pocket in mediating protein-protein interac-
tions. In this case, the red colouration indicates that
the residue in that alignment position is pocket-lining
in most or all homologues. There may, of course, be
considerable variability both in the actual residue pre-
sent and the orientation of its side-chain that gives
scope for binding other proteins or, in a drug-design
context, a small molecule ligand with suitable specifi-
city for a particular kinase.

Visualisation of pocket-lining atoms from a simulated
ensemble of Bcl-2 conformers
Bcl-2 is part of a family of apoptosis regulators that can
homo-dimerize or hetero-dimerize with other members
of the family to form pro- or anti-apoptotic complexes.
As pro-apoptotic proteins such as BAK and BAD can
be inhibited by the binding of Bcl-2 (or its homologue
Bcl-XL), specific inhibitors of these protein-protein
interactions are of interest in oncology research [30]. In
Figure 8, we compare PASS pocket predictions for the
apo crystal structure of Bcl-2 with a Provar analysis of
250 tCONCOORD generated conformations. For the
crystallographic Bcl-2 structure (Figure 8A), pocket pre-
dictions, in red, coincide with a large portion of the
known protein-protein interface groove. Small molecule
drugs have also been found to target this interface in
both Bcl-2 and Bcl-XL and superposition of an acyl-sul-
fonamide-based ligand from a holo structure shows how
it follows the interface groove, but extends outside the
pocket identified by PASS. In contrast, Provar analysis
of the tCONCOORD ensemble shows that an extension
to the pocket is found at the left in a substantial pro-
portion of conformers (Figure 8B). In the apo crystal
structure, the pocket is bounded at the left by Glu-136
(with which the superimposed ligand is seen to clash in
Figure 8), this residue reorients in other conformers
(and the actual holo structure) opening up a larger
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groove for binding. Although, the members of the apo
tCONCOORD ensemble do not fully recapitulate the
Bcl-2 holo conformation, Provar analysis of the ensem-
ble shows that 87% of the atoms in the binding site of
Bcl-2 for this inhibitor are identified by PASS to be
pocket-lining in at least 25% of the structures (as
opposed to 49% of these atoms in the apo crystal struc-
ture). Additionally, away from the main groove, the
probability map indicates where atoms flagged as
pocket-lining in the single structure turn out to be less
important across the ensemble. For example, prominent
pocket-lining atoms at the very top of the crystal struc-
ture in Figure 8A are found to have much lower prob-
ability in the ensemble than the main binding groove
(Figure 8B).

Application to simulated ensembles relevant to inhibition
of protein-protein interactions
It is of interest to more broadly investigate the beha-
viour of protein-protein interfaces (PPIs) known to bind
small-molecule inhibitors. Whereas protein-protein
interfaces are generally rather flat and lacking pocket
features, it has been observed in number of cases that
pockets are stabilised in the presence of a small-mole-
cule, which consequently acts to inhibit protein-protein
complex formation [31]. Are these pockets discernable
in the apo proteins in the absence of inhibitor? Is it
common that a substantial proportion of the inhibitor
binding sites seen in the complexes comprise variable
pockets in the apo state and that variable features can
be recovered through tCONCOORD simulation of the

Figure 5 Mapping pocket locations to the protein atoms and residues simplifies comparison between methods and proteins. (A)
Proteins of identical sequence can be compared at either residue or atomic levels. Combining the atomic scores derived from the PASS and
LIGSITE-cs results for IL-2 (Figure 1A) identifies common pocket-lining atoms (Provar score = 1), which can be mapped back to protein surface
(yellow). (B) Homologous proteins can be compared at the residue level. Equivalent pocket-lining residues (yellow) of IL-2 and LIF, highlighted
on a surface representation of IL-2, were identified as residues with a Provar score of 1 for LIGSITE-cs-derived sequence aligned residues (c.f.
Figure 1B). (C) Residues with a score of 1 are mapped onto the surface of LIF.

