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Abstract

Background: Detecting candidate markers in transcriptomic studies often encounters difficulties in complex
diseases, particularly when overall signals are weak and sample size is small. Covariates including demographic,
clinical and technical variables are often confounded with the underlying disease effects, which further hampers
accurate biomarker detection. Our motivating example came from an analysis of five microarray studies in major
depressive disorder (MDD), a heterogeneous psychiatric illness with mostly uncharacterized genetic mechanisms.

Results: We applied a random intercept model to account for confounding variables and case-control paired
design. A variable selection scheme was developed to determine the effective confounders in each gene. Meta-
analysis methods were used to integrate information from five studies and post hoc analyses enhanced biological
interpretations. Simulations and application results showed that the adjustment for confounding variables and
meta-analysis improved detection of biomarkers and associated pathways.

Conclusions: The proposed framework simultaneously considers correction for confounding variables, selection of
effective confounders, random effects from paired design and integration by meta-analysis. The approach
improved disease-related biomarker and pathway detection, which greatly enhanced understanding of MDD
neurobiology. The statistical framework can be applied to similar experimental design encountered in other
complex and heterogeneous diseases.

Background
Microarray experiment enables researchers to examine
the expression of thousands of genes in parallel. Differen-
tially expressed (DE) gene detection is one of the most
common analyses in microarray. In such an analysis,
genes differentially expressed under multiple conditions
are detected and are used for generating further biologi-
cal hypotheses, developing potential diagnostic tools, or
investigating therapeutic targets. The extensive applica-
tions of microarray technology have led to an explosion
of gene expression profiling studies publicly available.

However, the noisy nature of microarray data, together
with small sample size in each study, often results in
inconsistent biological conclusions [1-3]. Therefore,
meta-analysis, a set of statistical techniques to combine
multiple studies under related research hypotheses, has
been widely applied to microarray analysis to increase the
reliability and robustness of results from individual
studies. In the literature, three major categories of meta-
analysis methods have been applied to genomic meta-
analysis: combining effect sizes [4,5], combining p-values
[6-8] and combining rank statistics [9,10]. In general, dif-
ferent approaches have different underlying assumptions
and pros and cons in the applications [11,12].
Major depressive disorder (MDD) is a heterogeneous

illness with mostly uncharacterized pathology. Despite
several gene expression studies of MDD [13-17] pub-
lished, the biological mechanisms of MDD remain mostly

* Correspondence: sibilleel@upmc.edu; ctseng@pitt.edu
1Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261,
USA
2Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260,
USA
Full list of author information is available at the end of the article

Wang et al. BMC Bioinformatics 2012, 13:52
http://www.biomedcentral.com/1471-2105/13/52

© 2012 Wang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:sibilleel@upmc.edu
mailto:ctseng@pitt.edu
http://creativecommons.org/licenses/by/2.0


uncharacterized [18]. Although biomarkers and pathways
have been identified in specific studies, the findings are
not consistently observed from study to study. This varia-
bility may be due to several factors. Firstly, MDD is
thought to be a complex and heterogeneous disease [19],
associated with multiple genetic, post-translational, and
environmental factors. Furthermore, patients might have
varying disease severity, with some having psychotic fea-
tures as well as exposure to a variety of medications and
dosage levels to control their illness. Secondly, the
genetic disease effects are potentially confounded by
many covariates, which include (1) demographic variables
such as age, gender and race; (2) clinical variables such as
anti-depressant drug usage, death by suicide and alcohol
dependence; (3) technical variables inherent in the use of
post-mortem brain samples, such as the pH level of brain
tissues, brain region and post-mortem interval (PMI). In
statistical terms, confounding variables are defined as
extraneous variables that can adversely affect the rela-
tionship between the independent variable (i.e. disease
state) and dependent variable (i.e. gene expression). If the
statistical models employed to identify differentially
expressed genes fail to incorporate these sources of het-
erogeneity (potential confounding variables), not only
can this reduce the statistical power, but also it will intro-
duce sources of spurious signals to the gene detection.
Finally, sample sizes for these studies are generally small
(between 10-25 pairs of MDDs and controls) due to the
limited availability of suitable brain specimens and the
significant costs associated with their collection.
In this paper, we propose a statistical framework to

tackle overall weak signal expression profiles in MDD that
have small sample size, case-control paired design and
confounding covariates in each study. We use a set of five
MDD expression profiles as an illustrative example. In the
literature, most analyses of similar data structure either
ignored the potentially confounding covariates by using
paired or unpaired t-test [16,20,21] or applied simple lin-
ear regression model to incorporate all covariates [22,23].
The former approach undoubtedly ignored effects from
confounding covariates; the latter approach was not effi-
cient or even not applicable when the number of covari-
ates is large and the number of samples in each study is
small. In this paper, we will propose a framework that uses
a random intercept model (RIM) to account for the case-
control paired design and confounding covariates in single
study analysis. An improved RIM with novel gene-specific
variable selection (namely RIM_minP or RIM_BIC to be
introduced later) will be performed to accommodate the
small sample size and relatively large number of covariates
in individual studies. We will then apply and compare two
popular meta-analysis methods: Fisher’s method [24,25]
and maximum p-value method [26-28]. The application of
this approach to combine five MDD microarray studies

show improved DE gene detection competency and super-
ior statistical significance of pathway detection using our
proposed method. Simulations considering various corre-
lation structures among disease state, gene expression and
covariates will be performed to demonstrate better perfor-
mance of this framework. Our proposed framework is
general and applicable in commonly encountered microar-
ray meta-analysis of complex genetic diseases.

