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Abstract

Background: Identification of active causal regulators is a crucial problem in understanding mechanism of diseases
or finding drug targets. Methods that infer causal regulators directly from primary data have been proposed and
successfully validated in some cases. These methods necessarily require very large sample sizes or a mix of
different data types. Recent studies have shown that prior biological knowledge can successfully boost a method’s
ability to find regulators.

Results: We present a simple data-driven method, Correlation Set Analysis (CSA), for comprehensively detecting
active regulators in disease populations by integrating co-expression analysis and a specific type of literature-
derived causal relationships. Instead of investigating the co-expression level between regulators and their
regulatees, we focus on coherence of regulatees of a regulator. Using simulated datasets we show that our
method performs very well at recovering even weak regulatory relationships with a low false discovery rate. Using
three separate real biological datasets we were able to recover well known and as yet undescribed, active
regulators for each disease population. The results are represented as a rank-ordered list of regulators, and reveals
both single and higher-order regulatory relationships.

Conclusions: CSA is an intuitive data-driven way of selecting directed perturbation experiments that are relevant
to a disease population of interest and represent a starting point for further investigation. Our findings
demonstrate that combining co-expression analysis on regulatee sets with a literature-derived network can
successfully identify causal regulators and help develop possible hypothesis to explain disease progression.

Background
Fundamental functions of living cells are controlled by
regulatory relations between genes and proteins. Most
cell types respond to changes in their environment (e.g.
drug treatments or disease causing mutations) by alter-
ing their transcriptional patterns. More than a decade
ago, it became possible to measure snapshots of all tran-
script levels in a given tissue sample using microarray
technology. Since then, advances in technology have
multiplied and the cost of experiments has decreased
significantly. As a consequence, cell lines, animal models
as well as clinical subjects in drug trials or in the general

population [1] have been characterized on a molecular
level. One crucial problem in such studies is the detec-
tion of active key regulators; i.e. genes or proteins that
causally affect expression of downstream genes or pro-
teins in the study population.
The detection of regulators or regulatory networks

from the primary data alone has been studied exten-
sively. Network reconstruction can be approached by
identifying correlations in expressed genes [2], using any
number of methods including those based on informa-
tion theory [3], Bayesian models [4,5] and regression
models [6]. However, all purely expression-based meth-
ods assume that the expression of regulators and targets
are directly (anti-) correlated or at least not independent
of each other. Smet et al. showed that such models of
high correlation between regulator and target don’t
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match the actual situation captured in RegulonDB [7].
One of the possible explanations is that a regulator,
even a transcription factor, itself is not necessarily co-
expressed with its targets, especially when the regulatory
relation of the regulator and the targets is complex [8]
or regulation acts beyond the transcriptional level, e.g.
by phosphorylation. This suggests that in many cases
the activity of regulator cannot be inferred from tran-
scriptional data alone.
While methods to infer causal regulators directly from

heterogeneous primary data types have been proposed
and successfully validated in some cases [9,10], these
methods necessarily require very large sample sizes and
a mix of different data types, e.g. genomic and transcrip-
tomic data. Even when such large data sets are available,
the choice of which hypothesis to pursue in follow-up
experiments might not be easy to make as such methods
usually don’t relate their conclusions back to already
known biological facts.
In this paper we are interested in a method that sug-

gests active regulators and corresponding perturbation
experiments for a population based on expression data
alone. With that goal in mind the above discussion sug-
gests that investigating coherence between regulatee
pairs rather than regulator-regulatee pairs might be
more suitable for evaluating the activity of a given regu-
lator. To associate regulatee coherence to a possibly
only non-transcriptionally controlled regulator requires
the use of prior knowledge.
Our knowledge of molecular biology has increased dra-

matically over the past several decades as evidenced by
the 20 million articles currently indexed by the National
Library of Medicine [11]. This immense body of knowl-
edge contains many experiments that define the response
of a biological system to a stimulus, e.g. by altering its
transcriptional state. These experiments can be translated
into causal regulatory relationships. Whenever the ques-
tion of causal regulators is relevant (e.g. in finding poten-
tial intervention points in ovarian cancer), each
experimentally validated finding constitutes a hypothesis
that can be evaluated based on the data set at hand.
In contrast to many previous approaches, we rely on a

very specific type of prior knowledge, namely relation-
ships extracted from the literature that are (a) based on
well-described laboratory experiments, (b) have a cita-
tion in the literature, and (c) establish a flow of causal-
ity; i.e. a directed flow of information form a well-
defined perturbation experiment to observed molecular
changes. Consequently, our method does not rely on
association but on established causation and should be
well-suited to providing hypotheses about the causal
regulators that are active in a given dataset. This specifi-
cally allows us to make statements about regulators that

are not limited to activation by changes in transcript
abundance, but can include changes in protein abun-
dance or post-translational modifications.
Prior biological knowledge has been used successfully

in many contexts before. Relevant functional terms, dys-
regulated pathways in diseases as well as active miRNAs
and transcription factors are routinely predicted based
on so-called Gene Set Analysis (GSA) methods and a
number of statistical procedures have been proposed, e.
g. [12-16]. However, virtually all such methods focus on
differential gene expression between two conditions as
opposed to coordinated changes in a subject population.
The situation is similar for methods that utilize net-
works of prior information [17,18]. A class of methods
that has been proposed to detect subnetworks co-
expressed across a population [19,20] is related in that it
utilizes expression data across all conditions in conjunc-
tion with a network. However, such methods aim at
finding coherence between expression correlation and
distance in the network in general. Our goal is to speci-
fically assess whether a regulator is likely to be active
based a given expression data set and consequently
point the researcher to relevant perturbation experi-
ments in the literature.
To this end, we introduce the Correlation Set Analysis

(henceforth referred to as CSA) method in the follow-
ing, provide evidence that it performs well on simulated
datasets, and apply it to three different disease settings:
ovarian cancer [21], metabolic disease [22], and diffuse
large B-cell lymphoma (DLBCL) [23].