Ashford et al. BMC Bioinformatics 2012, 13:39
http://www.biomedcentral.com/1471-2105/13/39

Page 6 of 16



apo structure accompanied by Provar scoring of
pockets?
We have investigated all 11 proteins in the 2P2I data-

base of protein-protein interface inhibitors [31] that
have been structurally characterised. The results of
pocket analyses of the crystal structures and tCON-
COORD ensembles of the apo form of these proteins -
in respect of the pocket-lining character of the atoms
known to interact with a small molecule ligand - are
given in Table 1. Here we see that on average LIGSITE-
cs identifies almost half of the known binding-site atoms
as pocket-lining in the apo crystal structures, this

proportion falls to somewhat less than one-third that
are persistently pocket lining in the dynamic ensemble
(we define persistent as occurring in more than75% of
conformations), but rises to an average of 72% of the
binding-site atoms that are found to be pocket lining in
at least 25% of the ensemble. These trends are mirrored
by results obtained for PASS and fpocket analysis of the
same structures. It is also clear, from Table 1 that the
precise results of these ensemble-based pocket analyses
are rather different for each program, with PASS and
fpocket identifying, on average, successively fewer bind-
ing-site atoms as pocket-lining. This order is not

Figure 6 Provar discriminates atoms and residues which persistently or variably contribute to pockets in an ensemble. (A) The atomic
Provar score for a set of 50 conformers of IL-2 generated with tCONCOORD readily distinguishes those atoms persistently involved in pocket
formation (dark red) from those only involved in pocket formation in minority of structures (light red). (B) Equivalent residue scores on a ribbon
representation.

Figure 7 Mapping the residues of a kinase superfamily that most frequently form pockets highlights two regions. A Provar analysis of
93 members of the phosphorylase/kinase superfamily mapped onto a representative structure [PDB:2R3I]. (A) Residues which are very frequently
pocket-lining (light red - 86% of structures - to dark red - 96%) cluster around the active site region. The active site is indicated by ATP in yellow,
superimposed from an ATP-bound structure [PDB:2PVF]. (B) A second region in which residues are very frequently involved in pocket formation
is found on the opposite side of the kinase from the active-site. (C) Some of the conserved features highlighted in (B) may be important in
mediating protein-protein interactions. For example, it is known that one member of this superfamily, Abl kinase, is regulated via an interaction
at this site with its own SH3 domain (superimposed SH3 domain from [PDB:2FO0] blue ribbon).
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preserved for every structure, and whether or not pock-
ets are found, presumably, depends upon precise geo-
metric features of pockets in individual proteins to
which each algorithm is differently sensitive. Although,
on average, LIGSITE-cs recovers more of the known
binding sites, this is substantially due to it identifying
more of the protein as a whole as pocket-lining. Accord-
ing to LIGSITE-cs, 60% of all the atoms averaged over all
the proteins are pocket-lining in more than 25% of con-
formations. This is due to there being many small pock-
ets in the ensemble to which LIGSITE-cs is sensitive
(using the default parameters). Both PASS (41%) and
fpocket (32%) are more conservative in predicting pock-
ets across the protein surface and, although they on
average identify fewer of the binding sites’ atoms as
pocket, are slightly more specific. Despite these varia-
tions, it is the case that all the prediction programs
identify substantially more binding-site atoms as persis-
tently or variably pocket-lining than in the protein as a
whole. This is also true for the majority of analyses of
individual proteins i.e. that the distribution of Provar
scores of binding site atoms is significantly different
from the protein as a whole and biased toward a higher
probability of being identified as pocket-lining in the
ensemble. Overall, these results support the notion that
transient or variable features of pockets are at least a
majority feature of protein-protein inhibitor binding
sites.
Considering these same ensembles of apo structures

from the perspective of the protein-protein interface,
there are proportionately fewer pocket-lining atoms in
such interfaces, although still greater than the protein
surface as a whole. On average both the binding-site
and protein-protein interface have a greater proportion
of atoms that are variably pocket lining according to
PASS (38.5% binding-site vs. 35.5% PPI vs. 27% protein

surface) and fpocket (39.5%,36%,32%). This dynamic
pocket formation is in contrast to earlier analysis of the
apo crystal structure dataset [31] using Q-Site Finder
which found relatively few “static” pockets at these
interfaces. Given the large numbers of atoms in total in
this set of interfaces, the average differences found here
are significant, but it is also the case that excess pockets
in PPIs are only found in half of the individual analyses
(Table 2). Consequently, there is no strong evidence on
which to make general statements about the relative
variability of drug gable PPI interfaces in terms of
pocket formation. Clearly all these interfaces can form
pockets able to bind small molecule ligands, but it
seems more likely that this is a very local feature of the
protein-protein interface rather than a consequence of
an average property of it.