Methods
Description of motivating MDD data
This research is motivated from the meta-analysis of
combining five MDD transcriptomic studies. Brain tis-
sues of three patient cohorts (MD1, MD2 and MD3)
obtained from different sources at different time were
analyzed. For all three patient cohorts, tissues from the
anterior cingulated cortex (ACC) brain region were ana-
lyzed by microarray experiments independently to gener-
ate three microarray studies: MD1_ACC, MD2_ACC and
MD3_ACC. Similarly, tissues from the amygdala (AMY)
brain region in MD1 and MD3 cohorts were analyzed to
generate MD1_AMY and MD3_AMY. Details of the five
patient cohorts and microarray studies are available in
Additional file 1: Table S1. In each patient cohort, MDD
patients were matched to control patients by three demo-
graphic variables: age, sex and race. Case-control paired
design is proven to increase statistical power significantly,
especially for expensive experiments that inhibit large
sample size. This is exactly the case in most brain disor-
der studies using post-mortem samples. Three additional
clinical variables (alcohol dependence, evidence of taking
anti-depressant drugs and death by suicide) and two
technical variables (pH level of brain tissues and post-
mortem interval PMI) were also available for each
patient. Among the covariates described above, six vari-
ables (age, alcohol, drug, suicide, pH and PMI) were con-
sidered potential confounders in the DE gene detection
of MDD. These six covariates were not highly correlated
with each other in our analysis and thus the collinearity
issue does not exist in the linear models below (see Addi-
tional file 1: Table S2).

Data pre-processing, gene matching and gene filtering
Microarray images were scanned and summarized by
manufacturers’ defaults. Data from Affymetrix arrays
were processed by RMA method and data from Illumina
were processed by manufacturer’s software for probe
analysis. When samples in each study were processed in
multiple batches, potential batch effects were evaluated
and samples were normalized to have the same sample
means and sample standard deviations to correct batch
biases when necessary. Probes (or probe sets) were then
matched to official gene symbols using Bioconductor
packages. When multiple probes (or probe sets) matched
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to an identical gene symbol, the probe that presented the
greatest inter-quartile range (IQR) was selected to repre-
sent the target gene symbol. Larger IQR represents
greater variability (and thus greater information content)
in the data and this probe matching method has been
recommended in Bioconductor [29]. After genes were
matched across five studies, 16,715 unique gene symbols
were available across all five studies and intensities were
all log-transformed (base 2). Two sequential steps of
gene filtering were then performed. In the first step, we
filtered out genes with very low gene expression that
were identified with small average expression values
across majority of studies. Specifically, mean intensities
of each gene across all samples in each study were calcu-
lated and the corresponding ranks were obtained. The
sum of such ranks across five studies of each gene was
calculated and genes with the lowest 30% rank sum were
considered un-expressed genes (i.e. small expression
intensities) and were filtered out. Similarly, in the second
step, we filtered out non-informative (small variation)
genes by replacing mean intensity in the first step with
standard deviation. Genes with the lowest 40% rank sum
of standard deviations were filtered out. Additional file 1:
Figure S1 shows the pre-processing diagram and the
number of genes remained in each pre-processing step.
Finally, 7,020 matched genes (16715 × 0.7 × 0.6 = 7020)
in five studies were analysed. We note that the somewhat
ad hoc gene filtering procedure is necessary and is com-
monly used in microarray analysis. Although it runs the
risk to ignore important DE genes, it has benefits of redu-
cing false positives from non-expressed or non-informa-
tive genes and increasing statistical power in multiple
comparison procedure. Filtering down to ~7000 genes is
moderate and adequate since the size usually keeps
majority of acting genes of the genome in the analysis.

Single study analysis for DE gene detection
Paired t-test Paired t-test was performed as a comparison
to the method we developed below. This method took
into the MDD and control paired design into considera-
tion but ignored the confounding covariates. We also
tested non-parametric Wilcoxon signed rank test. The
results were similar to paired t-test and thus not shown in
the result.
Random intercept model (RIM) and fixed effects

model (FEM) To account for paired design (MDD
samples paired with corresponding controls) and exis-
tence of MDD related covariates, we applied a random
intercept model (RIM). For a given gene g, we fit the
model

Ygik = μg + βg0X0ik +
∑L

l=1
βglXlik + αk + εgik

In the model, Ygik was the gene expression value of
gene g (1 ≤ g ≤ G) and disease status i (i = 1 for control
and 2 for MDD) in pair k (1 ≤ k ≤ K). X0ik was the dis-
ease label that took value one if the sample was MDD
and zero if the sample was a control. Xlik represented
values for potential confounding covariate l (1 ≤ l ≤ 6;
0-1 binary variables for alcohol, drug and suicide;
numerical variables for age, pH and PMI). ak was the
random intercept from a normal distribution with mean
zero and variance τg

2, which represented the deviation
of averaged expression values in the kth pair from the
average in the whole population. Finally, εgik were inde-
pendent random noises that followed a normal distribu-
tion with mean zero and variance sg

2. Under this
model, bg0 was the disease effect of gene g and was the
parameter of major interest. To obtain an MDD-asso-
ciated biomarker candidate list in a single study analysis,
likelihood ratio test (LRT) was used to calculate the
p-values of testing H0: bg0 = 0 (vs HA: bg0 ≠ 0). We
denote this method as RIM_ALL (random intercept
model containing all covariates) as opposed to the
models with variable selection in the next section.
The p-values from RIM_ALL were then corrected by
Benjamini-Hochberg procedure [30] for multiple com-
parison to control false discovery rate (using “p.adjust”
function in R).
Fixed effects model (FEM) below ignores the paired

design while still considers the covariates in the model.
It can be used when diseased and control samples are
not paired. We used it to compare with RIM to evaluate
the impact of case-control design.

