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Codon Deviation Coefficient: a novel measure for
estimating codon usage bias and its statistical
significance
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Abstract

Background: Genetic mutation, selective pressure for translational efficiency and accuracy, level of gene
expression, and protein function through natural selection are all believed to lead to codon usage bias (CUB).
Therefore, informative measurement of CUB is of fundamental importance to making inferences regarding gene
function and genome evolution. However, extant measures of CUB have not fully accounted for the quantitative
effect of background nucleotide composition and have not statistically evaluated the significance of CUB in
sequence analysis.

Results: Here we propose a novel measure–Codon Deviation Coefficient (CDC)–that provides an informative
measurement of CUB and its statistical significance without requiring any prior knowledge. Unlike previous
measures, CDC estimates CUB by accounting for background nucleotide compositions tailored to codon positions
and adopts the bootstrapping to assess the statistical significance of CUB for any given sequence. We evaluate
CDC by examining its effectiveness on simulated sequences and empirical data and show that CDC outperforms
extant measures by achieving a more informative estimation of CUB and its statistical significance.

Conclusions: As validated by both simulated and empirical data, CDC provides a highly informative quantification
of CUB and its statistical significance, useful for determining comparative magnitudes and patterns of biased codon
usage for genes or genomes with diverse sequence compositions.

Keywords: Codon deviation coefficient, CDC, Codon usage bias, CUB, Statistical significance, Background nucleo-
tide composition, GC content, Purine content, Bootstrapping

Background
Codon usage bias or CUB, a phenomenon in which
synonymous codons (that encode the same amino acid)
are used at different frequencies, is generally believed to
be a combined outcome of mutation pressure, natural
selection, and genetic drift [1-5]. Within any given
species, genes often exhibit variable degrees of CUBs.
Moreover, CUB for an individual gene is related closely
with gene expression for translational efficiency and/or
accuracy [6-10]. Therefore, the ability to accurately quan-
tify CUBs for protein-coding sequences is of fundamental
importance in revealing the underlying mechanisms

behind codon usage and understanding gene evolution
and function in general.
Over the past few years, a number of measures have

been proposed for the quantification of CUB [11-23], lead-
ing to investigations on the pattern of CUBs within and
across species [24-30]. Since CUB is primarily shaped by
selection and mutation [5], different measures are differen-
tially informative with regard to differentiating causes. For
instance, there are purely descriptive measures of CUB as
caused by the joint effects of mutation and selection, such
as, the Effective Number of Codons (Nc or ENC) [13] and
the Relative Synonymous Codon Usage [22]. Alternatively,
other measures of CUB specifically accord with selection
on codon usage associated with translation, such as, the
Codon Adaption Index (CAI) [12] and the Frequency of
Optimal codons [15]. In addition, a number of studies
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have attempted to estimate selection on codon usage
based on population genetics [31-35].
These existing measures generally fall into two cate-

gories, as they compare the observed codon usage distri-
bution of target coding sequence against the distribution
based on a reference set of highly-expressed genes (e.g.,
CAI) or the distribution based on a null hypothesis of
uniform usage of different synonymous codons (e.g., Nc).
The former measures are highly dependent on their cor-
responding reference sets (from which preferred codons
are derived) and accordingly are limited by the compre-
hensiveness and accuracy of reference sets. Since refer-
ence sets are species-specific, these measures are
inappropriate for comparison of CUBs across species
[36]. Additionally, they are unreliable in cases where
there is inadequate knowledge about the highly-
expressed genes for a given species [37], such as for
newly sequenced species that have a limited number of
annotated genes.
Due to these shortcomings, measures that do not