Visualisation of IL-2 homologues shows conserved
pockets at the a, b and g receptor interfaces
The cytokine IL-2 binds the IL-2 receptor (IL-2R) at
three distinct protein-protein interfaces with the recep-
tor’s a,b and g chains [32]. We might anticipate that
these receptor-binding interfaces will be used by other
members of the superfamily to form complexes with
their specific receptors. Provar’s summary of the surface
pockets found in the apo structures of this superfamily
does indeed show a strong overlap between the most
conserved pockets on these small and diverse proteins
and the sites of interaction of the a, b and g receptor
chains found in the IL2-receptor complex (Figure 9).
Although there is greater variation of the surface fea-
tures of this superfamily homologous cytokines than in
the case of kinases discussed above, the overlap of the
IL2 binding interfaces and the relatively most conserved
pockets is clearly discernable. If we consider analyses
using each of PASS, LIGSITE-cs and fpocket (Table 3),

Figure 8 Scoring a simulated ensemble of apo structures of Bcl-2 identifies variation in a known ligand binding site. (A) Pocket-lining
atoms (red) identified from a PASS analysis of the apo crystal structure of Bcl-2 [PDB:1GJH] capture only part of the binding site of an acyl-
sulfonamide-based ligand, here illustrated by superimposing the ligand from [PDB:2O1Y]. (B) Provar analysis of a tCONCOORD-generated
ensemble of apo structures indicates that pocket-lining residues (red) are found along the full-length of the binding groove in most structures.
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then we find that the most conserved pockets (defined
by the pocket-lining residues having a Provar score in
the highest quartile) recover only ~ 30-42% of the
known protein-protein interfaces i.e. conserved pockets
are a minority feature of these interfaces. Thus, the sen-
sitivity of detection of the extent of protein-protein
interfaces by detection of conserved pockets is low.
However, we also find that pockets are very specifically

conserved at these interfaces (specificity is ~ 71-82%)
and that there are very few highly conserved pockets
elsewhere on the protein surface. This high degree of
specificity means that it is tempting to hypothesise that
it may be possible to identify functional binding pockets
in other systems through analysis of superfamily mem-
bers even in the absence of structures showing the inter-
actions with their receptors. The success of such an

Table 1 Ensemble analysis of the binding sites of protein-protein interaction inhibitors

Protein Binding site size (atoms) Method Percentage of site identified as pocket-lining

apo structure Provar Score > 0.75 Provar Score > 0.25

PASS 38 21 64

Bcl-XL 56 LIGSITE 73 69 91

fpocket 52 36 89

PASS 46 15 50

MDM2 48 LIGSITE 52 38 77

fpocket 38 6 45

PASS 29 26 69

XiapBir3 42 LIGSITE 67 52 98

fpocket 31 24 83

PASS 25 16 54

XiapBir3 63 LIGSITE 57 44 87

fpocket 30 19 74

PASS 70 35 75

ZipA 20 LIGSITE 35 5 60

fpocket 0 15 15

PASS 46 23 54

HPVE2 97 LIGSITE 44 26 56

fpocket 33 2 53

PASS 38 7 58

IL2 60 LIGSITE 22 22 62

fpocket 0 2 2

PASS 53 53 68

HIV-1 Integrase 19 LIGSITE 37 16 47

fpocket 68 5 58

PASS 6 0 29

TNFa 34 LIGSITE 3 0 44

fpocket 0 0 3

PASS 0 0 69

TNFR1a 16 LIGSITE 50 38 100

fpocket 0 0 69

PASS 62 30 57

MDM4 81 LIGSITE 44 31 68

fpocket 38 0 42

PASS 38.5 20.5 59

Mean Values 49 LIGSITE 49 31 72

fpocket 37.5 8.5 48

Provar analysis of a tCONCOORD generated ensemble of 250 structures of the apo form of each of the 11 proteins in the 2P2I database identifies a greater
proportion of the known binding site atoms as pocket-lining than analysis of the crystallographic structure alone. The proportion of inhibitor binding-site atoms
found to be persistently or variably lining pockets (defined as pocket-lining in at least 25% of conformers) is significantly greater than for the protein as a whole
in 21/33cases. (An italic number in the final column indicates the minority of cases in which the proportion is not significant at the p < 0.05 level). Further details
of the structures are given in Table 4.
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approach would, of course, depend on whether the
recognition mechanism for the superfamily utilised
pockets.
The IL-2 superfamily data also provide an opportunity