Ygik = μg + βg0X0ik +
∑L

l=1
βglXlik + εgik

RIM and FEM with variable selection Although RIM
model can effectively adjust for confounding covariates
in DE gene detection, the small sample size (10-25
pairs) and relatively high number of potential confoun-
ders (6 covariates) can make the model inefficient and
impractical. In this paper, we developed and evaluated
two choices of variable selection procedures in the ran-
dom intercept model (namely, RIM_BIC and RIM_-
minP). Specifically, all possible RIM models that
included at most two (0, 1 or 2) clinical variables were
computed and compared. In RIM_BIC, the model with
the smallest Bayesian Information Criterion (BIC) [31]
value was selected. For RIM_minP, we selected the
model that yielded the smallest p-value associated with
the likelihood ratio test for testing the disease effect H0:
bg0 = 0. Conceptually, BIC selected the model with the
best overall model fitting and prediction while minP
focused on the model that gave the best statistical sig-
nificance of the disease effect bg0. This additional
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variable selection avoided to include more than 2 clini-
cal variables in the model and allowed assessment of
biomarkers affected by different sets of covariates in
each gene (e.g. disease effect of gene A may be con-
founded by alcohol and age while gene B may be con-
founded by antidepressant drug), which biologically gave
more appealing interpretations and conclusions. Similar
to RIM model, the likelihood ratio test was used to gen-
erate p-values of testing H0: bg0 = 0 in each gene for the
selected model by BIC or minP. The resulting p-values
from the LRT were, however, biased from the variable
selection procedure and the type I error control was
invalid. As a result, we performed a permutation test
that randomly permuted the disease labels within each
case-control pair to generate a null distribution for p-
value assessment. Additional file 1: Figure S2 shows the
simulated null distribution from permutation analysis.
The skewed distribution deviating from uniform distri-
bution between 0 and 1 showed the need of the permu-
tation analysis for p-value correction. Similar to
RIM_ALL, the p-values from RIM_minP and RIM_BIC
are corrected by Benjamini-Hochberg procedure for
multiple comparisons separately. Detailed algorithm of
the permutation analysis and inference is described in
Additional file 1: Part I.
Testing significance of interaction terms of each cov-

ariate: In the literature, age as well as other covariates
has been found to be confounders of the disease effect
with significant interaction term in some biomarkers
[32,33]. In other words, the disease effect on gene
expression may be affected by age differently in older
and in younger cohorts. To evaluate the overall impact
of the interaction terms in each covariate, we performed
the following simple linear model

Ygik = μg + βg0X0ik + βglXlik + γglX0ikXlik + εgik

and random intercept model

Ygik = μg + βg0X0ik + βglXlik + γglX0ikXlik + αk + εgik

where the notations were the same as in the FEM
model and RIM model but now with only one covariate
(i.e. a given variable l) included and a corresponding
interaction term involved. We performed likelihood
ratio test for H0: ggl = 0 to test the statistical significance
of the interaction term of gene g and covariate l. Addi-
tional file 1: Table S3 summarizes the number of signifi-
cant interaction terms in the genome of each covariate.
The result shows that the interaction terms between
each covariate (Age, pH or PMI) and MDD disease
effect were not significant in most of the genes under
false discovery rate FDR = 5% (Benjamini-Hochberg cor-
rection). As a result, we did not consider the interaction
terms in our models throughout this paper.

Meta-analysis for DE gene detection
Among the many microarray meta-analysis methods
used in the literature, all methods have their pros and
cons depending on the data structure and biological
goal [11,34]. According to Birnbaum [35], Li and Tseng
[36], and Tseng et al. [12], meta-analysis methods can
be categorized into two types: one detects gene markers
differentially expressed “in one or more studies” and the
other detects genes differentially expressed in “all stu-
dies”. Fisher’s method and maxP method are two popu-
lar methods in the two categories, respectively, and we
will apply both methods in this paper. Fisher’s method
calculates the sum of log-transformed p-vales in the
meta-analysis: Vg

Fisher = - 2Σk
K = 1log(Pgk) where K is

the number of studies combined and Pgk is the p-value
of gene g and study k. Assuming independence among
studies and that the model to derive p-values is correctly
specified, VgFisher follows a chi-squared distribution
with degree of freedom 2K under the null hypothesis. In
contrast, the maxP method combines p-values by taking
the maximum of p-values across studies: Vg

maxP= max1
≤ k ≤ kPgkVg

maxP. It can be show that Vg
maxP follows a

beta distribution with shape parameters K and 1 under
the null hypothesis. Note that in Fisher’s method, an
extremely small p-value of one study can drive strong
statistical significance of that gene no matter whether
p-values of the other studies are small or not. On the
other hand, the maxP method requires small p-values of
all studies for a gene to be detected.
Although the parametric inference by chi-squared and

beta distributions is convenient, we chose to perform
permutation analysis for the inference to avoid violation
of underlying assumptions. We also noted that two pairs
of studies (MD1_ACC and MD1_AMY, MD3_ACC and
MD3_AMY) used the same cohorts with different brain
regions. The studies may be dependent from each other.
To account for the dependence structure among studies
from the same patients, we kept the same permutation
order for each pair of studies of the same cohort in the
permutation analysis of individual studies. Benjamini-
Hochberg procedure implemented in R is then used to
control false discovery rate.