Methods
We identify regulators that are active under a given con-
dition if (a fraction a of) its known targets show (a spe-
cified degree b of) correlated transcriptional change.
This method does not infer novel regulatory relation-
ships, but rather selects from a library of experimentally
defined relationships which regulators test as active in
the population of interest. Figure 1 provides an overview
of CSA. We elaborate on each step below.

Constructing the causal network
The suggested method relies on a causal network to
define regulators and regulatees and can only be as good
as the encoded biological facts. The causal network con-
sists of relationships that (a) are based on well-described
laboratory experiments, (b) have a citation in the litera-
ture, and (c) most importantly, establish the flow of caus-
ality directed from a specific regulator to a specific
regulatee. Consequently, our method does not rely only
on association, but on established causation. For exam-
ple, consider the following statements extracted from
two articles represented in the Ingenuity [24] data:
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1. “Binding of mouse Fyn protein and mouse Cnr1
(Pcdha4) protein occurs in mouse brain.” (PMID
9655502)
2. “Blockade of CB1 (CNR1) increases expression of
hepatic lipase (LIPC).” (PMID 20110567)

While statement 1 asserts a biologically correct bind-
ing event, it doesn’t imply a directed flow of information
and it is unclear what consequences the binding event
has. In contrast, statement 2 describes a perturbation
experiment that causally leads to observed changes.
Only statement 2 allows for a meaningful definition of
regulator and regulatee. Ultimately, the use of causal
statements facilitates the interpretation of results and
focuses the analysis on potential upstream drivers of the
process under consideration.
Regulators and regulatees can be of different molecu-

lar types and include transcript levels, protein levels,
protein activities and phosphorylation states. For the
purpose of this method, we restrict our causal network
to transcript regulatees as this is consistent with the

population measures analyzed. In contrast, regulators
include transcript and protein levels as well as protein
modifications and activities. For CSA, we abstract these
different forms into an undifferentiated node in the cau-
sal network based on their Entrez identifier [25].
It is important to note that the results of such tran-

scriptional perturbation experiments do not necessarily
capture direct physical relationships. In the example
above, the increase in transcript levels of LIPC is cer-
tainly mediated by a cascade of other signalling mole-
cules. Consequently, the CSA method is not limited to
transcription factors as regulators, but encompasses
many other classes of molecules amenable to perturba-
tion experiments.
To ensure the reliability of the data, we only include

manually curated statements. The substrate for the cau-
sal network is licensed from two commercial sources,
Selventa Inc. [26] and Ingenuity Inc. [24] and, after fil-
tering and post-processing, reduces to 6,942 regulators
and 11,134 regulatees. Among 6,942 regulators, 3,002
are proteins or mRNAs and 3,940 are chemical

regulator 

regulatees 
1. Mean 

 
 

2. Ratio 

Expression data Causal Network 

(1) Map expression profiles to the causal network 

(2) Calculate Pearson correlation 
coefficients between regulatees 

(3) Applying target function to evaluate the 
coherence of regulatees 

(4) Calculate p-value by 
permutation test 

(5) Benjamini and Hochberg 
FDR correction 

Repeat steps 2 to 4 for all regulators regulators

(6) Report significant regulators 
with FDR < 0.05 and visualize 
regulatory subnetwork 

Figure 1 Schematic illustration of the Correlation Set Analysis (CSA) method. Details are described in the text.
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compounds or environmental factors (e.g. internal meta-
bolites such as glucose or pyruvate, approved drugs such
as Rosiglitazone or Doxorubicin, or environmental condi-
tions such as hypoxia or oxidative stress). As described
above from this we selected the subset of proteins and
mRNA regulators. After removing self-regulation and
regulators that only have one regulatee, the causal net-
work reduces to 1,783 regulators and 10,097 regulatees.
Selventa Inc. has recently launched an initiative to pro-
vide access to a significant amount of causal information
to academic researchers through the BEL-Portal http://
www.belportal.org. After performing similar pre-proces-
sing as we described above, the public causal network
contains 823 regulators and 6,463 regulatees.

Scoring putative regulators
We assumed an active regulator under a given condition
should activate or inhibit a subset of its regulatees.
Across a set of conditions (e.g. in a patient population),
this relationship should become apparent in a coordi-
nated change in expression levels for regulatees down-
stream of an active regulator. We used different scoring
functions to identify active regulators.
Mean scoring function
Pearson’s correlation coefficient is one of the most
widely used measures to evaluate similarities of gene
expression profiles. For an expression dataset with m
samples, the co-expression level of any two genes X and
Y can be calculated by the correlation coefficient cor(X,
Y).

cor(X,Y) =

m∑
k=1

(Xk − X̄)(Yk − Ȳ)√
m∑
k=1

(Xk − X̄)
2 m∑
k=1

(Yk − Ȳ)
2

, where X̄ and Ȳ are sample means of gene X and
gene Y respectively.
To assess the expression coherence of regulatee sets,

we employed the simple test of measuring all pair-wise
correlations within each set. Such a coherent regulatee
set is consistent with the hypothesis that the corre-
sponding regulator is active in the condition under
consideration.
The causal network also specifies the type of regula-

tion (i.e. up-regulation or down-regulation). Consider
two regulatees, X and Y, that are under the control of a
common regulator. If X and Y are regulated coherently,
we expect their transcriptional profiles to be correlated.
Conversely, if X is up-regulated and Y is down-regu-
lated, we expect their profiles to be anti-correlated. We
examined the correlation coefficients between up-regu-
lated regulatees and down-regulated regulatees to test

this hypothesis. However, we did not observe significant
differences between correlation coefficients of regulatees
regulated in the same direction and regulatees regulated
in the opposite direction. Thus, we decided to use the
absolute value of the correlation coefficient |cor| in the
scoring functions.
One intuitive way of detecting regulators with highly

coherent regulatee pairs is to examine the average of all
absolute correlation coefficients between all pairs of reg-
ulatees xR for a regulator R.