to contrast the ensemble averaging approach of Provar
to that of fpocket/MDpocket. As described in the Algo-
rithm section, both programs take a probabilistic
approach to scoring pockets found in ensembles of
structures. In the case of fpocket/MDpocket, structures

are superimposed and the proportion of structures in
which pockets are found at each point in space is deter-
mined. Spatially averaged pocket densities determined
by the fpocket algorithm can be mapped by MDpocket
to the neigbouring surface atoms of a reference struc-
ture. In contrast, Provar maps pockets to the local sur-
face atoms for each structure in the ensemble and then
accumulates these atomic scores over the ensemble.
When the structures in the ensemble are fairly similar,

Table 2 Ensemble analysis of pockets at protein-protein interfaces

Complex Protein-protein interface size (atoms) Method Percentage of interface identified as pocket

apo structure Provar Score > 0.75 Provar score > 0.25

Bcl-XL PASS 28 16 42

+ 74 LIGSITE 66 39 83

Bak fpocket 41 20 50

MDM2 PASS 27 11 45

+ 193 LIGSITE 41 30 74

p53 fpocket 31 8 46

XiapBir3 PASS 30 9 55

+ 128 LIGSITE 42 35 83

Caspase 9 fpocket 19 13 59

XiapBir3 PASS 17 0 43

+ 42 LIGSITE 21 17 81

SMAD fpocket 21 0 65

ZipA PASS 54 13 65

+ 63 LIGSITE 44 19 57

FtsZ fpocket 10 2 19

HPVE2 PASS 42 22 51

+ 109 LIGSITE 44 22 58

HPVE1 fpocket 17 3 32

IL2 PASS 30 5 55

+ 103 LIGSITE 20 17 57

IL2-R fpocket 4 1 19

Integrase PASS 42 42 64

+ 33 LIGSITE 45 18 48

LEDGF fpocket 52 3 51

TNFa PASS 23 9 44

trimer 189 LIGSITE 34 18 63

interface fpocket 15 3 31

TNFR1a PASS 24 5 34

+ 41 LIGSITE 46 10 71

TNFb fpocket 0 0 34

MDM4 PASS 55 24 48

+ 71 LIGSITE 38 32 52

p53 fpocket 44 0 47

PASS 34 14 49.5

Mean Values 95 LIGSITE 40.5 23.5 66

fpocket 23 5 41

Provar analysis of a tCONCOORD generated ensemble of 250 structures of the apo form of each of the 11 first-named proteins in the complex. The proportion of
protein interface atoms found to be persistently or variably lining pockets is, on average, significantly greater than for the protein as a whole. However, this
enhanced variability is small and only found to be significant for 14/33 individual analyses. (Italic number in final column indicates the cases in which the
proportion is notsignificantly greater at the p < 0.05 level).
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the differences between these two approaches to aver-
aging is small in terms of the final map of pockets to
the protein surface. However, in a case such as the IL-2
superfamily, whose representative members have less
than 15% pair wise sequence identity and rather diverse
structures that are difficult to superimpose, pockets
found on one structure’s surface may be quite far from
the surface of the reference structure. Thus any final
mapping of spatial densities may be spread across the
surface in an art factual way. The consequence of this
lack of direct association with a local surface is that, in
the IL2 superfamily case, fpocket/MDpocket ensemble
averaging scores more of surface residues as pocket-lin-
ing, and that consequently more of the interface resi-
dues are associated with a high score. However,
specificity is much lower than fpocket/Provar as more
non-interface sites are also considered conserved. Of
course, this case is particularly difficult for fpocket/
MDpocket, but the lesson is that one or both

approaches may be useful depending on the structure
set in question.