Evaluation by detection compentency and pathway
analysis
For evaluation purpose, we compared three single-study
DE gene detection methods (PT, RIM_minP and RIM_-
BIC). Each method was applied to five single studies
and then the five single study results were combined by
Fisher and maxP meta-analysis methods. As a result, a
total of 3 × 7 = 21 DE gene detection results were gen-
erated and compared. To assess performance of these
different methods, we applied two evaluation criteria.
The first criterion compared the numbers of detected
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DE genes from different methods under different p-
value thresholds using detection competency curves (x-
axis: p-value threshold; y-axis: number of detected DE
genes). This first criterion is a reflection of detection
competency of different methods.
The detection competency curves alone, however, do

not guarantee an improved biological finding. Thus, we
evaluated the biological associations of detected DE genes
from different methods with existing pathway knowledge
databases in the second criterion. We collected 2,287 path-
ways from MsigDB [37] http://www.broadinstitute.org/
gsea/msigdb/; 1,454 pathways from Gene ontology, 217
from Biocarta, 186 from KEGG and 430 from Reactome).
Kolmogorov-Smirnov (KS) test was applied for each DE
gene result and each pathway for pathway analysis (a.k.a.
gene set analysis) [27,37]. KS test improved a commonly
used Fisher’s exact test in that it does not arbitrarily apply
a DE gene cut-off but directly evaluate the DE evidence
ordering in the genome. For the DE detection result of a
given method, a smaller p-value from KS test reflects a
stronger biological validation of the detected DE genes.
The detailed KS test algorithm and inference are described
in the Additional file 1: Part II.
Since 2,287 pathways were tested, aggregating the total

information to conclude one method being better than the
other was not a trivial task. We denote by prm the pathway
enrichment p-value of method m for pathway r. Since the
majority of the 2,287 pathways were irrelevant to MDD,
we first identified the top V most “disease-related” path-
ways by committee decision of the 21 DE gene detection
results under comparison. Specifically, disease relatedness
of a pathway r in method m was derived as the rank of

p-values s(m)
r = rankr(prm) . The disease relatedness score

of pathway r was then defined as Sr =
∑M

m=1
s(m)
r , where

M = 21 was the total number of DE gene detection meth-
ods under comparison. A small Sr reflected an overall sig-
nificant pathway enrichment p-value for pathway r in the
21 DE gene detection results and thus was believed to be a
disease related pathway. The V pathways with the smallest
Sr are selected as surrogates of “gold standard” disease-
related pathways for evaluation purpose. For any two
selected DE gene detection results, Wilcoxon signed rank
test can be used to compare pathway enrichment p-values
of the V selected pathways to determine if one method is
statistically better than the other method, in terms of asso-
ciation with the V disease-related pathways. In this paper,
we use V = 100.

Post hoc analysis on confounding variables after meta-
analysis
An important advantage of the variable selection scheme
is the availability of post hoc analysis to compare

selected confounders across studies. Three questions
can be explored and answered: (1) Which variable(s) is
the most or least frequently included in the model selec-
tion to confound with disease effect? (2) Are variables
repeatedly selected across studies more frequently than
by chance (e.g. alcohol is selected in most or all studies
in a given gene)? (3) Are the directions of effect sizes of
a variable consistent across studies (e.g. alcohol-depen-
dent patients have higher expression than non-alcohol-
dependent in most studies for a given gene)?
For the first question, we first generated a list of DE

genes under a given FDR threshold and counted the fre-
quency of each variable being selected in the gene list.
The variables were ranked according to the frequencies
in each study and a rank average of each variable was cal-
culated across five studies. A small averaged rank of a
covariate showed frequent appearance of the variable in
the model selection and thus a frequent confounder.
For question (2), we computed a pair-wise co-appear-

ance score (T1) for a given gene set and assessed its statis-
tical significance. For example, gene VGF in Table 1 had
detected age effects in 2 studies, alcohol effects in 3 stu-
dies, anti-depressant effect in 1 study and suicide effect in
3 studies using RIM_minP variable selection. By summing
up co-appearing pairs of the five studies in each variable,
we obtained a T1, g statistics of 7 (C2

2 + C3
2 + 0 + C3

2 = 7)
for g = VGF where C2

k is the binomial coefficient for the
number of pairs out of k elements. Summing up all 9

genes, we obtained T1 =
∑

g
T1,g = 60 . Permutation test

was then performed to assess the statistical significance of
T1.
To answer question (3), we further computed rate of

expression concordance among all co-appearance pairs.
Specifically, we examined all co-appearing pairs that
contributed to T1 and count the number of pairs that
are concordant (up-regulation in both studies or down-
regulation in both studies). The total aggregated score
for pair-wise concordance was denoted as T2 and the
ratio of concordance was R= T2/T1. In the example of
Table 2, 40 (T2) out of 60 (T1) co-appearing pairs were
concordant and R = 0.67. Similarly, permutation test
was performed to assess the statistical significance of
observed R scores. Detailed mathematical notation and
permutation algorithm are outlined in Additional file 1:
Part III.

Simulation
In the first evaluation criterion previously described, we
implicated that with adequate modelling and multiple
comparison correction, detecting more DE genes
showed better statistical power of a method and should
be a preferred method. There was, however, no rigorous
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Table 1 The direction of covariates effect in RIM_minP (Table 1A) and RIM_BIC (Table 1B) models for 9 MDD related genes selected from the literature

S Age Alcohol Antidep pH PMI Suicide Co-appearance T1 Concordance T2 Ratio R
= T2/T1

A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E

VGF 0 0 -1 0 -1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 7 7

SST 0 0 -1 0 -1 1 1 0 1 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 7 7

CNP 0 1 0 1 0 -1 0 0 1 0 -1 0 1 0 -1 0 -1 0 0 0 0 0 0 0 -1 0 0 1 0 0 5 2

NPY 0 -1 -1 0 -1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 1 1 1 10 7

TAC1 0 -1 -1 0 -1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 1 0 1 7 5

MBP 0 0 0 1 1 0 -1 0 1 0 -1 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 -S1 0 1 0 -1 5 2

MOBP 0 0 0 0 1 0 -1 1 0 0 -1 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 -1 0 1 -1 -1 8 4

RGS4 -1 0 0 0 -1 0 1 -1 1 0 1 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 6 3

HTR2A 0 -1 0 1 0 0 1 0 0 -1 -1 0 -1 0 -1 0 0 0 1 0 1 0 0 0 0 0 0 -1 0 0 5 3

Total T1 = 60 T2 = 40 R = T2/T1 = 0.67

p-value 0.39 0.014

Age Alcohol Antidep pH PMI Suicide Co-appearance T1 Concordance T2 Ratio R = T2/T1

A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E 1 1

VGF 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 7 7

SST -1 0 -1 -1 -1 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3 3

CNP 1 0 0 1 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 7 7

NPY -1 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 6 6

TAC1 -1 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

MBP 0 0 0 1 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 3 3

MOBP 1 0 0 1 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 3 3

RGS4 -1 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

HTR2A 0 0 0 1 0 0 1 0 0 0 0 -1 -1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Total T1 = 32 T2 = 32 R = T2/T1 = 1

p-value 0.011 0.005

* 0: variable not included in the model; 1: appear in the model with positive effect size; -1: appear in the model with negative effect size.