μR =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

∣∣cor(xRi, xRj)∣∣
Here, n is the number of regulatees of the regulator R.

μR is referred to as the mean scoring function in the
rest of this paper.
Ratio scoring function
If we expect that a substantial number of regulatees is
affected by an active regulator, a test for a shift in mean
pair-wise co-expression is sensible. However, we also
investigated possible scenarios based on the biological
data sets described in the results section. Figure 2a
shows an example distribution of absolute correlation
coefficients between regulatees which has higher average
absolute correlation coefficients in a real network than
in a randomized network. In this case, the majority of
regulatees have similar expression patterns, which sup-
ports the hypothesis that this regulator is active. In
some cases we observed a small bump at the high abso-
lute correlation tail (Figure 2b), which indicates a small
set of strongly co-expressed regulatees. This situation is
more difficult to detect by examining the difference of
average correlation coefficients. Hence, we propose an
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Figure 2 The example distributions of absolute correlation
coefficients between regulatees of a regulator detected by
different target functions. a) The average absolute correlation
coefficient between regulatees in the real network (red) is
significantly higher than it in the random network (blue). b) There is
no significant difference between the absolute average correlation
coefficients in the real network and the random network. However,
there is a small bump at the right hand side, which means a small
subset of highly correlated regulatees. The ratio scoring function
was designed to detect such small subsets of regulatees.
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alternate way to detect active regulators: scoring regula-
tors according to the ratio of highly coherent regulatee
pairs over all regulatee pairs (referred to as the ratio
scoring function).

FR =
2c

n(n− 1)

, where c is the number of regulatee pairs, for a speci-
fied regulator R having n targets, with absolute correla-
tion coefficient greater than a cutoff. Users can define
biologically relevant pairs by setting the cutoff to levels
appropriate to detect a desired effect size (say, correla-
tion coefficient larger than 0.6). In this paper, we fix the
cutoff, c, at the 95th percentile of the distribution of all
pair-wise correlations for a given dataset. This alternate
score will identify small sets of highly coherent regula-
tees. The decision rule based on μR and FR is described
in the next section.

Assessing statistical significance
These scoring functions provide rank-ordered lists of all
regulators in the causal network based on the coherence
of their downstream regulatees, and indicate which ones
may be active. While true signals will tend to lead to
high scores, high scores in any given result may be due
to random noise. We therefore evaluated the statistical
significance of the scores, μR and FR of a regulator R,
using a permutation test in two ways:

1. Gene permutation randomly assigns transcript
profiles to regulatees and, thus, compares the score
of the regulator R to the distribution of scores
attained by regulators with the same number of ran-
domly chosen regulatees.
2. Graph permutation generates a random causal
network in which each regulator controls the same
number of regulatees and each regulatee is con-
trolled by the same number of regulators as in the
original network. (Details are described in “Materials
and Methods”).

Both permutation approaches assess the statistical sig-
nificance of a score under the respective null hypothesis,
and thus provide guidance to the biologist as to whether
a particular regulator received a high score based on
chance alone. Note that the permutation of sample
labels is not a meaningful option in the scenario of only
one population when considering correlation though it
is a preferred choice in many gene set analysis methods
comparing two or more sample populations.
As the causal network contains more than one thou-

sand potentially active regulators, the resulting p-values
should be corrected for multiple testing. The false

discovery rate (FDR) is an intuitive and well-accepted
alternative measure of significance that is widely applied
in similar applications. The Benjamini and Hochberg
procedure was used to estimate the FDR based on the
list of p-values [27]. Finally, CSA reports a results table
of potentially active regulators (FDR < 0.05) which con-
tains FDR, scores (ratio and mean), regulatees coher-
ently up- or down-regulated by the regulator, non-
coherently expressed regulatees, average correlation
coefficient of regulator to regulatees, and the number of
coherent regulatees. Users can rank regulators by the
scores (FR or μR), the number of coherent regulatees
(nc), or the average correlation coefficient of regulator to
regulatees (μRR).

Results and discussion
Results on simulated data
To assess the sensitivity and specificity of CSA, we gen-
erated simulated data sets with various characteristics.
To retain a realistic scale for the data values, we derived
our simulated data from the Ovarian Cancer dataset
(see “Materials and Methods”). The dataset was derived
from 391 ovarian cancer patients in TCGA [21]. To
obtain a baseline dataset with no signal, we randomly
permuted the sample labels for each gene vector sepa-
rately. Consequently, each gene vector retains its origi-
nal distribution, but correlations between gene vectors
are disrupted. We labelled n genes as active regulators
in the simulated data. Each induces expression profiles
in p% of its regulatee pairs that have a Pearson correla-
tion coefficient of r. Regulators and regulatees are
defined according to the literature-based causal network
described earlier. To evaluate CSA with respect to many
different signal-to-noise characteristics, we varied the
percentage of correlated regulatee pairs p in 10% incre-
ments from 0% to 100%. Similarly, we set the correlation
coefficient r to {0.3, 0.4, 0.5, 0.6}. Details on the genera-
tion of dependent profiles can be found in the Materials
and Methods section.
To test the robustness of the method to sample size,

we generated additional datasets with a random subset
of 20, 100, and 200 patients. Finally, we generated simu-
lated sets based on n = 10 as well as n = 100 embedded
active regulators. We found that the recovery of true
positives was not affected by the number of embedded
regulators. We therefore fixed the number of embedded
regulators in the subsequent examples at n = 100.