Highlighting variation in the contribution of residues to
pocket formation among homologues and simulations of
apo IL-2 also highlights regions known to undergo
conformational change on binding inhibitors
Not all residues forming the IL-2:IL-2Ra interface show
conserved pocket-lining propensity. By colouring the
group of residues that are relatively variable in their
pocket-lining character (here defined as those pocket-
lining residues with scores in the quartiles either side of
the median), we obtain Figure 10. In this representation,
those residues in equivalent alignment positions across
the homologues that show the relatively greatest varia-
bility as to whether they form pockets are highlighted in
a deep blue (Figure 10A). In this case a region to the
left of the a interface is notably variable. It has been
suggested that when analysing a set of homologues,

Figure 9 Residues lining pockets across apo IL-2 superfamily members overlap with IL-2-receptor interfaces. The residues most often
involved in pocket formation (defined as those residues having the top 25% of Provar scores, ≥ 0.364 in this case) across 17 apo structures of
functionally diverse IL-2 homologues are colored red on the molecular surface of IL-2 in a receptor bound conformation [PDB:2B5I]. These
pocket forming residues, thus identified in a substantial subset of the apo-structures, overlap the IL-2:IL-2 receptor interfaces (A, B, C) with
respectively the receptor a, b and g chains, suggesting that the location of their receptor interaction sites is well conserved across the family
despite low sequence identity.

Table 3 Conserved pockets in the IL-2 superfamily at the known IL2 receptor interfaces

Pocket prediction (ensemble scoring) Highly conserved pocket residues at interface Sensitivity Specificity

PASS (Provar) 13 30.2 81.8

Ligsite pockets (Provar) 13 30.2 80.5

fpocket (Provar) 18 37.2 71.4

fpocket (MDpocket) 21 48.8 46.8

There are three distinct interfaces made between IL-2 and the subunits of the IL-2 receptor, which together involve 43 residues of the 120 residue IL2 protein
(with only 1 residue that contacts two subunits). Investigation of pockets in 17 apo structures from the highly diverse IL-2 superfamily (pair wise sequence
identities of 7.5-13.3%) using the Provar scoring methodology (Equation 4) shows that there are several relatively highly conserved pocket-lining residues which
lie at the receptor interfaces (Figure 9). This is suggestive that these pockets are functionally significant in a substantial proportion of the family. Selecting the
25% of residues with the highest Provar scores from analyses with PASS, LIGSITE-cs and fpocket prediction methods shows a similar pattern of high specificity
(TN/(TN + FP)), but low sensitivity (TP/(TP + FN)) for interface residues. Scoring fpocket predictions with an alternative ensemble approach (MDPocket) that uses
spatial averaging, and is thus sensitive to superposition error, has high scores in similar locations, but also scores more areas of the protein surface similarly
highly and thus has lower specificity.
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structural variability in a particular aligned region may
imply that the equivalent position on an individual pro-
tein in the superfamily is amenable to conformational
change [33]. This suggestion seems to be at least partly
correct in the case of IL-2. It is known that inhibitors of
IL-2:IL-2R association bind at the a interface and that
formation of their binding pocket requires reorientation
of IL-2 side chains precisely in the region highlighted as
variable amongst homologues. Figure 10B compares the
side chain orientations of residues known to be essential
to either receptor or ligand binding between the a-
receptor-bound and a ligand-bound structure. Of the
five residues known to undergo large rearrangements of
side chains to accommodate the ligand (Arg 38, Lys 35,
Met 39, Phe 42 and Leu 72) [32], three (Lys 35, Met 39
and Leu 72) appear to be variably pocket forming
according to Provar analysis of apo structures from the
superfamily. Of the two residues not highlighted by the
analysis of homologues, one (Phe 42) is persistently
pocket-lining and the other (Arg 38) has a low propen-
sity to form a pocket. However, these two residues
(together with Leu 72) are highlighted as variably
pocket-lining in simulated ensemble of conformers of
apo IL-2 itself (Figure 10C). These results indicate the
potential for combining analyses of a superfamily, which
can indicate both conserved and variable pocket-lining
regions, with simulations of an individual protein, which

may provide specific insights into variable regions in the
context of a particular interface.