require prior knowledge of reference gene sets have been
implemented. These measures assume a null distribution
of uniform usage of synonymous codons and estimate
the departure of the observed codon usage from the
expected. Among them, Nc is one of the most widely
used measures [13]. Its variant, Nc’ [19], incorporates GC
content of coding sequence as background nucleotide
composition (BNC) into CUB estimation. Accounting for
BNC refines codon usage analysis, providing a compar-
able metric for analyses within and among species exhi-
biting various non-uniform BNCs. In the context of
protein-coding sequences, for instance, bacteria have
diverse BNCs as their GC contents vary widely - from
~20% to ~80%. Even within a single species, genes often
differ considerably in background GC content, as in the
case of Escherichia coli str. K-12 substr. MG1655, whose
genes have GC contents ranging from 26.9% (rfaS; length
= 311aa) to 66.8% (yagF; length = 655aa). Therefore, it is
crucial to measure the departure of codon usage from
the corresponding background composition (instead of
the presumed uniform codon usage). Due to its appropri-
ate consideration of BNC, Nc’ outperforms other relevant
measures [19].
However, all extant measures (including Nc’) still have

limitations. First, they give a general estimate of CUB, but
have not been supplied with straightforward procedures
for assessing the statistical significance of the bias in
codon usages for any given gene. Genes that vary in length
and differ in CUB may exhibit different levels of statistical
significance for their codon biases. Assessing statistical sig-
nificance can strengthen functional relationships ascer-
tained considerably by discounting sampling error in
correlated gene sets. Second, no previous measure is fully
effective at incorporating BNC into CUB estimation.

Although Nc’ factors GC content as BNC, it does not
account for known variation in BNCs at three different
codon positions [38]. In bacteria, for instance, Bartonella
quintana str. Toulouse and Clostridium thermocellum
ATCC 27405 have very similar GC contents in coding
sequences (40.5% and 40.4%, respectively), but their posi-
tion-specific GC contents are quite different: 53.3% and
47.3% at the first codon position, 38.6% and 34.0% at the
second codon position, and 29.5% and 39.9% at the third
codon position, respectively. Likewise, genes within a
given species can also have heterogeneous BNCs at the
three codon positions; in E. coli, for example, there are
two genes, emrE and hlyE, that are similar in their overall
GC contents (41.5% and 41.1%) but different in positional
GC contents: 42.7% and 48.2% at the first position, 46.4%
and 32.0% at the second position, and 35.5% and 43.2% at
the third position, respectively. Such differences in posi-
tional BNCs reflect the outcomes of diverse evolutionary
mechanisms (e.g., dinucleotide bias [39], horizontal gene
transfer [40], strand compositional asymmetry in bacteria
[41], isochore structure in vertebrates [42], etc.), thus con-
flating the roles of mutation and selection acting at differ-
ent codon positions. Therefore, incorporation of
differential positional BNCs into CUB estimation promises
to increase its effectiveness and reliability.
Moreover, GC content is not the sole parameter of BNC.

As illustrated in Zhang and Yu [43], joint use of GC and
purine contents effectively models nucleotide, codon, and
amino acid compositions. In contrast to a broader varia-
tion of GC content, purine content varies within a much
narrower range fluctuating around 50%, presumably
because purines play a determinative role in physicochem-
ical properties of amino acids [44,45]. Similar with GC
content, purine content differs not only from one species
to another, but also from one gene to another, and even
between genes with similar GC contents. For instance,
emrE and hlyE in E. coli, which are similar in their overall
GC contents, have entirely different purine contents not
only at the overall level (45.8% and 55.6%, respectively),
but also at three codon positions (54.5% and 68.3% at the
first position, 34.5% and 48.2% at the second position, and
48.2% and 50.2% at the third position, respectively). Thus,
in addition to GC content, purine content is also a signifi-
cant feature of BNC.
Here we present a novel measure, Codon Deviation

Coefficient (CDC), using it to characterize CUB and to
ascertain its statistical significance. CDC takes account of
both GC and purine contents, comprehensively addres-
sing heterogeneous BNCs, not only in sequences but also
at three codon positions. It adopts the cosine distance
metric to quantify CUB and employs the bootstrapping
to assess its statistical significance, requiring no prior
knowledge of reference gene sets. We describe CDC in
detail and provide comparative results in the form of an
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in-depth evaluation of simulated sequences and empirical
data.