A: MD1_ACC, B: MD2_ACC, C: MD3_ACC, D: MD1_AMY, E: MD3_AMY
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proof that detecting more DE genes guaranteed better
performance of a method, in terms of its type I error
control and statistical power. Since the type I error and
statistical power could not be evaluated in real data ana-
lysis, we performed extensive simulations below to facili-
tate the evaluation. For a given gene, we considered
three variables: one continuous variable of gene expres-
sion Y, a corresponding binary variable of disease state
X and ten variables of potential binary confounding cov-
ariate Z (Z = (z1,...,z10)). Figure 1 shows three correlation
structures of interest among (X, Y, Z) that are simu-
lated. Scenario I demonstrated that both disease state X
and the first two confounding variables in Z (z1 and z2)
affect gene expression, a model of most interest in this
paper. Scenario II and III showed situations when con-
founding variables Z did not directly affect gene expres-
sion Y. In these latter two scenarios, including
confounding variables Y in the model should not
improve performance. The detailed simulation scheme

and evaluation criteria are available in the Additional
file 1: Part IV. For each scenario, we simulated a data
set with 1000 independent genes and 50 samples (25 dis-
eased and 25 controls). Among the 1000 genes, 100 are
true DE genes and 900 are non-DE genes. t-test, FEM_-
minP, FEM_BIC and FEM_ALL were applied to evaluate
the effect of modelling confounding variables and variable
selection in each correlation structure. We repeated the
simulation 50 times. Type I error and statistical power
were calculated for each method in each data set and aver-
aged over 50 repeated simulations. By definition, the type I
error was calculated as the average number of genes
detected among the 900 non-DE genes. Conversely, the
statistical power was obtained as the average number of
genes detected among the 100 true DE genes. Note that
for simplicity, we ignored paired design in the simulation
and thus applied FEM instead of RIM. Through the simu-
lation, we expect to answer whether including confound-
ing variables improves statistical power (t-test versus

Table 2 Number of detected DE genes using different single study analysis methods (PT, RIM_ALL, RIM_minP and
RIM_BIC) in the five individual studies and by two meta-analysis methods (Fisher and maxP)

method FDR Individual analysis Meta-analysis
(3ACC+2AMY)

MD1_ACC MD2_ACC MD3_ACC MD1_AMY MD3_AMY Fisher maxP

RIM_minP FDR = 0.05 0 0 2 0 0 0 0

FDR = 0.1 0 0 2 0 725 109 99

FDR = 0.15 0 0 5 0 1442 810 683

RIM_BIC FDR = 0.05 0 0 0 0 101 0 0

FDR = 0.1 0 0 1 0 506 0 0

FDR = 0.15 0 0 6 0 873 38 0

RIM_ALL FDR = 0.05 0 0 0 0 0 0 1

FDR = 0.1 0 3 0 0 1 0 1

FDR = 0.15 0 3 1 0 1 0 1

PT FDR = 0.05 0 0 0 0 0 0 0

FDR = 0.1 0 0 0 0 0 0 0

FDR = 0.15 1 1 0 0 0 0 0

Three FDR thresholds are used (5%, 10% and 15%)

Figure 1 Three correlation structures of interest among disease variables X, gene expression variable Y and putative confounding
covariates Z that are used in the simulation. Scenario I: gene expression depends on both disease state and covariates. Scenario II: gene
expression depends only on disease state. Scenario III: gene expression depends on disease state directly and depends on covariates indirectly
through disease state.
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FEM_minP, FEM_BIC and FEM_ALL) and whether vari-
able selection in the model improves power (FEM_minP
and FEM_BIC versus FEM_ALL) under different
scenarios.

Results
Recommended statistical framework
From the motivating MDD example, we showed in Figure 2
a diagram of the statistical framework to consider potential
confounding covariates, paired design and gene-specific
variable selection in the meta-analysis modelling. The fra-
mework consisted of four major steps: individual study ana-
lysis, meta-analysis, pathway analysis and post hoc analysis.
In the first “individual study analysis” step, collinearity of
confounders was assessed and RIM_minP or FEM_minP
method with variable selection was applied depending on
paired or un-paired design. One or multiple meta-analysis
methods were applied and compared in Step II. Pathway
analysis was then performed on the detected DE gene list(s)
to identify enriched pathways in Step III. Finally, post hoc
analysis was performed to summarize importance of each
confounding variables and to evaluate the consistency of
disease effects and confounders’ effects across studies. This
framework is general and applicable to any multi-study
weak-signal data from a complex disease similar to the
motivating MDD example.