Discussion
Having a consistent and simple representation of both
persistent and variable predicted pockets across arbitra-
rily large sets of related structures simplifies interpreta-
tion of data from which it may otherwise be difficult to
extract meaning. Even with a simple example, the pre-
dictions of two programs on a single structure, it is not
obvious how to quantitatively compare the two pocket
predictions. With many conformations the mass of pre-
diction points becomes spread-out and ambiguous as
the increasing number of conformers leads to increased
local structure variation and smearing due to the
changes in the overall global alignments. With the struc-
tural dissimilarities that occur in sets of homologues the
comparisons can become even harder and necessitate an
approach that deals effectively with the problems of
structure and sequence alignments. All three of these
problems can benefit from the probabilistic approach
taken here that assesses the extent to which predictions
of pocket-lining atoms or residues hold for the dataset
as a whole.
This atom-centred approach avoids the complex issue

of how to define each individual pocket and compare
these between structures, rather focusing on groups of

Figure 10 Residues with variable roles in pocket formation in apo structures may indicate cryptic binding sites. Analyses of apo
structures of IL-2 superfamily members and a set of simulated conformers of apo IL-2 show that residues that have variable roles in pocket
formation include those that undergo the significant side-chain conformational rearrangements necessary to accommodate small molecule
interface inhibitors. (A) Residues that are pocket-lining in a small proportion of the 17 apo homologues of IL-2 are highlighted on the IL-2
surface (dark blue represents the median Provar score of 0.26, with lighter blues indicating a higher or lower score). A region to the left of the a
receptor interface (c.f. Figure 9A) is prominent in this visualisation and indicates structural heterogeneity of this region across the superfamily. (B)
An expanded ribbon view of that part of this region of apo IL-2 coloured as in (A). Side-chains of surface residues in this region are shown in
stick representation, superimposed are side chain conformations (cyan) in an inhibitor bound state [PDB:1M48]. The pocket in which the inhibitor
binds is not present in the IL-2 crystal structure and large movements of side chains of Arg 38, Lys 35, Met 39, Phe 42 and Leu 72 enable ligand
binding. The majority of these residues have pocket forming roles in some structural homologues. (C) A ribbon view showing the same region
as (B) coloured to highlight residues that show variable roles in pocket formation in tCONCOORD simulations of apo IL-2 (dark blue represents
the median Provar score of 0.31). The pocket-forming capability of Phe 42 and Arg 38, required for inhibitor binding, is shown by Provar analyses
of these IL-2 simulations.
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residues or atoms whose roles in pocket formation are
most (or least) variable as a whole. The corollary is that
these gross dataset properties do not provide detailed
geometric or structural information on individual pock-
ets. The fraction of structures of an ensemble in which
equivalent atoms or residues are involved in pocket for-
mation does, of course, not contain all the information
present in the original outputs of the prediction pro-
grams. For example, if a group of residues form a pocket
in all members of an ensemble, their Provar score will
readily identify them, but it will not indicate whether
the pocket has the same geometry in each structure or
not. Our use of persistent and variable to describe pock-
ets reflects the identity of the residues forming the
pocket (and indirectly its location) and not necessarily
the shape of the pocket. However, in the case of variable
pockets, variation in the number and location of resi-
dues forming the pocket will almost certainly be accom-
panied by shape changes. The aim in summarising
information using Provar’s scoring schemes is to allow
insight into large amounts of data that is otherwise diffi-
cult to visualise. Once regions of interest are identified
then further more focused analyses may be possible.
We have not attempted to re-validate the outputs of

existing pocket prediction software (which have in any
case been recently critically evaluated [12] for their abil-
ity to predict small-molecule binding sites). In this
regard, the Provar methodology described here merely
aids comparison of different prediction software. Provar
analysis readily shows that pocket prediction programs
give somewhat different outputs (Figure 1, Tables 1 and
2). Which programs are most suited to particular inves-
tigations in the context of analysis of sets of structures
remains to be tested, and it may be that it makes sense
to combine results of prediction algrorithms that may
have different strengths and weaknesses [11]. In this lat-
ter case, Provar scores provide a straightforward basis
for creating a summary or consensus of several pro-
grams (Figure 5).
In the examples that we have presented here, we have

mainly been concerned with visualising the persistence/
variation of pockets in a protein’s conformational or
superfamily ensemble in the absence of any ligand, and
identifying instances of correlation of pockets formed in
these ensembles with persistence or variation of experi-
mentally known ligand binding sites. Such identification
(or prediction) of features of ligand binding sites is a
widespread application of pocket prediction software
when applied to individual structures. The application of
the Provar algorithm provides means to visualise the
results of analyses on large sets of related structures.
For a kinase superfamily, pockets whose locations are