Evaluation of permutation methods and controlling false
positives
While the scoring functions are able to rank embedded
active regulators higher than non-active ones, they do
not provide an objective cutoff value when investigating
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the biological significance of top results. In order to
assess the suitability of our procedures to control the
FDR, Figure 3a shows the false positive rate (for defini-
tions, see “Materials and Methods”) of the two scoring
functions with the two permutation methods on a repre-
sentative simulated data set (r = 0.5; p = 50%). Our pro-
cedures are able to control the false positive rate
effectively based on the estimated FDR while retaining a
good true positive rate (Additional file 1: Figure S1). In
fact, when the data contains no or limited signal, CSA
does not report any potentially active regulators at rea-
sonable FDR cutoffs (FDR < 0.05). The same holds true
for runs on randomized networks (data not shown).
Figure 3a also illustrates that Graph permutation is

preferable to Gene permutation. ROC curves of Graph
permutation and Gene permutation further prove that
both graph permutation and gene permutation can
reach good sensitivity and specificity, but graph permu-
tation has higher specificity than gene permutation
(Additional file 2: Figure S2). The purpose of our
method is to find active regulators in a certain condi-
tion, which means that specificity might be more impor-
tant than sensitivity in our case. We will only focus on
Graph permutation results in the following. In contrast,
the mean and ratio scoring functions seem to perform
comparably, and a more in-depth analysis is needed.

Evaluation of scoring functions
To understand the characteristics of the ratio and mean
scoring functions, we focused on four datasets which
differed in the strength of correlation r and the quantity
of correlated regulatees p, namely, low/low (r = 0.3; p =

30%), low/high (r = 0.3; p = 80%), high/low (r = 0.6; p =
30%), high/high (r = 0.6; p = 80%).
Figure 3b depicts receiver-operator characteristic

(ROC) curves (see “Materials and Methods” for defini-
tions) for the low/high and high/low datasets. The only
substantial difference between the two functions becomes
apparent in the case of few highly correlated regulatee
pairs, in which the ratio function is able to reach higher
true positive rate at the expense of a similar loss in true
negative rate. Note that the ratio function is explicitly
designed to address this case. In most other situations,
the two functions are comparable with the mean function
performing slightly better. The results on all four datasets
with respect to other performance metrics are shown in
the supplementary materials.

Robustness to signal level and sample size
Figure 4 shows the ROC curves under a variety of signal
levels to demonstrate the ability of CSA to detect active
regulators. In this instance, we use the ratio scoring
function, but curves based on the mean function give
similar results (data not shown). The curves demon-
strate that CSA is able to pick out true active regulators
embedded in the simulated data. For large sample sizes,
the true positive and true negative rates were consis-
tently high (> 80%) for a wide range of score cutoffs. As
expected, performance deteriorated with decreasing sig-
nal, but remained useful, even for very low levels of sig-
nal (Figure 4a). In contrast, Figure 4b depicts the
situation with only 20 patient samples. While for strong
signals (p > 70%), some regulators can be detected,
weaker signals result in performance close to random.
Together, this shows that our causal network based on
literature information is informative enough to enable
recovery of embedded signals, given enough patient
samples.

Relevance of the causal network
To further illustrate the relevance of the underlying cau-
sal network to provide informative active regulators, we
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generated a randomized version of the causal network
with the same degree distribution (using the edge-
switching procedure described in the “Materials and
Methods”). Running CSA based on this randomized net-
work against the simulated data and ovarian cancer data
from TCGA resulted in ROC curves that were indistin-
guishable from random, indicating that the causal net-
work is biologically informative (data not shown).

Comparison to degree-based ranking
Finally, we compare CSA’s results to an alternative
approach that has been suggested as a general principle
in many approaches to transcriptional network recon-
struction, namely the prediction of key regulators or
biomarkers based on their degree in the inferred net-
work [3,28,29]. Here, we use the same representative
simulation data set (r = 0.5; p = 50%) as we used in the
previous section. Implementing a ranking strategy based
on each candidate regulator’s out-degree (number of
targets they coherently regulate) gives an interesting
baseline performance (Figure 5) that is clearly better
than random. However, the ROC curves suggest also
that the results based on our method are superior to a
purely degree-based method.

Results on clinical data
To illustrate the utility of the CSA approach we describe
here the results of comparing the directed perturbation
experiments captured in the causal network to 3 differ-
ent surveys of expression variation in 3 distinct disease
and tissue settings-subcutaneous adipose tissue [22],

ovarian cancer [21] and diffuse large B cell lymphoma
[23].