Comparison of various methods in single study analysis
Confounder adjustment and variable selection to improve
DE gene detection For each single study analysis, we
compared the number of detected DE genes under

different p-value thresholds (p = 0.001, 0.005, 0.01 and
0.05) from different methods. In Figure 3, RIM_minP and
RIM_BIC detected more DE genes than RIM_ALL in
most studies, showing the fact that variable selection
helped to ignore irrelevant clinical variables when sample
size was small. Among the two variable selection meth-
ods, RIM_minP detected more genes than RIM_BIC,
supporting that the focus of RIM_minP to obtain the
most significant disease effect outperformed RIM_BIC’s
focus for best model fitting in this MDD example. Under
p = 0.005, RIM_minP detected (0.8 to 1.3) times of DE
genes than RIM_BIC and (0.8 to 5.5) times than
RIM_ALL. The result suggested that RIM_minP is the
most effective method in this data set to incorporate con-
founding variables in the model. In Figure 3, RIM_minP
and RIM_BIC were also compared to paired t-test (PT)
and were found to detect more DE genes, showing the
advantage of incorporating confounding covariates in the
model. RIM_minP identified (0.9 to 4.6) times DE genes
than PT and RIM_BIC identified (0.8 to 4.4) times DE
genes than PT under p = 0.005.
Paired design to improve DE gene detection To evalu-

ate the improvement of including paired design in the
model, we compared RIM_minP and FEM_minP in Fig-
ure 4. We observed increased DE gene detection compe-
tency of RIM_minP compared to FEM_minP in three
studies (MD2_ACC, MD3_AMY and MD3_ACC) but
not in the other two studies (MD1_ACC and
MD1_AMY). The result showed that pairing cases to
controls by age, race and sex often helped increase statis-
tical power but not always.

Figure 2 An illustrative diagram of the proposed statistical framework.
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Conclusion Incorporation of potential confounding
covariates with variable selection and considering paired
design in the model of single study analysis generally
increased the detection competency of disease related
biomarkers.

Comparing individual study analysis and meta-analysis
Smaller sample size in each study often results in a
smaller statistical power of DE gene detection. In Table
2, the first five columns show the number of biomarkers
detected by RIM_minP, RIM_BIC and PT under differ-
ent false discovery rate (FDR) thresholds. After multiple
comparison correction by Benjamini-Hochberg proce-
dure, the first four single study analyses detected almost

none DE genes under FDR = 5, 10 or 15%. This moti-
vated us to perform meta-analysis to increase statistical
power and provide validated findings on DE gene detec-
tion. In Table 2, the last two columns show the number
of biomarkers detected by Fisher method and maxP
method, respectively. The two meta-analysis methods
detected more biomarkers than individual study analysis
based on RIM_minP except for MD3_AMY.
To further evaluate the biological implication of the

detected DE genes by various methods, pathway analysis
was performed. Figure 5 showed boxplots of the minus
log-transformed p-values (base 10) from pathway analysis
in the top 100 disease-related surrogate pathways. DE
gene detection methods were ordered by the median of

Figure 3 Comparison of number of detected DE genes in individual study analyses of RIM_minP, RIM_BIC, RIM_ALL, and PT. The result
showed that RIM_minP detected the largest number of DE genes among the four methods.
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the log-transformed p-values in the plot. The squares and
numbers in the upper part of the figure demonstrate the
p-values from Wilcoxon signed-rank test when comparing
two neighbouring DE gene detection methods (numbers
show the p-values and filled squares represent that the
corresponding p-value is smaller than 0.05). The result
showed a clear pattern that both meta-analysis methods
generally produced better DE gene detection results than
the five single study analyses, no matter PT, RIM_minP or
RIM_BIC was used in single study analyses. Interestingly,
although MD3_AMY generated more DE genes than that
produced by meta-analysis methods (Fisher and maxP)
using either RIM_minP or RIM_BIC (see Table 2), its
pathway analysis performed worse than the two meta-ana-
lyses result and even worse than the other four single stu-
dies (Figure 5). This evidence may raise concern of quality

in the MD3_AMY study that will need additional investi-
gation. RIM_BIC and RIM_minP did not appear to gener-
ate more biologically validated results than PT, probably
because of the currently limited knowledge of MDD neu-
robiology and the still largely inaccurate pathway
information.

Comparing fisher and maxP
In the literature, many microarray meta-analysis methods
have been proposed and compared [11,34,38]. As was dis-
cussed in the method section, different methods have dif-
ferent strength for detecting different types of differentially
expressed genes. In Li and Tseng [8], genes that are differ-
entially expressed in all studies were termed as HSA type
(hypothesis setting A) while genes differentially expressed
in at least one study were called HSB type. Among the

Figure 4 Comparison of number of detected DE genes in individual study analyses of RIM_minP and FEM_minP. The result showed that
RIM_minP usually detected more DE genes.
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three methods compared in this paper, maxP were meth-
ods that detect HSA type DE genes, while Fisher’s method
detected HSB type DE genes. The result showed that the
two meta-analysis methods detected different sets of DE
genes, suggesting different algorithms and assumptions
behind the methods. Additional file 1: Figure S3 shows
heatmaps on genes detected by Fisher alone (Additional
file 1: Figure 3A), maxP alone (Additional file 1: Figure
S3B) or both (Additional file 1: Figure S3C). In Additional
file 1: Figure S3A, majority of DE genes detected by Fisher
but not by maxP were dominated by strong differential
expression in one or two studies (many in MD3_AMY
and some in MD2_ACC or MD3_ACC). Although Fisher’s
method has been popularly applied in the microarray
meta-analysis literature, the result showed its weakness to

be dominated by single strong signal studies that included
potential false positives. For example, Fisher’s method
detected 810 DE genes among which 445 DE genes (about
55%) could also be detected in MD3_AMY) while only
169 (about 24%) among 683 DE genes detected by maxP
method could be detected in MD3_AMY. On the other
hand, maxP had better statistical power to detect many
genes with weak DE evidence in all studies (Additional file
1: Figure 3B) that Fisher’s method cannot detect. Concep-
tually, we were more interested in identifying genes differ-
entially expressed across all studies through maxP.