highly conserved across homologues were readily identi-
fied and correspond to the enzyme’s active and allosteric

regulatory sites (Figure 7). There is a potential for simi-
lar analysis of other less well understood protein super-
families to identify common features that would then be
the target of functional investigation.
We have seen how Provar visualisations allow us to

identify pockets present in members of an ensemble
that may be absent from an individual crystal structure.
In analysing a conformational ensemble of Bcl-2, Provar
analysis indicates an extended binding groove among
simulated apo conformations compared to that of the
crystal structure (Figure 8). We have shown that ana-
lyses of conformational ensembles of apo structures
usually recover more of known PPI inhibitor binding
sites than analyses of single static structures, but that
precise outcomes of such analyses are rather dependent
on the pocket prediction software used. Again, Provar
scoring does provide a convenient approach to compar-
ing such results.
Provar analysis of pocket predictions on simulated

ensembles may help guide ligand design efforts by indi-
cating which regions of the proteins surface may adapt
to accommodate larger (or smaller) ligands. The resi-
due-based Provar scores themselves could be further
analysed to identify subsets of conformations (or subfa-
milies) in which particular residues are involved in
pocket formation. Such subsets may then find a use in
computational design efforts, e.g., docking, were they
may increase the diversity of candidate ligands, which in
turn increases the likelihood of finding one that simulta-
neously satisfies the requirements of specificity, affinity
and ADME-Tox. In the kinases, identifying variable
pocket-lining regions bordering conserved regions may
be helpful when designing inhibitors that are specific to
a particular kinase or kinase subset.
In common with many other forms of structural ana-

lyses, the type and quality of inferences made from Pro-
var visualisation depend on an appropriate choice of
structure set. We anticipate that a judicious combina-
tion of evidence obtained from both sets of homologues
(where suitable) and simulated conformational ensem-
bles of individual proteins may provide most insight
into variability of pockets, as illustrated with the IL-2:IL-
2R interface. In binding-site prediction applications, it is
necessary to be careful to exclude any structures that
have ligands bound. In the case of comparison of homo-
logous structures, it is necessary to create a set of pro-
teins or domains which are representative of the
members of the superfamily, but sufficiently dissimilar
from each other to avoid bias to the features of the
members with the most numerous structures. However,
other applications of the Provar approach may require
different criteria, e.g., it may be of interest to compare
sets of apo and ligand containing structures to identify
structural changes leading to pocket formation upon
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ligand binding that may suggest sites for allosteric
regulation.

Conclusion
The approach to probabilistic analysis of variation of
pockets on protein surfaces through mapping the pre-
sence or absence of a pocket to the protein atoms and
residues that form the pocket, provides a straightforward
way of summarising the surface features of many struc-
tures. The visualisations of the results of this probability
analysis provided useful insight into pocket variability
and may find particular application in target characteri-
sation in computational structure-based drug design.

Methods
Data sets
All PDB files were downloaded in text format from the
RCSB Protein Data Bank [34] and processed to extract
only the protein chain of interest. Because artifacts may
be generated by pocket prediction programs due to
missing residues in the PDB file, care has been taken
that these do not overlap with a region of interest.

Simulations
The structures used in simulation ensemble analysis of
proteins involved in protein-protein interactions (Tables
1 and 2) are drawn from the 2P2I database of protein-
protein interfaces with known inhibitors [31]. The PDB
ids of structures used are listed in Table 4. Prior to
simulation, structures were protonated using UCSF Chi-
mera [35] using options to protonate His residues based
on their H-bonding pattern. Multiple conformations
(250 per run) were generated using tCONCOORD (ver-
sion 1.0) [20] with the standard input parameter file.
For the IL-2 data shown in Figures 2 and 6A simula-
tions were based on an apo structure [PDB:1M47] with
only the first 50 conformers used in Provar analysis.
The atom-based representation (Figure 6A) was
obtained by applying Equation 1 and the residue-based
ribbon diagram (Figure 6B) using Equation 2. For Bcl-2
(Figure 8) 250 conformers were generated from an apo
structure[PDB:1GJH] and atom-based Provar scoring
(Equation 1) was used to generate Figure 8B. In all
cases, binding sites and protein interfaces are defined
using those non-hydrogen atoms of the protein within
4.5Å of a non-hydrogen atom of the binding partner.