Experimental results I–adipose tissue
The first population dataset was subcutaneous adipose
tissue from 673 individuals as described by Emilsson et
al. [22], representing individuals from 3 generation
families with a range of ages and degrees of obesity that
was used to define loci affecting obesity in the Icelandic
population. After matching transcripts measured in the
adipose cohort to the causal network, the CSA method
reported 246 of 1,762 (14%) regulators as potentially
active at an FDR < 0.05. This corresponds to 8,946
potential regulator:regulatee edges.
These data can be summarized by counting the num-

ber of CSA significant regulatees for each regulator (see
Additional file 3: Table S1). Amongst the top ranked
regulators in adipose were some well-known metabolic
targets, including PPARG (nc = 275), PPARA (nc = 218),
Insulin (nc = 136) and PPARGC1A (nc = 105). The top
hit as judged by the size of significant regulatees was
MYC (nc = 391) which has been implicated in adipogen-
esis [30]. It is interesting to note that the well-known
transcription factor, MYC, was not co-expressed with its
regulatees in the adipose tissue dataset (average correla-
tion coefficient = 0.1161), but a subset of its regulatees
were coherently expressed. This observation supported
our hypothesis. An additional top hit was, NFE2L2 (also
known as NRF2, nc = 285), a master regulator of anti-
oxidant response that has been implicated in many dis-
ease processes and in adipogenesis and obesity specifi-
cally [31].
Adipose tissue is composed of adipocytes and a stro-

mal fraction including macrophages. Given this knowl-
edge, we asked if CSA provided evidence for these sub-
populations of cells. Perilipin (PLIN1) is a protein
uniquely expressed in adipocytes (see Figure 6a and 6b)
where it coats the surface of intracellular lipid droplets
and protects them from degradation by lipases. CSA
identifies 37 PLIN1 regulatees as cohesive in adipose tis-
sue consistent with it being a significant regulator in
human adipose tissue. A major conclusion of the adi-
pose tissue study used here was that macrophages, as
observed by macrophage-specific transcripts, are identi-
fied as causal drivers of obesity in humans [22] and
mouse [32]. Consistent with this CSA finds a number of
macrophage specific genes as active drivers including
the chemokine receptor CCR1 (Figure 6c and 6d). One
of the ligands of CCR1, RANTES is reported to be
secreted by adipocytes and recruits macrophages to fat
depots [33]. CCR1 appears as both a target of other reg-
ulators and as a regulator of downstream transcripts as
judged by CSA (see Figure 6c). Furthermore the regula-
tors of CCR1 were also found to be connected to each
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ranking. Red and blue ROC curves show ranking by ratio score and
by out-degree (e.g. number of coherent expressed targets),
respectively. The ROC curves suggest that degree-based ranking is
better than random. However, ranking based on ratio score is
superior to purely degree-based ranking.
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other consistent with a web of regulatory interactions
affecting CCR1 and its downstream targets in macro-
phages in human adipose tissue.
Given the relative ease of experimentation, it is not

surprising that many experiments reported in the litera-
ture were performed in cultured cell models. In this set-
ting there is always a question of the relevance of the
results to human populations. CSA potentially provides
a data-driven way to assess this by testing whether any
perturbation signature (or fraction of a signature) is sig-
nificantly cohesive in a disease population. Interestingly,
CSA identified many cell culture derived signatures as
being relevant to the subcutaneous adipose tissue of
humans (more than 53% individual references using
cells in culture covered 47% regulator:regulatee edges).
This included, for example, 88 of 254 regulatees for the

classic adipose regulator PPARG and 68 of 116 insulin
regulatees.

Experimental results II–serous ovarian cancer
The CSA method was also assessed against a collection
of expression profiles from almost 400 human serous
ovarian cancers available through TCGA project [21].
After matching transcripts measured in the ovarian
cohort with the causal network, it was found that 358 of
1,398 (25.6%) regulators had an FDR < 0.05 in the CSA
analysis (see Additional file 4: Table S2). This identifies
12,860 potential regulator:regulatee edges as active in
this cohort.
As before, the potential regulators can be ranked by

the number of regulatees that pass the cutoff. Top
ranked regulators include genes implicated in many

 

CCR1 

(b) 

(c) 

Adipocytes 

(a) (d) 

Monocytes/ 
Macrophage

Figure 6 CSA identifies important regulators expressed in adipocytes and monocytes. (a) Gene expression of PLIN1 in different tissues. (b)
PLIN1 and some of its downstream regulatees. (c) CCR1 and its upstream regulators (red nodes) and downstream regulatees (blue nodes). (d)
Gene expression of CCR1 in different tissues. (a) and (d) are from BioGPS, which show that PLIN1 and CCR1 are uniquely expressed in adipocytes
and Macrophages, respectively. (b) PLIN1 regulates 37 regulatees in adipose tissue. (c) CCR1 is regulated by numerous regulators in the causal
network. CSA identified 14 potential active regulators of CCR1 in the adipose tissue (red). CCR1 is a regulator that can regulate several
downstream regulatees (blue); at the same time, CCR1 is also regulated by many other regulators. These regulators regulate each other and also
CCR1’s regulatees.
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cancers (see Additional file 4: Table S2) such as TGFB1
(nc = 520), IFNG (nc = 485), FGF2 (nc = 241), MYCN
(nc = 219) and VEGFA (nc = 183). Again, we observed
that another well-known transcription factor, MYCN,
was weakly correlated with its regulatees (average corre-
lation coefficient = 0.1015), but it had a subset of coher-
ent regulatees and were identified by CSA as active in
ovarian cancer dataset. CSA also identifies numerous
potential drivers of various cyclins which are known to
drive the cell cycle and be aberrantly regulated in cancer
(see Figure 7a). Among 603 regulators that regulate
cyclins in the causal network, CSA identified 77 as

active in the serous ovarian cancer. As with the CCR1
example extensive cross-regulation of cyclin regulators
was predicted, suggesting the presence of a complex
network of causal interactions upstream of cyclins in
ovarian cancers revealed by CSA. The derivation of the
higher-order structure is non-obvious given the litera-
ture examples alone, but readily emerges from the CSA
analysis as relevant in this context. Using the ranking by
the number of edges testing significant in CSA, TNF
was found to have 657 regulatees (reactive to TNF) and
153 regulators (causal regulators of TNF) in this cohort.
High levels of secreted TNF protein (ranked first by