Post hoc analysis for confounding covariates
To evaluate the impact of covariates on the gene expres-
sion values and degree of confounding with disease

Figure 5 Comparison of meta-analyse and individual analysis based on pathway analysis criterion across RIM_minP, RIM_BIC and
paired t-test. The results showed that meta-analysis produced DE analysis results with stronger association with the top 100 disease-related
surrogate pathways.
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effect, especially among DE genes, we counted the num-
ber of appearances of covariates in the RIM_minP
model for DE genes detected by maxP method under
FDR = 15%. We calculated the rank of each covariate in
each study and computed rank averages of each covari-
ate to indicate relative degree of frequency that a covari-
ate impacted gene expression and confounded with
disease effect (see Table 3). PMI (appeared in 13-20%
RIM_minP models of 683 DE genes) and pH (appeared
12-30% in RIM_minP models) consistently had high
rank, indicating that they seldom confounded and influ-
enced the disease effect estimate. Suicide (appeared 22-
50% in RIM_minP models), alcohol (appeared 29-54% in
RIM_minP models) and antidepressant (appeared 17-
53% RIM_models) were three factors that consistently
ranked among the most influential factors. Finally, age
(appeared 21-32% in RIM_minP models) was an inter-
mediate confounding factor. The ranking of MD3_ACC
and MD3_AMY was highly correlated (Spearman corre-
lation = 0.89) and the correlation between rankings of
MD1_ACC and MD1_AMY was also high (Spearman
correlation = 0.54). The high within cohort correlations
showed a cohort dependent structure and suggested that
more studies may be needed to provide empirical evi-
dence on the covariate impacts, particularly for the
impact of antidepressant and suicide.
To further explore effects of covariates, we analysed a

set of 9 genes that have been previously associated with
MDD in the literature (see Table 1A and 1B). Intuitively,
we expected that a covariate should be included in the
model across studies more frequently than by random
and effects of a covariate should have consistent differen-
tial expression direction across studies. We constructed
two hypothesis testing using the co-appearing statistics
T1 and concordant ratio statistics R described in the
Method section and performed the tests on the set of 9
MDD-related genes. The result showed weak to marginal
statistical significance of the first hypothesis (p = 0.397
based on RIM_minP and p = 0.011 based on RIM_BIC),
suggesting covariates were consistently selected across
studies by RIM_BIC but not RIM_minP. For the second

hypothesis, tests for both 9 MDD gene list was statisti-
cally significant (p = 0.014 and 0.005). The effects sizes of
selected confounding variables have concordant direction
across studies. For example, age was found a confounding
variable in gene NPY and TAC1 in three out of five stu-
dies and the effect sizes were all negative (in log scale).
The moderate statistical significance is reasonable since
the hypothesis tests were performed only on the nine
selected genes. This result demonstrated that covariates
overall impacted gene expression changes consistently
and confounded with disease effects among the 9 MDD-
related gene list.

Simulation results
The results of simulations to evaluate Type I error con-
trol and statistical power of different methods are shown
in Table 4. In Scenario I simulation, the effect of disease
state X on gene expression Y was confounded by two out
of ten clinical variables in Z (Z = (z1,...,z10); z1 and z2 are
confounders while the other eight variables are not). The
result showed that t-test had low statistical power due to
the confounders (power = 0.679). FEM_ALL also had low
power due to the inclusion of all ten clinical variables in
the model while in fact, only two of the ten were effective
confounders (power = 0.697). Both FEM models with
variable selection performed well. FEM_BIC performed
slightly better than FEM_minP (power = 0.746 versus
0.729). The type I errors for all methods were close to
the nominal 5% rate, showing adequacy of the models
and statistical inference. For Scenario II, all clinical vari-
ables were independent from the gene expression. Not
surprisingly, t-test performed the best with statistical
power 0.938. FEM_minP and FEM_BIC both had similar
high power at 0.929 and 0.925. FEM_ALL forced all vari-
ables in the model and obtained a low statistical power at
0.85. From Scenario I and Scenario II simulation, FEM_-
BIC and FEM_minP performed well in both extreme
cases, demonstrating its sensitivity and robustness. Sce-
nario III examined a special situation that variables in Z
impacted gene expression Y through disease state X.
Similar to Scenario II, t-test performed the best in this

Table 3 Frequency of covariates appearing in RIM_minP model selection among 683 DE genes detected by maxP
method under threshold FDR = 15%

MD1_ACC MD2_ACC MD3_ACC MD1_AMY MD3_AMY Rank average

Age 142(5) 213 (4) 205 (4) 173 (3) 218 (3) 3.6

Alcohol 299 (2) 279 (2) 221 (3) 368 (1) 195 (4) 2.4

Antidepressant 348 (1) 119 (6) 271 (2) 346 (2) 362 (1) 2.4

pH 208 (3) 150 (4) 116 (6) 108 (6) 86 (6) 5

PMI 93 (6) 120 (5) 141 (5) 133 (5) 120 (5) 5.2

Suicide 150 (4) 325 (1) 340 (1) 149 (4) 322 (2) 2.4

Rank is shown in parentheses and rank average of each covariate is calculated to indicate relative degree of frequency that a covariate impacts gene expressions
and confounds with disease effect.
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situation since Z is not confounded (power = 0.938).
Both FEM_BIC and FEM_minP had similar high power
(power = 0.925 and 0.916) but FEM_ALL again had low
power (power = 0.851). For scenario I, we simulated two
confounding variables, z1 and z2, where z1 had a strong
association with Y (gene expression) while z2 had a
weaker association with Y. In Table 4, an average of 1.97
variables was selected by RIM_minP and 1.27 variables
were selected by RIM_BIC. Among them, 0.97 (by RIM_-
minP) and 0.78 (by RIM_BIC) variables belong to the
true confounding variables (z1, z2). The result showed
effectiveness of RIM_minP and RIM_BIC in variable
selection compared to paired t-test (always contains no
confounding variable) and RIM_ALL (always include all
ten variables in Z). Overall, the simulation results con-
firmed our findings in MDD data analysis that modelling
confounding variables with variable selection had better
sensitivity and robustness in DE gene detection.