Methods
Expected codon usage
CDC considers both GC and purine contents as BNC
and derives expected codon usage from observed posi-
tional GC and purine contents. We denote the content
of the four nucleotides (adenine, thymine, guanine, and
cytosine), GC content, and purine content as A, T, G, C,
S and R, respectively. As in Zhang and Yu [43], posi-
tion-dependent nucleotide contents can be formulated
in the following way:

Ai = (1 − Si)Ri,Ti = (1 − Si)(1 − Ri),Gi = SiRi,Ci = Si(1 − Ri), (1)

where Si and Ri are their corresponding observed con-
tents at codon position i and Ai, Ti, Gi, Ci are expected
nucleotide contents at codon position i (i = 1, 2, 3). For
any sense codon xyz, where x, y, z Î {A, T, G, C}, the
expected usage πxyz is defined as the product of its con-
stituent expected nucleotide contents x1y2z3, normalized
by the sum over all sense codons, viz.

πxyz =
x1y2z3∑

abc
wabca1b2c3

, (2)

where wabc =

{
1,if abc is a sense codon

0, otherwise
and a, b, c ∈ {A, T,G,C}.

Codon usage bias
Any coding sequence can be represented as a vector of
n dimensions, whose entries correspond to n sense
codon usages in the sequence. The dimension n equals
61 for the canonical code; although codons ATG and
TGG could be set aside due to the absence of synon-
ymous codons, calculation based on a vector of 61
dimensions instead of 59 dimensions makes little sub-
stantial difference. To calculate CUB for any given
sequence, we employ the cosine distance metric [46]
based on the cosine of the angle between the two vec-
tors of n dimensions. Therefore, when both expected (π)
and observed (π̂) codon usage vectors are available for
any given sequence, CDC renders a distance coefficient
ranging from 0 (no bias) to 1 (maximum bias), to repre-
sent CUB, expressed by the deviation of π̂ from π (Eq.
3).

CDC = 1 −

∑
xyz

πxyz × π̂xyz

√∑
xyz

πxyz2 × ∑
xyz

π̂xyz2
(3)

Statistical significance of codon usage bias
We implement a bootstrap resampling of N = 10000
replicates for any given sequence to evaluate the statisti-
cal significance of non-uniform codon usage. Each repli-
cate is randomly generated according to the sequence
BNC (Si and Ri, i = 1, 2, 3) and the sequence length.
Consequently, we obtain a bootstrap distribution of N
estimates of CUB. A two-sided bootstrap P-value is cal-
culated as twice the smaller of the two one-sided P-
values [47]. P ranges from 0 to 1. By convention, a sta-
tistically significant CUB is identified by P < 0.05. CDC
features its first application of the bootstrap resampling
in estimating the statistical significance of CUB. Boot-
strapping may also be applicable to other related
measures.

Implementation and availability
CDC is written in standard C++ programming language
and implemented into Composition Analysis Toolkit
(CAT), which is distributed as open-source software and
licensed under the GNU General Public License. Its
software package, including compiled executables on
Linux/Mac/Windows, example data, documentation, and
source codes, is freely available at http://cbb.big.ac.cn/
software and http://cbrc.kaust.edu.sa/CAT.

Results and discussion
Comparative analysis on simulated data
To evaluate the performance of CDC and compare it
against the most powerful extant measure, Nc’, as well
as Nc, we took an approach based on that of Novembre
[19] to simulate coding sequences specifying different
positional BNCs and varying sequence lengths. Five sets
of position-associated compositions were used to gener-
ate simulated sequences (Table 1). It should be noted
that CDC ranges from 0 (no bias) to 1 (maximum bias),
whereas Nc’ and Nc range from 20 (maximum bias) to
61 (no bias). To facilitate comparisons of CDC with Nc’
and Nc, we use the formula (61- Nc’)/41 and (61- Nc)/41
to rescale their ranges, denoted as scaled Nc’ and scaled
Nc, respectively, from 0 (no bias) to 1 (maximum bias).
A good measure should not deviate much from its

expectation as the amount of data approaches infinity or
any sufficiently large number. Thus, we first simulated
sequences with a total of 100,000 codons using five
positional composition sets (PCSs) (Table 1).