(a) 

(b) 

Figure 7 Important regulators and hypothetical regulatory model in serous ovarian cancer. (a) Regulators regulate cyclins in serous
ovarian cancer. (b) Hypothesis regulatory model of secreted proteins in serous ovarian cancer. (a) Cyclins have 603 regulators in the causal
network. CSA identified 358 potential active regulators in serous ovarian cancer; 77 of 358 regulators were found to regulate cyclins. Regulators
(red nodes) regulated cyclins (blue nodes) and also regulated each other, which implies that these regulators work cooperatively to regulate
cyclins. (b) Secreted proteins TNF, IL6, VEGFA and CCL2 were identified as regulators (red nodes) in serous ovarian cancer by CSA. They regulated
each other and two other secreted proteins, MIF and CXCL12 (green nodes). TNF, IL6, VEGFA and CCL2 are also used as therapeutic targets of
several different kinds of cancers [35-38].
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CSA) were reported to cause high levels of the proteins
IL6, MIF, CCL2, CXCL12, VEGFA, also secreted in
ovarian cancer cell lines [34]. Intriguingly, these genes
in the CSA analysis of the ovarian cancer cohort were
also found to have many regulatees (304, 0, 13, 0, 183,
respectively) and/or regulators (158, 5, 64, 18, 26,
respectively), and directly and reciprocally regulate each
other (see Figure 7b). As reported by Kulbe et al. [34],
knockdown of TNF in cells with high TNF results in
failure to form tumors in mice. The interpretation of
such established cell line models of cancer can be diffi-
cult. The CSA analysis however indicates that the basic
regulatory findings of this work were replicated by CSA
and found to be the most dominant feature in approxi-
mately 400 ovarian clinical cancer samples. Together,
these findings may identify a critical driver of ovarian
tumor growth in vivo.

Experimental results III–DLBCL
The final example is a study of diffuse large B-cell lym-
phoma (DLBCL) in which expression profiles of 2
patient populations who subsequently received different
treatments were examined for signatures that predict
the clinical course of the disease [23]. For the purposes
of this analysis the subsequent treatments are not rele-
vant. The first cohort (CHOP) included 181 samples
and the second cohort (R-CHOP) included 233 samples.
As described in [23], 3 signatures were derived in a mul-
tivariate analysis that predict survival in the 2 cohorts.
The Germinal Center B-cell signatures contained 37
genes, the Stromal-1 signature contained 264 genes and
the Stromal-2 signature contained 61 genes. CSA analy-
sis was applied to each of the cohorts and potentially
active regulators identified that pass the FDR cut-off
(218 and 220 of 1780 significant hits for CHOP and R-
CHOP, respectively (see Additional file 5: Table S3).
Using these significant hits we then asked if any of the
regulators regulated genes involved in the 3 predictive
signatures (Germinal Center B-cell, Stromal-1 or Stro-
mal-2). Interestingly, although the Stromal-1, and -2 sig-
natures were found by a multivariate analysis, suggesting
they are independent, CSA analysis identifies genes that
can regulate both signatures jointly. Among the 131 reg-
ulators that regulate at least one gene in either the Stro-
mal-1 or -2 signatures, 53 (40%) regulate genes in both
cohorts. Furthermore, we calculated the significance of
the enrichment of each regulator’s regulatees for overlap
with the 3 predictive signatures by Fisher’s exact test.
Significant enrichments for the two Stromal signatures
were found (see Table 1). Figure 8 shows the regulators
enriched for Stromal-1 and -2 signatures in the CHOP
and R-CHOP cohorts and their target genes in all three
signatures. 11 regulators were found enriched for Stro-
mal-2 signature in both cohorts. Surprisingly, all of

these 11 regulators are also enriched for Stromal-1 sig-
nature, indicating that it is possible the 2 signatures
arise because of the same regulator(s).
The candidate regulators can be ranked by the number
of predictive signature genes they regulate (limiting to
those enriched for the signatures). This results in the
identification of some very familiar drivers of many can-
cers including MYC, MYCN and CCND1 (see Table 1).

Results on clinical data with the public causal network
Selventa Inc. has recently launched an initiative to pro-
vide access to a significant amount of causal information
to academic researchers. We performed CSA on the
ovarian cancer dataset with the public causal network
released by Selventa Inc. The result suggested that 121
of 170 regulators reported by CSA (FDR < 0.05) with
the public causal network were found in our previous
result (Additional file 6: Table S4). Compared with 358
causal regulators identified by using the complete causal
network, CSA can recover about 1/3 of the regulators in
the ovarian cancer dataset. The results suggested that
CSA works well with the public causal network although
it does not report as many causal regulators as with the
complete causal network.