Discussion
In this paper, we described a statistical approach adjusted
for confounding variables (i.e. a random intercept model
with variable selection), to tackle weak signal expression
profiles that have small sample size, case-control paired
design and confounding covariates in each study. The
results showed increased statistical power from con-
founding variable adjustment, paired design modelling
and meta-analysis in this genomic setting and improved
biological findings and interpretations have been discov-
ered in MDD neurobiology. Pathway analysis and post
hoc analysis of variable selection revealed insightful bio-
logical conclusions. Simulations under three correlation
structures were performed to verify improved perfor-
mance of the proposed model. In the literature, most psy-
chiatric disease related microarray studies of similar
design either ignored the clinical variables or applied
simple linear regression to include all variables in the
model. Our simulations clearly show limits to those two
approaches. Our approach systematically considers the

critical elements in the data structure in order to obtain
more accurate DE gene and pathway detection. The fra-
mework is general and can be applied to microarray
meta-analysis of other complex diseases with similar data
structure. Specifically, this approach will be of great use
in human post-mortem studies of the brain, where con-
founding factors are intrinsic (1) to the nature of the
cohorts (demographic parameters), (2) to their method of
collection (post-mortem interval) and (3) to the illness
per se (clinical heterogeneity). Since dilution of expres-
sion signal is likely to occur in complex tissue such as the
brain, DE genes often show small and weak effects and
eliminating the effects of confounding factors is critical
to detect disease associated markers.
In the variable selection of the RIM model, we tested

both BIC and minP approaches. The real data analysis
showed that minP seemed to identify more DE genes in
the MDD example while simulations showed similar per-
formance and statistical power of the two methods.
Another potential alternative is to apply popular regulari-
zation and shrinkage methods, such as Lasso or ridge
regression, in the variable selection. A prohibitive down-
side of such approaches is its expensive computational
load for genome-wide analysis, particularly in the estima-
tion of the tuning parameters. In our analysis, BIC and
minP procedures were limited to up to two covariates in
the model, which balanced well in biological interpreta-
tion and computation feasibility.
The goal of this study was to determine optimal analy-

tical approaches for complex datasets with multiple puta-
tive confounding variables. For this purpose, we focused
on datasets produced by a single laboratory, in order to
avoid additional confounding factors due to differences
in laboratory protocols, brain bank collection, tissue
treatment and sample handling. Now that we have estab-
lished such analytical guidelines, the next step will be to
increase the scope of meta-analyses by including addi-
tional datasets that are progressively made available in
the literature. However, as expected, this also comes with

Table 4 Evaluation of t-test, FEM_minP, FEM_BIC and FEM_ALL methods by simulations

Type I error (s.e.) Power (%) (s.e) Number of DE genes (s.e) # of variables in Z selected

Scenario A B C D A B C D A B C D B C

I 0.051
(.001)

0.046
(.001)

0.049
(.001)

0.051
(.001)

67.9
(.006)

72.9
(.007)

74.6
(.006)

69.7
(.006)

12.5
(1.03)

20.4
(1.11)

23.3
(1.04)

17.6
(1.09)

0.97/1.97* 0.78/1.21*

II 0.051
(.001)

0.052
(.001)

0.050
(.001)

0.051
(.001)

93.8
(.003)

92.9
(.003)

92.5
(.003)

85.0
(.005)

73.4
(.85)

73.0
(.92)

69.8
(.96)

49.7
(1.37)

1.7 0.59

III 0.051
(.001)

0.053
(.001)

0.051
(.001)

0.051
(.001)

93.8
(.003)

92.5
(.004)

91.6
(.004)

85.1
(.005)

71.8
(.93)

68.3
(.94)

66.5
(.88)

45.8
(1.05)

1.8 0.6

*The denominator showed average number of variables in Z selected. The numerator showed average number of selected variables that belong to the true
confounders (z1, z2).

The average of type I errors, average of statistical powers, and average number of detected DE genes by each method are shown. Standard errors are shown in
parentheses. In the last two columns, the average numbers of confounding variables selected by FEM_minP and FEM_BIC are shown.

A: t-test, B: FEM_minP, C: FEM_BIC, D: FEM_ALL
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added variability, which necessitates the development of
complementary mathematical tools. For instance, we
have designed a data-driven “meta-QC” quality control
approach to rigorously assess the quality of microarray
datasets to be combined [39]. The quality control test is
critical to assess whether the inclusion of additional data-
sets will increase the analytical power, or be detrimental
to the meta-analysis. Finally, as briefly elucidated in this
report, mechanisms underlying neurological and neurop-
sychiatric disorders are likely to involve a distributed sets
of brain regions linked in functional neural networks.
The detection of molecular pathologies associated with
those disorders will thus also critically depend on a priori
hypotheses for converging or opposing effects in selected
brain regions, for the presence (or not) of control brain
regions. For instance, genetic risk factors may be
hypothesized to similarly affect biological pathways
across brain regions, while compensatory mechanisms
leading to pathological dysfunction may display regional
specificity, depending on the respective activation or
inhibition of different components of neural networks.
Hence, the biological impact of the studies performed
here will be investigated, validated and discussed more
in-depth elsewhere.
The studies combined in this paper have significant

cohort features that may introduce significant heteroge-
neity. The five studies came from three distinct cohorts
(MD1, MD2 and MD3), different sexes (male and
female), array platforms (Affymetrix and Illumina) and
brain regions (ACC and AMY). Future research is cur-
rently pursued to decipher such study-specific features.
A future direction is to collect more studies and apply
meta-regression techniques to identify sex-specific or
brain-region-specific genes in a unified meta-analysis.

Additional material

Additional file 1: Supplement material.
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