Table 1 Background nucleotide compositions at three
codon positions specified in simulations

Content None Low Med-1 Med-2 High

1st position 0.5 0.5 0.5 0.5 0.5

2nd position 0.5 0.4 0.3 0.2 0.1

3rd position 0.5 0.6 0.7 0.8 0.9
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Considering the fact that both GC and purine contents
govern BNC, we fixed one of them to be uniform at
three codon positions and allowed the other to have
various positional compositions. We examined heteroge-
neous positional compositions for GC (Figure 1A to 1C)
and purine (Figure 1D to 1F) contents, respectively.
Consistent with expectations, when the PCS was
uniform, CDC and scaled Nc’ performed similarly, both
taking a value close to 0 (Figure 1). When the heteroge-
neity of positional composition increased for GC con-
tent (Figure 1A to 1C), CDC continued to perform well
for all cases examined, whereas scaled Nc’ and scaled Nc

generated biased estimates, especially in cases where
there was high heterogeneity in positional BNCs. Simi-
larly, when purine content had heterogeneous positional
compositions (Figure 1D to 1F), CDC again exhibited
much lower biases than scaled Nc’ and scaled Nc. Since
Nc ignores BNC, Nc’ performed better than Nc when the
PCS was non-uniform (Figure 1A, C, D and 1F) and
they exhibited comparable estimates only in cases where
the PCS was uniform (Figure 1B and 1E). These results
agree well with those of Novembre [19]. In addition,
when we set heterogeneous positional BNCs for both
GC and purine contents, CDC consistently outper-
formed Nc’ and Nc for nearly all the parameter combina-
tions tested (Table 2).
To evaluate CDC in a comprehensive manner, we also

examined all possible quantitative relationships among

positional GC contents (Table 3), although there are
identified patterns about quantitative relationships
among positional nucleotide compositions (e.g., GC con-
tent at the 1st codon position tends to be always larger
than that at the 2nd codon position [48]). On the whole,
CDC achieved greater power than scaled Nc’ and scaled
Nc across all examined cases. Scaled Nc’ performed better
than scaled Nc, consisting again with the analysis
reported by Novembre [19]. Similar results were also
obtained when we considered all possible quantitative
relationships among positional purine contents (Table 4).
To examine the effect of variable sequence length on

the integrity of CDC, we considered a wide range of
sequence lengths from 100 to 3,000 codons. We set
both GC and purine contents to be heterogeneous at
three codon position using the four non-uniform PCSs
(Table 1). To avoid stochastic errors, we repeated simu-
lations 10,000 times for each parameter combination
and thus each estimate was determined from 10,000
replicates. Overall, CDC performed better than Nc’ and
Nc across all sequence lengths examined (Figure 2).
When the heterogeneity of BNC increased from low to
high, CDC tended to have less biases, whereas Nc’ and
Nc produced increasingly biased estimates, especially for
the case where there was high heterogeneity in posi-
tional BNCs (Figure 2D). For short sequences (<300
codons), CDC yielded much lower biases and smaller
standard deviations (SD) than Nc’ and Nc, although all
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Figure 1 Codon usage bias across a variety of positional background nucleotide compositions. Heterogeneous positional background
compositions were considered for GC content (panels A to C) and purine content (panels D to E), respectively. The expected values of codon
usage bias are zero for all examined cases.
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three measures produced estimates that are somewhat
biased. To obtain more reliable estimates of CUB, our
results suggest that input sequences should have at least
100 codons in length. When sequence length was
decreased below 100 codons, CDC still performed better

than Nc’ and Nc, although the biases of Nc’ and Nc were
in opposite directions as compared with those of CDC
(Figure 2B to 2D; not apparent in Figure 2A). For long
sequences, CDC generated less biased estimates and
SDs, whereas Nc’ and Nc continued to yield more biased
estimates and SDs.
To test the influence of different CUBs on the power of