Conclusions
The advent of inexpensive high-throughput transcrip-
tomics measurement techniques has enabled the charac-
terization of cell lines, animal models, and, more
recently, cohorts of clinical patients on a molecular
level. A crucial research question in such studies (e.g. in
ovarian cancer patients) is the identification of causal
regulators of the observed transcript changes. In this
study, we sought to develop a method, Correlation Set
Analysis (CSA), to identify directed perturbation experi-
ments relevant to a disease population of interest in an
unbiased data-driven manner. The method relies on the
hypothesis that regulatees of a regulator active in a
population will be significantly correlated to each other
across the population. As described the CSA method
was developed and evaluated on simulated data where it
found to be quite sensitive in identifying known regula-
tor effects.
To test the method and illustrate its uses, we present

the results of CSA analysis in three disease settings,
where in each case known key regulators and as yet un-
described regulators were found. In the regulatory net-
works of CCR1 in adipose tissue and cyclins in serous
ovarian cancer, we observed that upstream regulators of
CCR1 and cyclins not only regulated CCR1 and cyclins
but also regulated each other. Also in the DLBCL data-
set, we found that of 11 regulators enriched for Stro-
mal-2 signature in both CHOP and RCHOP cohorts
were also enriched for Stromal-1 signature. This finding
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implies that Stromal-1 and -2 signatures are actually
regulated by the same regulators. These examples indi-
cate that CSA is able to bring together isolated regula-
tory relationships into higher order regulatory networks,
and thereby adding new knowledge and insights.
Based on this we propose that CSA has four key

advantages. Firstly, it provides a simple data driven way
to connect population data with the many directed per-
turbation experiments reported in the literature. Sec-
ondly, CSA identifies plausible changes in regulators at
the protein level, since we do not require correlation
between regulator and regulatees. A third advantage of
this approach is that the results can be simply ranked
providing the user with an intuitive way to prioritize
any follow up investigation. Finally, the regulatory rela-
tionships inferred by CSA were found in all cases to
form a contiguous network, with many cases of regula-
tors that were also regulatees of upstream regulators. In
other words CSA provides a glimpse of the true under-
lying higher order structure of biological systems which
can be systematically tested for causal effects on disease
progression.
In addition to the advantages it is worthwhile noting

that there are some limitations to CSA that stem from
its reliance on the literature-derived causal network.
Clearly, the relationships identified are limited to the
causal network used. With the continued expansion of
our understanding of regulatory relations, the accuracy
of CSA should improve with time. Another possible lim-
itation is in cases where overlapping sets of regulatees
are controlled by distinct regulators. In this case, CSA
will not be able to distinguish between the regulators

resulting in an increased false positive rate. One possible
solution for this problem is to cluster regulators by the
similarity of their respective regulatee sets. In our
experience, however, the overlap between regulatee sets
is still sufficiently small to allow for meaningful infer-
ence. This is supported by the excellent performance of
CSA on simulated data.
As we mentioned before, the causal network in its ori-

ginal form contains not only genes and proteins, but
also chemical compounds and environmental factors.
Since our approach does not restrict regulators to genes
on the microarray, such entities can appear as candidate
regulators, though we did not report them in this work.
Hypotheses based on compounds might be useful for
assessing environmental factors driving disease progres-
sion or for supporting drug repositioning efforts.
In the future we plan to apply the CSA method to

large scale compendia of gene expression sets to under-
stand patterns of active regulation across a span of phe-
notypes. Given the promising performance of CSA when
recovering embedded regulators as well as providing
insights for biological datasets, we believe that it will
greatly enhance our understanding of general and speci-
fic mechanisms driving disease and other relevant
phenotypes.

Materials and methods
Generating simulated data
In order to make simulated data follow the distribution
of the real data, we generate the simulated data based
on the ovarian cancer data used in this study by apply-
ing the Cholesky decomposition method of Iman and

Table 1 Top 15 regulators found in CHOP and R-CHOP cohorts

No. of Regulateesa Germinal Center B cellb Stromal-1c Stromal-2d

Regulator CHOP R-CHOP CHOP R-CHOP CHOP R-CHOP CHOP R-CHOP

TGFB1 723 632 0.2379 0.3081 1.36E-12 2.30E-14 0.0003 7.36E-05

IFNG 624 553 0.5868 0.6600 0.0041 0.0006 0.1928 0.1008

MYC 439 410 0.1870 0.2094 0.0013 0.0005 0.1427 0.0673

IL6 370 317 0.5962 0.6678 0.0281 0.0497 0.2135 0.0854

MYCN 272 248 0.3566 0.3908 8.22E-06 7.20E-06 0.4979 0.5463

ERBB2 253 219 0.3731 0.3666 7.50E-07 2.79E-07 0.0149 0.0088

IFNB1 251 233 0.3864 0.4139 0.1869 0.1256 0.4674 0.4826

IL10 249 221 0.3727 0.3672 0.0950 0.0543 0.1307 0.1080

CDKN1A 234 224 0.3704 0.3680 0.0953 0.0554 0.4817 0.2436

F2 233 212 0.4139 0.4484 0.0009 0.000372 0.0409 0.0317

IL2 205 188 0.4605 0.4912 0.3236 0.4066 0.6388 0.6769

CCND1 204 184 0.4622 0.4987 7.86E-05 2.38E-05 0.0013 0.000777

VEGFA 189 170 0.4894 0.5259 3.27E-05 3.60E-05 1.86E-06 7.91E-06

MAPK1 183 166 0.5006 0.5340 0.0063 0.003266 0.3192 0.3550

TNFSF11 166 150 0.1038 0.0898 0.5435 0.6276 0.1905 0.1714
anumber of cohesive regulatees.
b, c, dthe enrichment p-values of Germinal Center B cell, Stromal-1 and Stromal-2 signatures in CHOP and R-CHOP groups.
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Conover [39]. This approach is widely used to generate
correlated random variables in finance. First, we ran-
domly permute sample labels of a gene and repeat this
step for all genes. Hence, the mean and standard devia-
tion of each gene vector are invariant under permuta-
tion. The correlation between genes, however, is
disrupted. Then, we randomly pick N regulators as test
set of regulators. Each test regulator Rp can regulate a
set of regulatees T = {T1...Tq}, T is an n × m matrix,
where n is the number of regulatees and m is the num-
ber of samples (m = 391 in this case). We want to gen-

erate a set of new regulatees Ts =
{
Ts
1 . . . Ts

q

}
with same

mean and variance as the original set of regulatees but
correlate with each other at a desired correlation coeffi-
cient r. An n × n covariance matrix ∑ s with desired
correlation coefficient r is created. The ∑ must be sym-
metric and positive-semidefinite. Therefore, it can be

rewritten as ∑ = LL’ by Cholesky decomposition, where
L is the lower triangular matrix of ∑ with positive diago-
nal entries. We can get “spike-in” regulatee matrix Ts

with desired correlation coefficients r by postmultiplies
T by L. Iterate above steps until all regulatees of the test
regulators are modified to be correlated with correlation
coefficient r.