Kinase superfamily
We took the single CATH v3.4 [36] representative
domains at the S35 level (sequence identity > 35%) for
homologues of Phosphorylase Kinase domain 1 (CATH
superfamily ID: 3.30.200.20), giving 93 protein chains.
Structures were downloaded from the PDB and pro-
cessed as outlined above. Pocket predictions using PASS

(for the 91 structures that gave valid output) were used
to generate residue-based probabilities using Provar
scoring with Equation 3 and multiple sequence align-
ments from ClustalW2 [37].

Homologues of IL-2
Seventeen apo structures were identified among the
representative S35 domains in CATH homologous
superfamily 1.20.1250.10. An overall sequence alignment
was generated using MUSTANG [38] using only the
observed amino acid sequences found in the PDB files.
In order to map Provar results for Figures 9, 10A and
10B onto a receptor-bound structure, the receptor-
bound IL-2 chain [PDB:2B5I] was included in the MUS-
TANG alignments, but ignored during Provar calcula-
tions. Equation 4 was used for scoring in Figures 9 and
10. Pocket predictions were made for each structure
with LIGSITE-cs (shown in Figure 9), PASS and fpocket
and averaged using Provar. MDPocket was also used to
map fpocket-based scores to residue for this dataset.
Figure 10C used 250 conformers from a tCONCOORD
simulation of apo IL2 [PDB:1M47] to define probabil-
ities. To enable comparison between scores generated
from different datasets and methods, the subsets for
analysis and visualization are selected using the quartiles
of each distribution of non-zero probability scores,
where residues which are relatively persistently pocket
forming have scores (Q3) (i.e. in the top 25%) and those
which are relatively variable fall in the range (Q3-Q1) in
each case.

Pocket prediction
Sets of related structures (conformers, homologs etc.)
were processed as a batch with either PASS (v2.0.36) or
LIGSITE-cs or fpocket v1.0. PASS was run with the’-
more’ flag and only the files ending’probes_r.pdb’, com-
prising the final layer of individual probe spheres were
used in the Provar analysis. fpocket was run using
default’SET1’ parameters. LIGSITE-cs was run with
default parameters, with the exception of a grid size of
0.5Å, and files ending’pocket-r.pdb’, containing the cen-
troids of all pocket-prediction spheres were used in ana-
lysis. In all cases, atoms were defined as pocket-lining
by Provar if within 3.75Å of any predicted pocket posi-
tion (centres of probe spheres). Provar scores are poten-
tially sensitive to the precise placement of pocket
prediction spheres with respect to the protein atoms.
Too coarse a representation of pockets by the pocket
prediction software can lead to artifacts in mapping to
atoms. However, comparative tests on tCONCOORD
generated ensembles show that use of this distance cri-
terion in conjunction with any pocket prediction sphere
radius or grid spacing ≤ 1.0Å gives consistent scores (e.
g. the Matthews correlation coefficients of atom-based
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scores for LIGSITE-cs between grid size = 0.5Å and all
grid sizes ≥ 0.2Å and ≤ 1.0Å are > 0.88).

Software implementation
The Provar method is implemented as a series of
MATLAB modules driven from a single user-modifiable
configuration file (describing paths and input data
types). Presently, pocket descriptions can be read from
fpocket, LIGSITE-cs, SiteMap and PASS format output
files. A PDB input format is also supported for those
programs, such as CASTp, which directly output atom
or residue based scores in this format. Modules were
developed and run in MATLAB 7.4.0.287 (R2007a) run-
ning on OS X (Leopard). PDB files manipulated via Bio-
Java v1.7 [39] modules. PASS (v2.0.36), LIGSITE-cs and
fpocket were run on an IBM 3550 Dual Xeon X5355 @
2.66GHz CPU, 16Gb Memory, SuSE Linux workstation.
tCONCOORD (v1.0) was run on nodes of a Rocks Clus-
ter. All structures were visualised and rendered using
UCSF Chimera (v1.5.2) [35].

Availability and requirements
The Matlab modules for Provar, together with a descrip-
tion of their use and example datasets, are freely available

at http://people.cryst.bbk.ac.uk/~ubcg66a/software.html.
In addition to the base implementation of Matlab (ver-
sion 7.4 or later), the Statistics Toolbox is required.
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