CDC, we evaluated a range of CUBs from low to high.
Unlike the previous simulations (which are based on
nucleotide compositions), we generated simulated
sequences by randomly setting different synonymous
codon frequencies and considering variable CUBs with a
range from 0.1 to 0.9. We repeated simulations 1,000
times for each case and accordingly each estimate was
averaged over 1,000 replicates. On the whole, CDC
exhibited greater power in detecting diverse CUBs; com-
pared with Nc’ and Nc, the estimated CUBs of CDC were
very closer to the expected ones (Table 5). When the
expected CUBs varied from low to high, CDC performed
consistently to give rise to close estimates. Contrastingly,
Nc’ and Nc yielded biased CUB estimates across all tested
cases and these biases became more pronounced when
the expected CUB was extremely low. When the
expected CUBs increased from low to high, Nc’ and Nc

exhibited increasing power in CUB estimation. While
they approached the power of CDC when the expected
CUB was high, CDC remained more powerful than Nc’
and Nc. Taken together, our simulation results demon-
strated that CDC is superior to Nc’ and Nc.

Application to empirical data
It is generally acknowledged that CUB correlates closely
with gene expression level in both unicellular [6-10] and
multicellular [11,49-51] organisms. Different species
may have different heterogeneities in positional BNCs.
To empirically test CDC and compare it to three popu-
lar measures, Nc’, Nc and CAI, we collected multiple
expression data sets from five different species in this
study: (1) Escherichia coli from Bernstein et al. [52] (in

Table 2 Codon usage bias across a variety of positional
background compositions for GC and purine contents

GC Content Purine Content CDC Scaled Nc Scaled Nc’

None None 0.00452 0.00001 0.00186

Low 0.00407 0.04843 0.05557

Med-1 0.00302 0.15130 0.15968

Med-2 0.00164 0.28613 0.29389

High 0.00054 0.40797 0.41146

Low None 0.00452 0.05505 0.04181

Low 0.00411 0.09548 0.08752

Med-1 0.00305 0.19808 0.19091

Med-2 0.00164 0.31892 0.31461

High 0.00060 0.44778 0.44199

Med-1 None 0.00486 0.20367 0.17790

Low 0.00438 0.23485 0.21262

Med-1 0.00305 0.31876 0.29478

Med-2 0.00203 0.42851 0.40322

High 0.00054 0.53585 0.51978

Med-2 None 0.00529 0.38525 0.36068

Low 0.00460 0.40628 0.38358

Med-1 0.00337 0.47542 0.43927

Med-2 0.00182 0.56759 0.52569

High 0.00056 0.65842 0.62645

High None 0.00606 0.56671 0.54706

Low 0.00520 0.59091 0.56666

Med-1 0.00371 0.65926 0.61789

Med-2 0.00225 0.71856 0.66928

High 0.00065 0.77246 0.73600

Sequences with 100000 codons were simulated. The expected value of codon
usage bias is zero so that these estimated values are also the deviations from
the expected.

Table 3 Codon usage bias across all possible quantitative relationships among positional GC contents

GC content Purine content = 0.3 Purine content = 0.5 Purine content = 0.7

1st 2nd 3rd CDC Scaled
Nc

Scaled
Nc’

CDC Scaled
Nc

Scaled
Nc’

CDC Scaled
Nc

Scaled
Nc’

0.3 0.5 0.7 0.00153 0.34160 0.23472 0.00586 0.24586 0.23332 0.00481 0.39716 0.21314

0.3 0.7 0.5 0.00147 0.15648 0.05716 0.00551 0.04827 0.06330 0.00498 0.24616 0.05866

0.5 0.3 0.7 0.00146 0.36662 0.19363 0.00470 0.20034 0.17544 0.00441 0.34555 0.17306