Experimental data
Expression datasets of adipose tissue and DLBCL are
downloaded from the Gene Expression Omnibus [40].
Adipose tissue samples from 701 individuals [GEO:
GSE7965] with a range of age from 18 to 85 and average
BMI nearly 30 were used in this study. Pretreatment
tumor samples from 181 and 233 DLBCL patients
[GEO:GSE10846] were used in this study. TCGA [1]
provides mRNA measurements of serous ovarian cancer

Figure 8 Regulators enriched for Stromal-1 and Stromal-2 signatures. Red nodes are regulators. Blue nodes are genes in Stromal-1
signatures. Green nodes are genes in Stromal-2 signatures. We did not find any regulator enriched for Germinal Center B-cell signature works in
both cohorts. Instead, CSA identified 55 and 11 regulators enriched for Stromal-1 and -2 signatures in both cohorts. Furthermore, the regulatory
model showed that the majority of genes in Stromal-2 signature are regulated by regulators that also regulate Stromal-1 signature.
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tissue using 3 array platforms: an Agilent array, and
Affymetrix’s U133A and exon arrays. Where genes are
overlapping among the 3 platforms, we would like to
combine the values into a consensus gene. Here, we fol-
low an approach originally described by Verhaak et al.
[41]. In short, the consensus gene is estimated using a
standard factor model based approach:

x̂ = (β̂T(β̂β̂T + �̂)−1y)T

where β̂ and �̂ are the platform specific coefficients

and error covariance estimates, respectively, y is the 3-
by-m dimensional gene expression values across the 3
platforms, and x̂ is the m-dimensional, unified estimate
for a single gene. For complete details, see Verhaak, et
al. [41]. In those cases where only 2 genes are shared
across the 3 platforms, we take the mean value.
For all of the 3 datasets, we used LSimpute to impute

missing values in the expression profiles [42]. We dis-
carded genes that are not included in our causal net-
work and leave 9,052, 9,950 and 7,673 genes in adipose
tissue dataset, DLBCL dataset and ovarian cancer data-
set respectively.

Performance Metrics
The receiver operating characteristic (ROC) curves are
used to evaluate the performance of CSA. The true posi-
tive rate and false positive rate used for plotting ROC
curves are calculated as following:

True positive rate =
True positives

True positives + False negatives

False positive rate =
False positives

False positives + True negatives

Graph permutation
The corresponding permutation scheme (Graph permu-
tation) is more complex and also computationally more
intensive. In each permutation, we evaluate SR on a ran-
dom graph with the same degree distribution as our
causal network. Randomizing a directed graph with a
given degree sequence is an active field of research and
we adopt a method from [43] relying on edge switching.
More precisely, at every iteration we pick two edges,

say (a, b) and (c, d), uniformly at random from the set
of edges E in the current graph, and replace them with
the edges (a, d) and (c, b). This operation is known as
an edge switch, and preserves the in- and out-degree
distribution of the graph. If the resulting graph remains
simple (no parallel edges) and weakly connected, it
replaces the current graph. In order to save the compu-
tationally expensive connectivity checks, a batch of K

edge switches can be performed before a connectivity
check. If the check succeeds, K can be increased, while
if it fails, K can be decreased. The particular adaptive
algorithm we use to update K is described in [43]. We
also adopt the commonly used rule of thumb [44] for
the total number of edge switches to perform before
declaring our graph to be sufficiently randomized, which
is to perform an average of 3 edge switches per edge of
the initial graph. Both permutation approaches assert
the statistical significance of a score SR under the
respective null hypothesis, and thus provide guidance to
the biologists as to whether a particular regulator
received a high score based on chance alone.

Additional material

Additional file 1: Figure S1 Effects of permutation on ranking
regulators. ROC curves show that FDR calculated based on permutation
can improve both sensitivity and specificity. Graph permutation is used
here. Permutation and FDR correction can decrease false positives by
filtering out regulators that have high scores but only regulate a small
number of regulatees since a regulator can easily obtain a high score by
chance if it only regulates a few regulatees. Similarly, permutation and
FDR correction can increase true positives by recruiting regulators that
have fair scores but can regulate a large number of regulatees.

Additional file 2: Figure S2 Comparison of graph permutation and
gene permutation on two representative simulation data sets. (a)
Simulation data set (r = 0.5, p = 50%). (b) Simulation data set (r = 0.3, p
= 70%). Scoring function “ratio” is used in both cases. Both permutation
methods can reach good sensitivity and specificity. However, graph
permutation reaches slightly better specificity in most cases.

Additional file 3: Table S1 Active regulators found in the adipose
tissue.

Additional file 4: Table S2 Active regulators found in the serous
ovarian cancer.

Additional file 5: Table S3 Active regulators found in the DLBCL.

Additional file 6: Table S4 Active regulators found in the serous
ovarian cancer when using data from Selventa’s BEL portal.
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