0.5 0.7 0.3 0.00143 0.35276 0.21224 0.00519 0.19619 0.21974 0.00417 0.34831 0.21815

0.7 0.3 0.5 0.00069 0.21330 0.01419 0.00236 0.02999 0.02692 0.00233 0.16172 0.03574

0.7 0.5 0.3 0.00066 0.38224 0.22121 0.00257 0.22392 0.23947 0.00236 0.33561 0.24588

Sequences with 100000 codons were simulated. The compositions in the Med-1 set (0.3, 0.5 and 0.7) were used. GC content was considered non-uniform at
three codon positions, whereas purine content was set uniform at three codon positions. The expected value of codon usage bias is zero so that these estimated
values are also the deviations from the expected.
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LB and M9 media), (2) Saccharomyces cerevisiae from
Holstege et al. [53], (3) Drosophila melanogaster from
Zhang et al. [54], (4) Caenorhabditis elegans from Roy
et al. [55], and (5) Arabidopsis thaliana from Wuest et
al. [56] (Additional file 1). We estimated CUB by CDC,

scaled Nc’, scaled Nc and CAI, and correlated their esti-
mates with gene expression levels in these five species
(Table 6).
On the whole, CDC outperformed scaled Nc’ and scaled
Nc in correlating closely with gene expression level.

Table 4 Codon usage bias across all possible quantitative relationships among positional purine contents

Purine content GC content = 0.3 GC content = 0.5 GC content = 0.7

1st 2nd 3rd CDC Scaled
Nc

Scaled
Nc’

CDC Scaled
Nc

Scaled
Nc’

CDC Scaled
Nc

Scaled
Nc’

0.3 0.5 0.7 0.01743 0.35780 0.18606 0.01023 0.15974 0.17789 0.00232 0.34949 0.17267

0.3 0.7 0.5 0.01836 0.21922 0.01880 0.01036 0.01515 0.01520 0.00263 0.24157 0.00941

0.5 0.3 0.7 0.00616 0.38200 0.16209 0.00294 0.15248 0.16112 0.00063 0.33321 0.16601

0.5 0.7 0.3 0.00566 0.31973 0.15002 0.00302 0.16556 0.15842 0.00061 0.37234 0.15754

0.7 0.3 0.5 0.00182 0.27781 0.02340 0.00079 0.02564 0.02805 0.00026 0.21360 0.02756

0.7 0.5 0.3 0.00179 0.35410 0.15793 0.00087 0.16099 0.15939 0.00024 0.35439 0.15404

Sequences with 100000 codons were simulated. The compositions in the Med-1 set (0.3, 0.5 and 0.7) were used. Purine content was considered non-uniform at
three codon positions, whereas GC content was set uniform at three codon positions. The expected value of codon usage bias is zero so that these estimated
values are also the deviations from the expected.
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Figure 2 Codon usage bias across a range of sequence lengths. Sequences were simulated with the four non-uniform positional
composition sets: Low (panel A), Med-1 (panel B), Med-2 (panel C) and High (panel D). Each estimate was determined based on 10000 replicate
simulated sequences. The expected values of codon usage bias are zero for all examined cases.
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Although CDC and scaled Nc’ produced comparable cor-
relation coefficients in yeast (detailed below), CDC exhib-
ited larger correlation coefficients than scaled Nc’ and
scaled Nc for all the rest cases (Table 6). When compar-
ing CDC to CAI, we found comparable correlation coeffi-
cients in E. coli (LB medium) and yeast, but in general
CDC performed better than CAI (Table 6 and Additional
file 1). However, it should be noticed that the values of
CAI are calculated from expression data (since it requires
a reference set of highly-expressed genes), whereas those
of CDC are not. When we restricted the above analysis to
the top 10% genes referring to their expression levels,
CDC continued to perform better than scaled Nc’, scaled
Nc, and CAI (Additional file 1). In addition, considering
the correlation coefficients among these five species, we
found that the smallest values always belonged to A.
thaliana (regardless of metric used), indicating relatively
weaker selection on A. thaliana codon usage by compari-
son with those of the other four species (Table 6). Such
phenomenon was discovered previously in a comparative
analysis between A. thaliana and Oryza sativa [57].
Overall, CDC correlated positively with gene expression
level, much better than scaled Nc’, scaled Nc, and CAI.

As noted, the correlation coefficients produced by CDC
and scaled Nc’ were similar in yeast but different in others
(Table 6). Since CDC takes positional GC and purine
contents as BNC and Nc’ considers only GC content as
BNC and ignores positional heterogeneity, this result can
be probably explained by relatively lower heterogeneity of
positional BNCs in yeast. To further investigate this pos-
sibility, we examined the heterogeneities of positional GC
and purine contents in these five species (Figure 3). Con-
sistent with our expectation, heterogeneities of positional
GC contents were indeed lower in yeast by comparison
with other species (Figure 3A to 3C), especially at the
second and third codon positions. In contrast, higher het-
erogeneities of positional GC contents were apparent in
E. coli (Figure 3A and 3B for the first and second codon
positions, respectively) and D. melanogaster (Figure 3B
and 3C for the second and third codon positions, respec-
tively). These results agree well with the observation that
the difference of correlation coefficient between CDC
and scaled Nc’ in yeast was smaller than that in E. coli or
D. melanogaster (Table 6). As a consequence, CDC cor-
related more closely with scaled Nc’ in yeast than in
E. coli or D. melanogaster (Figure S13 in Additional file
1). In contrast to GC content, heterogeneities of posi-
tional purine contents were relatively smaller and similar
among the five species tested, presumably attributable to
the fact that GC content ranges more broadly (20%–80%)
than purine content (40%–60%) [48,58,59].
We proceeded to calculate CDC values (as well as GC

and purine contents) for all E. coli genes (Additional
file 2). CDC values ranged from 0.046 to 0.550 and the
mean and median values were 0.239 and 0.187, respec-
tively (Figure 4). The majority of genes (69%) exhibited
CDC values between 0.15 and 0.25. The gene with the
highest CDC value is trpL, a key component in the
attenuation system that controls the expression of the
trpLEDCBA operon in response to tryptophan availability
[60]. However, bootstrap resampling illustrates that the
CUB value of trpL gene is not statistically significant (P =
0.77), most likely due to its short length (14 aa), consistent
with our simulation results that short sequences tend to
have biased CUB estimates. The gene with the highest

Table 5 Differences between estimated and expected
codon usage biases

Expected CUB (Estimated CUB)a - (Expected CUB)

CDC Scaled Nc Scaled Nc’

0.1 0.00137 0.60854 0.61438

0.2 0.00174 0.47951 0.52490

0.3 -0.00245 0.38428 0.43524

0.4 0.00186 0.27647 0.35793

0.5 -0.00060 0.17750 0.21300

0.6 0.00437 0.08031 0.15215

0.7 0.00542 0.01312 0.06657

0.8 -0.00014 0.04816 -0.02663

0.9b - - -
aEach estimate was averaged over 1000 replicate simulated sequences that
each had 100000 codons.
bSequences with the expected codon usage bias at 0.9 were not possible to
successfully simulate.

Table 6 Correlation coefficients of codon usage bias with gene expression level

Dataa E. coli1 S. cerevisiae2 D. melanogaster3 C. elegans4 A. thaliana5

LB (n = 1762b) M9 (n = 2766b) (n = 5142b) (n = 1651b) (n = 12184b) (n = 1332b)

CDCc 0.433 0.367 0.654 0.460 0.374 0.228

Scaled Nc’
c 0.315 0.187 0.664 0.302 0.328 0.130

Scaled Nc
c 0.257 0.125 0.600 0.321 0.192 0.063

CAIc 0.443 0.288 0.675 0.386 -0.118 0.034
aExpression data were obtained from 1Bernstein et al., 2Holstege et al., 3Zhang et al., 4Roy et al., and 5Wuest et al. (see details in Additional file 1).
bNumber of genes (n).
cP < 0.0001 for all values.
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CDC value and statistical significance in CUB is
rpmI (CDC = 0.481), which encodes ribosomal protein
L35. In contrast, scaled Nc’ and scaled Nc identified rplL
(encoding the ribosomal protein L7/L12) and eno (catalyz-
ing the interconversion of 2-phosphoglycerate and

phosphoenolpyruvate) genes, respectively, as having the
strongest CUBs (Additional file 2).
Ribosomal protein (RP) genes are, in general, both essen-
tial and highly expressed, and it is believed that their CUB
values are greater than those of other genes [61]. In the
case of E. coli, CDC values for 54 RP genes vary from
0.244 to 0.481, larger than the mean and median values of
all E. coli genes (Figure 4). Nearly all RP genes have statis-
tically significant CUBs, with three exceptions (Additional
file 3): (1) rpmE: CDC = 0.267, P = 0.1136; encoding RP
L31, which may be loosely associated with ribosome [62],
(2) rpmF: CDC = 0.329, P = 0.1096; encoding RP L32,
which locates near the peptidyltransferase center [63], and
(3) rpmJ: CDC = 0.422, P = 0.0564; encoding RP L36,
which is non-essential for protein synthesis [64]. These
results suggest that an accurate measure such as CDC has
the potential to illuminate the evolutionary process that
has operated on each gene.

Conclusions
In summary, we have described a novel measure of CUB,
the Codon Deviation Coefficient. As validated by simu-
lated sequences and empirical data, CDC outperforms
other measures by providing informative estimates of
CUB and its statistical significance. CDC features no
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Figure 3 Heterogeneity of positional background nucleotide compositions in E. coli (2,766 genes in M9 medium), S. cerevisiae (5,142
genes), D. melanogaster (1,651 genes),C. elegans (12,184 genes), and A. thaliana (1,332 genes). Heterogeneities of positional GC contents
are represented by absolute differences between overall GC content and its positional contents: GC-GC1 for the first position (panel A), GC-GC2
for the second position (panel B), and GC-GC3 for the third position (panel C), respectively. Likewise, heterogeneities of positional purine content
are absolute differences between overall purine (AG) content and its positional contents: AG-AG1 for the first position (panel D), AG-AG2 for the
second position (panel E), and AG-AG3 for the third position (panel F), respectively.
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Figure 4 Comparison of CDC distributions between ribosomal
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genes (4,144 genes range from 0.046 to 0.550) in E. coli.
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necessity for any prior knowledge regarding gene expres-
sion or function, properly accounts for BNC, and utilizes
a bootstrap assessment to evaluate the statistical signifi-
cance of CUB. Therefore, CDC promises a significant
advance in raw analysis of codon usage, providing the
means to better reveal aspects of the historical evolution-
ary pressures on gene function without the assumptions
of underlying reference data sets.

Additional material

Additional file 1: Empirical expression data analysis. Correlations
between codon usage bias and gene expression level in different
expression data sets.

Additional file 2: Estimates of codon usage bias for all E. coli genes.
Codon usage biases of all E. coli genes estimated by CDC, Nc’ and Nc.

Additional file 3: Estimates of codon usage bias for ribosomal
proteins in E. coli. Codon usage biases of ribosomal proteins in E. coli
estimated by CDC, Nc’ and Nc.

Abbreviations
CUB: Codon Usage Bias; CDC: Codon Deviation Coefficient; BNC: Background
Nucleotide Composition; PCS: Positional Composition Set; A: Adenine
content; T: Thymine content; G: Guanine content; C: Cytosine content; S: GC
content; R: Purine content; Ai, Ti, Gi, Ci, Si, Ri, A, T, G, C, S, R at codon position
i, respectively, where i = 1, 2, 3.
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